Service Repair Documentation Level 3 - E61

Release	Date	Department	Notes to change	
R 1.0	12.05.2006	BenQ S CC CES	New document	

Technical Documentation				
TTD_Repair_L3	_Theory of Operation_E61_	_R1.0.pdf		

Table of Content

1	Inti	Introduction		
1	.1	PURPOSE		
1	.2	SCOPE		
1	.3	TERMS AND ABBREVIATIONS		
2	Lis	t of available level 3 parts4		
3	Re	quired Equipment for Level 36		
4	Re	quired Software for Level 36		
5	Ra	dio Part7		
5	5.1	RECEIVER OPERATION		
5	.2	TRANSMITTER OPERATION		
5	.3	VCXO OPERATION		
6	Lo	gic (Base-Band)10		
6	5.1	CALYPSO12		
6	.2	IOTA15		
6	.3	POWER SUPPLY		
	6.3	.1 System power on/off Sequence20		
6	5.4	MEMORY CIRCUIT		
6	5.5	LCD MODULE (LCDM)		
6	6.6	CAMERA MODULE		
7	Inte	erfaces25		
7	. 1	AUDIO CODEC AND AUDIO AMPLIFIER		
	7.1	.1 Audio codec function block25		
	7.1	.2 Multimedia Application Input Circuit Design		
	7.1	.3 Multimedia Application Output Circuit Design27		
	7.1	.4 Loudspeaker output path and D-amplifier design27		
7	.2	10 PINS I/O CONNECTOR		
7	.3	MINI-SD CARD		
7	.4	KEYPAD LED CIRCUIT		
7	.5	VIBRATOR		
7	.6	Keypad		
8	Ch	arging circuit		

Technical Documentation	06/2006
TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf	Page 2 of 33

1 Introduction

1.1 Purpose

This Service Repair Documentation is intended to carry out repairs on BenQ repair level 3-4.

1.2 Scope

This document is the reference document for all BenQ authorised Service Partners which are released to repair Siemens mobile phones up to level 3.

1.3 Terms and Abbreviations

2 List of available level 3 parts

Product	ID	Order Number	Description CM
E61	DCJ	L50634-Z97-C553	CONNDCPWRPA05302-QNJBQ2B.13120.021
E61	SPCON	L50634-Z97-C557	CONN24PD.4H1.5AXK824145YBQ2K.L1142.024
E61	LCDM	L50634-Z97-C562	CONN30PD5H185AXK5F30545YBQ2K.L1143.030
E61	DSC	L50634-Z97-C668	CONNSKT24PD.4AXK724245BQ2K.L1165.024
E61	BATC1	L50634-Z97-C664	CONNBATTCBE-3111-2769HBQ2K.N0079.011
E61	BATC2	L50634-Z97-C665	CONNBATT2PJ-3111H-2-25BQ2K.N0079.071
E61	IOJ	L50634-Z97-C558	CONNI/O10PP0.5BQ2K.N0081.001
E61	ANT1	L50634-Z97-C666	CONNSPRING2PN027M4-2I3BQ2K.N0082.031
E61	KPCON	L50634-Z97-C667	CONNBTB14PFBF05314BQNBQ2K.N1003.021
E61	SIM	L50634-Z97-C659	CONNSIMCARDBM05106-L5BQ2K.N5030.021
E61	MINISD	L50634-Z97-C669	CONNSDMINI11P48050-3BQ2K.N5037.011
E61	TKCON1	L50634-Z97-C670	CONNVOLUMAV4040-A0G12BQ2K.P0003.004
E61	TKCON2	L50634-Z97-C670	CONNVOLUMAV4040-A0G12BQ2K.P0003.004
E61	F1	L50645-A820-Y48	FUSE1.25A32VF04671BQ6J.41251.001
E61	F2	L50645-A820-Y48	FUSE1.25A32VF04671BQ6J.41251.001
E61	RT1	L50622-f4103-k	NTC10K0402NTH5GBQ6J.60009.001
E61	Т9	L50640-D110-D670	DISDIODETVM0A090MIRYBQ6J.80009.011
E61	T2	L50640-D128-D670	DISDIODESFI0402ML120CBQ6J.80018.011
E61	Т3	L50640-D128-D670	DISDIODESFI0402ML120CBQ6J.80018.011
E61	T4	L50640-D128-D670	DISDIODESFI0402ML120CBQ6J.80018.011
E61	T1	L50640-D129-D670	DISDIODE0402-050E560NPBQ6J.80018.031
E61	T5	L50640-D129-D670	DISDIODE0402-050E560NPBQ6J.80018.031
E61	T7	L50640-D129-D670	DISDIODE0402-050E560NPBQ6J.80018.031
E61	Т8	L50640-D129-D670	DISDIODE0402-050E560NPBQ6J.80018.031
E61	CB57	L50640-D130-D670	DISDIODESFI0402-050E47BQ6J.80018.041
E61	CB58	L50640-D130-D670	DISDIODESFI0402-050E47BQ6J.80018.041
E61	TVS4C1	L50640-D119-D670	DISDIODETVSSFI0508-050RBQ6J.80022.011
E61	TVS4C2	L50640-D119-D670	DISDIODETVSSFI0508-050RBQ6J.80022.011
E61	CN1	L50664-F6220-K	CAPARRAY22P50VJ0805SBQ7G.62203.0C1
E61	CN2	L50664-F6220-K	CAPARRAY22P50VJ0805SBQ7G.62203.0C1
E61	CN3	L50664-F6220-K	CAPARRAY22P50VJ0805SBQ7G.62203.0C1
E61	DN1	L50640-D5121-D670	DISDIODEARRDAN222BQ8C.00222.0A0
E61	D601	L50640-D124-D670	DISDIODEVARHVD358BKRF-EBQ8C.00358.090
E61	D1	L50640-D5110-D670	DISDIODERB520S-30BQ8C.00520.080
E61	LED3	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	LED4	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	LED5	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	LED6	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071

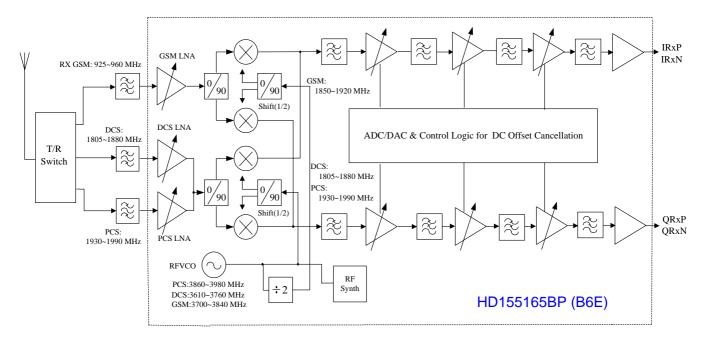
Technical Documentation TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf

E64		1 50640 1 2470 0070	
E61	LED7	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	LED8	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	LED9	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	LED10	L50640-L2179-D670	DISOPT19-213AUWD/S365-2BQ8C.19213.071
E61	D4	L50640-D5123-D670	DISDIODERB161M-20BQ8C.1R002.08Q
E61	D5	L50640-D5124-D670	DISDIODEPMEG2020EJBQ8C.2R002.A8F
E61	D601	L50640-D5124-D670	DISDIODEPMEG2020EJBQ8C.2R002.A8F
E61	DZB1	L50640-D3142-D670	DISDIODEZEN6.06-6.33VBQ8C.6R205.03F
E61	D2	L50640-D5125-D670	DISDIODE1PS79SB30BQ8C.R2004.A84
E61	D3	L50640-D5125-D670	DISDIODE1PS79SB30BQ8C.R2004.A84
E61	B1	L50640-C2149-D670	DISTRANSPEMH9NPNBQ8D.00009.010
E61	B3	L50640-C2167-D670	DISTRANSUMH10NNPNBQ8D.00010.01F
E61	B2	L50640-C2143-D670	DISTRANSBC807-40WPNPBQ8D.00807.A1K
E61	FN1	L50630-C1198-D670	DISTRANSFDG6303NBQ8D.06303.03K
E61	FP1	L50630-C1186-D670	DISTRANSFETFDC6306PBQ8D.06306.030
E61	FP3	L50630-C1186-D670	DISTRANSFETFDC6306PBQ8D.06306.030
E61	FP2	L50630-C1187-D670	DISTRANSFETFDC6506PBQ8D.06506.030
E61	U67	L50645-K280-Y420	FILSAW1842.5MHZSAFEH1GBQ6J.10151.001
E61	U68	L50645-K280-Y421	FILSAW942.5MHZSAFEH942MBQ6J.10152.001
E61	U66	L50645-K280-Y437	FILSAW1960MHSAFEH1G96FBBQ6J.10154.001
E61	EMI2	L50645-K280-Y453	FILLFA24-2A1A144MTBQ6J.10189.001
E61	EMI3	L50645-K280-Y453	FILLFA24-2A1A144MTBQ6J.10189.001
E61	EMI4	L50645-K280-Y453	FILLFA24-2A1A144MTBQ6J.10189.001
E61	EMI5	L50645-K280-Y453	FILLFA24-2A1A144MTBQ6J.10189.001
E61	EMI6	L50645-K280-Y467	FILLFB20-3D1E471MBQ6J.10189.011
E61	EMI7	L50645-K280-Y467	FILLFB20-3D1E471MBQ6J.10189.011
E61	IOTA	L50610-U6243-D670	ICINTFTWL3025BZGMRBQ7A.03025.B0U
E61	SHJ2SL	L50610-G6322-D670	ICCPUSH7327-DH6417327BQ7A.07327.00U
E61	G2	L50645-J4683-Y34	ICASICD751992AZHHRBQ7A.75199.A0U
E61	AND1	L50610-B6250-D670	ICLOGINL17SZ08XV5T2BQ7C.17085.090
E61	AND2	L50610-B6250-D670	ICLOGINL17SZ08XV5T2BQ7C.17085.090
E61	OR1	L50610-B6251-D670	ICLOGINL17SZ32XV5T2BQ7C.17325.09H
E61	BR13M	L50610-B6252-D670	ICLOGISN74AVC1T45DCKRBQ7C.74145.09H
E61	BR32K	L50610-B6252-D670	ICLOGISN74AVC1T45DCKRBQ7C.74145.09H
E61	BRRSTO	L50610-B6252-D670	ICLOGISN74AVC1T45DCKRBQ7C.74145.09H
E61	AMP	L50610-C6390-D670	ICANATPA2010D1YZFRBQ7D.02010.0K0
E61	U1	L50610-C6392-D670	ICANANUF2221W1T2GBQ7D.02221.07Y
E61	BLDRV	L50610-C6288-D670	ICDCCONLM3501TLXBQ7D.03501.040
E61	LDO2CH	L50610-C6423-D670	ICVRR5325K005B-TRBQ7D.05325.030
E61	U64	L50610-U6248-D670	ICSWITCHPLELMSP54CA-272BQ7D.054CA.D30
E61	PMIC	L50610-C6394-D670	ICANABH6053GUBQ7D.06053.04U
E61	CHRIC	L50610-C6395-D670	ICANAISL6292CCR3ZBQ7D.06292.070
E61	CODEC	L50610-U6276-D670	ICAUDIOWM8955LSEFL/RBQ7D.08955.075

Technical Documentation TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf

E61	U70	L50610-C6289-D670	ICANAVRMAS9124A2GC06BQ7D.09124.03B
E61	VD1	L50610-C6424-D670	ICDETECTORXC61GN2302HRNBQ7D.12302.0B0
E61	U65	L50610-U6244-D670	ICIRXCVRHD155165BPEBBQ7D.15516.0FU
E61	U69	L50610-C6425-D670	ICPWRAMPSKY77328BQ7D.77328.0K0
E61	U62	L50610-B6218-D670	ICLOGIBUFFERNC7WZ16BQ7D.7WZ16.0MY
E61	O48M	L50645-G200-Y28	OSC48MHZ30PF50PPMBQ8B.24800.301
E61	U61	L50645-F102-Y48	OSCCRYST26MHZU-860-1-1BQ8B.30026.D02
E61	C30M	L50645-F102-Y64	OSCCRYST30MHZ30MHZ8PFBQ8B.33000.B02
E61	C32K	L50645-F102-Y49	OSCCRYST32.768DST520BQ8B.33276.705

3 Required Equipment for Level 3


- GSM-Tester
- PC-incl. Monitor, Keyboard and Mouse
- USB boot cable with USB foxlink driver (F30032-P601-A1)
- Troubleshooting Frame E61
- Power Supply
- Spectrum Analyser
- Active RF-Probe incl. Power Supply
- Oscilloscope incl. Probe
- RF-Connector (N<>SMA(f))
- Power Supply Cables
- Dongle
- BGA Soldering equipment

4 Required Software for Level 3

- Windows XP
- XCSD Tools Level 3
- GRT Version 4 or higher

5 Radio Part

5.1 Receiver Operation

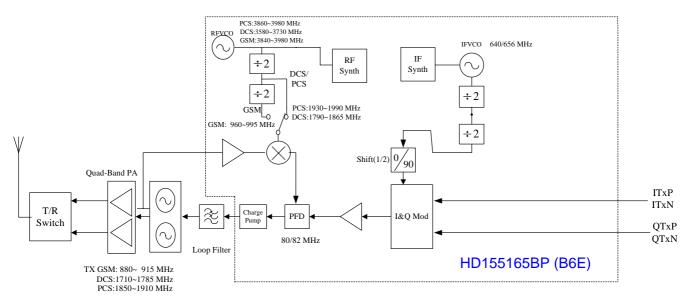
The Receiver structure in HD155165BP is a zero-IF solution. That means RF signal is directly downconverted to the baseband signal. And by the way, all of the DC-offset canceling processes are done within chip. We do not have to care about that.

The LNA amplifies the RF signal after passing the T/R switch and RF SAW filter and before it enters the down-converter section. The RF signal is mixed with a local oscillator (LO) signal to generate the baseband signal.

Three LPFs are used in the baseband signal processing for reducing blocking signals. The first LPF employs two external capacitors, and we can check whether the front-end (LNA + Mixer) is functionally well or not by probing these two capacitors to see if there is any baseband signal(<200kHz).

After three stages of DC-offset cancelling, the signal (I+/I-/Q+/Q-) then output to the baseband IC for further processing.

The HD155165BP receiver is based upon the HD155155NP direct conversion design. As HD155165BP supports quad band, the front end incorporates four LNAs and mixers. The incoming RF signals are mixed directly down to I/Q base-band by the front-end block. This incorporates four LNAs / four buffers and Gilbert Cell mixer blocks optimized for operation at 850MHz, 900MHz, 1800MHz, and 1900MHz respectively.


The front-end block is followed by two closely matched base-band amplifier chains. These include distributed low pass filter, three switched gain stages and one fixed gain stage.

Technical Documentation			
TTD_Repair_L3 _	Theory of Operation_E61_R1.0.pdf		

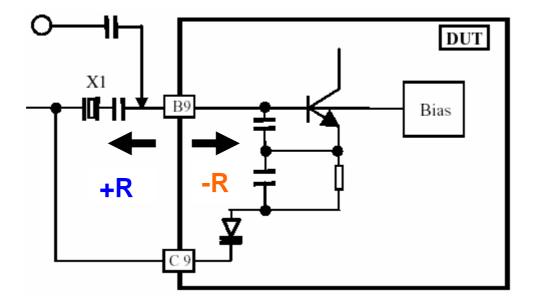
In addition, the base-band section integrates A/D and D/A converters which provide automatic onchip correction of DC offsets. The three switched gain stages in each channel are DC coupled and provide 90dB gain control range with 2dB step size. The first PGA has a voltage gain range (x8-x1) with 6dB steps. The second PGA has a gain range (x8-x0.125) with 2dB steps. The third PGA has a gain range (x8-x0.125) with 2dB steps. The final fixed gain amplifier provides a gain of x3 or x6. The gain is set to match the on-chip levels to the input dynamic range of the base-band. The base-band filtering in each channel comprises a single RC low pass filter at the input of the first switched gain stage and three 2nd order Butterworth filters, one at the input of each of the other switched gain stages. The R/C filter requires an off-chip capacitor for each channel. The Butterworth filters are fully integrated on-chip.

The base-band PGA includes a DC offset cancellation system. The auto calibration system uses a successive approximation technique and requires around 20us to perform a three stages calibration. The system calibrates out the offsets arising in both I and Q receives channels.

5.2 Transmitter Operation

The B6E generates a modulated signal at IF with a quadrature modulator and converts it to final frequency with an Offset Phase Locked Loop (OPLL).

The Offset Phase Locked Loop is simply a PLL with a down conversion mixer in the feedback path. Using a down converter in the feedback path acts as an up-converter in the forward path. This allows the output frequency to be different from the comparison frequency without affecting the normal operation of the loop. Phase/frequency changes in the reference signal are not scaled, as they would be if a divider were used in the feedback path, hence the modulation is faithfully reproduced at the final frequency.


The main advantage of the OPLL in this application is that it forms a tracking band pass filter around the modulated signal. This is because the loop cannot respond to phase variations at the reference that are outside its closed loop bandwidth. Thus the broad band phase noise from the quadrature modulator is shaped by the frequency response of the closed loop allowing the TX noise specification to be met without further filtering.

Technical Documentation		
TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf		

A secondary advantage of the OPLL is that the output signal, coming from a VCO, is truly constant envelope. This removes the problem of spectral spreading caused by AM to AM and AM to PM conversion in the power amplifier.

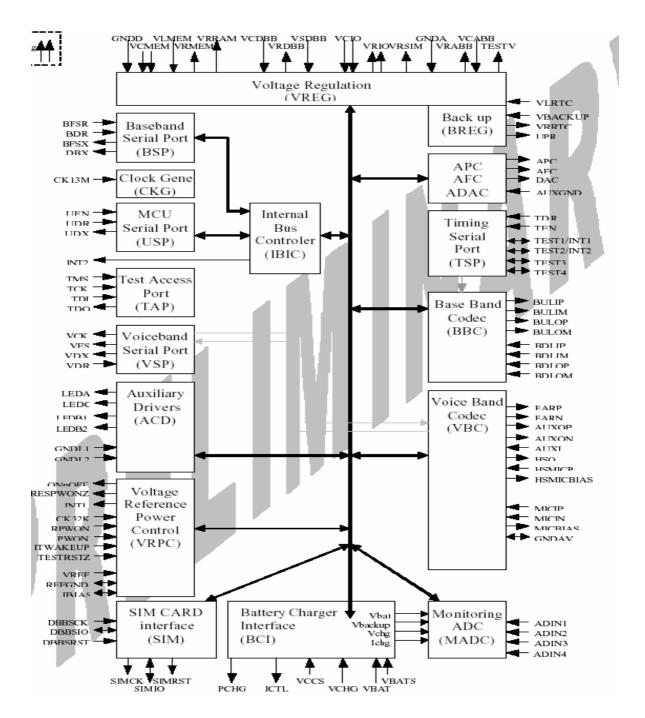
The OPLL is formed from an on chip Gilbert cell down converter, limiter and phase detector with on chip passive loop filter. The phase detector is implemented as a Gilvert cell with current source output stage. The current output allows an integrator to be included in the passive loop filter. This is similar to the technique commonly used in PLL synthesizers. A digital phase detector is used to speed OPLL locking. After locking, the digital phase detector is switched off and the analogue phase detector becomes active.

5.3 VCXO Operation

HD155165BP provides a DCXO function. With that function, we can build a reference clock generation circuits as shown in the above graph. This means that the VCTCXO module is not necessary for clock application, and only one crystal with 8ppm tolerance and one varactor are enough.

The transistor in HD155165BP and two internal capacitors (C1, C2) provide a negative resistance, and the crystal (X1) combined with some other passive components to provide a positive resistance. When these two resistance values equal to each other at some frequency, the oscillation will happen at that frequency. In our design target, the oscillation frequency should be within 26MHz +/-15 ppm at least.

6 Logic (Base-Band)


Introduction:

E61 utilizes TI's chipsets (CALYPSO and IOTA) and RENESAS's chipset (SHJ2SLSL) as baseband solution. Base-band is composed with three potions: Logic, Analog/Codec and MMP. CALYPSO is a GSM/GPRS digital base-band logic solution included microprocessor, DSP, and peripherals. IOTA is a combination of analog/codec solution and power management which contain base-band codec, voice-band codec, several voltage regulators and SIM level shifter etc. SHJ2SLSL is a multimedia solution included microprocessor, DSP, internal memory, and interrupt controller. In addition, HerB1A integrates with other features such as LED backlight, TFT-LCD display, CMOS DSC module, Mini-SD card, vibration, SW-midi, MP3 and charging etc. The following sections will present the operation theory with circuitry and descriptions respectively.

32KHz CRYSTAL Ľ 13MHz or 26 MHz TCXO IT Alarm DIV - 2 RTC SLICER ► 13MHz ENABLE_CKI3Mh CK32Khz Asynchronous WAKE_UP DPLL & CLKM WTDOG INTH ULPD SPI MCU top-cell Boot ROM GSM time External GEA MEMIF ARM7 TPU в Memories Memory Die ID R RHEA bus Debug Unit Protect Т TSP Unit D TIMER1 G ARM7 SIM E TIMER2 1Mbit w SRAM \mathbf{r} PWL ARMIO i 1Mbit DMA (4+) t UART uWIRE SRAM IRDA e PWT 1Mbit b В SRAM 8K API LPG u R **cDSP** CRYPT f I 1Mbit D SRAM S28C128 I2C RIF G Е INTH MCSI DSP subchip UART JTAG modem

Block Diagram CPU CALYPSO (HERCROM400)

ΙΟΤΑ

6.1 Calypso

CALYPSO (HERCROM400) is a chip implementing the digital base-band processor of a GSM/GPRS mobile phone. This chip combines a DSP sub-chip (LEAD2 CPU) with its program and data memories, a Micro-Controller core with emulation facilities (ARM7TDMIE) and an internal 4M-bit RAM memory, a clock squarer cell, several compiled single-port or 2-ports RAM and CMOS gates.

Major functions of this chip are as follows:

Real Time Clock (RTC)

The RTC block is an embedded RTC module fed with an external 32.768 KHz Crystal. Its basic functions are:

- 1. Time information (seconds/minutes/hours)
- 2. Calendar information (Day/Month/Year/ Day of the week) up to year 2099
- 3. Alarm function with interrupts (RTCINT is generated to wake up ABB)
- 4. 32 KHz oscillator frequency gauging

Pulse Width Light (PWL)

This module allows the control of the backlight of LCD and keypad by employing a 4096 bit random sequence .In the 56E30, we use the LT/PWL function to turn on the keypad light LED.

MODEM-UART

This UART interface is compatible with the NS 16C750 device which is devoted to the connection to a MODEM through a standard wired interface. The module integrates two 64 words (9 and 11 bits) receive and transmit FIFOs which trigger levels are programmable. All modem operations are controllable either via a software interface or using hardware flow control signals. In E61, we implement software flow control by only two signals: TXD0 and RXD0.

General Purposes I/O (GPIO)

Calypso provides 16 GPIOs configurable in read or write mode by internal registers. In E61, we utilize all of them as follows:

- IOO: Let MMP power-on reset; 'Low active'
- IO1: Enable LCDM backlight;
- IO2: Control MMP's MFI mode; 'H': 68-type mode, 'L': 80-type mode
- 103: Switching SWREG output voltage; 'H': SWREG mode, 'L': REG_L mode
- IO4: MMP's MFI INT request; 'Low active'

Technical Documentation TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf

- *IO5*: SIM power control
- IO6: Reserve
- 107: Reset of external device: For HerB1A, TFT LCDM
- IO8: Indicates whether MMP is in software standby mode
- 109: Enable audio amplifier;
- IO10: Detection of mini-SD card
- IO11: Reserve
- IO12: Reserve
- IO13: INT request for MMP
- IO14: SRAM high-byte enable
- IO15: SRAM low-byte enable

Serial Port Interface (SPI)

The SPI is a full-duplex serial port configurable from 1 to 32 bits and provides 3 enable signals programmable either as positive or negative edge or level sensitive. This interface is working on 13MHz and is used for the GSM/GPRS baseband and voice A/D, D/A with IOTA

Memory Interface and internal Static RAM

For external memory device (Flash and SRAM), this interface performs read and write access with adaptation to the memory width. It also provides 6 chip-select signals corresponding each to an address range of 8 mega bytes. One of these chip-select is dedicated to the selection of an internal memory. In E61, we employ nCS0/nCS1 (nCS0_NROM/nCS1_NROM) for external Flash and nCS2 (nCS2_NSRAM) for external SRAM.

A 4Mbit SRAM is embedded on the die and memory mapped on the chip-select nCS6 of the memory interface.

SIM Interface

The Subscriber Identity Module interface will be fully compliant with the GSM 11.11 and ISO/IEC 7816-3 standards. Its external interface is 3 Volts only. 5 Volts adaptation will be based on external level shifters.

JTAG

In E61, JTAG is used for software debugging.

Time Serial Port (TSP)

The TPU is a real-time sequencer dedicated to the monitoring of GSM/GPRS baseband processing. The TSP is a peripheral of the TPU which includes both a serial port (32 bits) and a parallel interface. The serial port can be programmed by the TPU with a time accuracy of the quarter of GSM bit. The serial port is uni-directional (transmit only) when used with IOTA. The serial port provides 4 enable signals programmable either as positive or negative edge or level sensitive. This serial port is derived from 6.5MHz and used to control the real time GSM windows for the baseband codec and the windows for ADC conversion.

TSP Parallel interface (ACT)

The parallel interface allows control 13 external individual outputs and 1 internal signal with a time accuracy of the quarter of GSM bit. These parallel signals are mainly used to control the RF activity. In E61, we employ 7 of them to control RF activity.

TSPACT1:	GSM_T/R
TSPACT2:	DCS_T/R
TSPACT3:	PCS_RX
TSPACT6:	TX_ON
TSPACT8:	Crystal enable
TSPACT9:	Band select
TSPACT10:	Three wires latch enable

Radio Interface (RIF)

The RIF (Radio Interface) Module is a buffered serial port derived from the BSP peripheral module of the defined for TMS320C5X. The external serial data transmission is supported by a full-duplex double-buffered serial port interface. The interface is used for transfer of baseband transmit and receive data and also to access all internal programmation registers of the device.

Miscellaneous:

Some important Baseband /RF interface signals are defined as follows:CLKTCXO:13MHz VTCXO Clock from RF circuitTCXOEN:13MHz VTCXO Clock Enable signal

6.2 IOTA

Together with a digital base-band device (Calypso), IOTA is part of a TI DSP solution intended for digital cellular telephone applications including GSM 900, DCS 1800 and PCS 1900 standards (dual band capability).

It includes a complete set of base-band functions to perform the interface and processing of voice signals, base-band in-phase (I) and quadrature (Q) signals which support single-slot and multislot mode, associated auxiliary RF control features, supply voltage regulation, battery charging control and switch ON/OFF system analysis. IOTA interfaces with the digital base-band device through a set of digital interfaces dedicated to the main functions of Calypso-Lite, a base-band serial port (BSP) and a voice-band serial port (VSP) to communicate with the DSP core (LEAD), a micro-controller serial port to communicate with the micro-controller core and a time serial port (TSP) to communicate with the time processing unit (TPU) for real time control.

IOTA also includes on chip voltage reference, under voltage detection and power-on reset circuits.

Major functions of this chip are as follows:

Baseband Codec (BBC)

The baseband codec includes a two-channel uplink path and a two-channel downlink path.

The baseband uplink path (BUL) modulates the bursts of data coming from the DSP via the baseband serial port (BSP) and to be transmitted at the antenna. Modulation is performed by a GMSK modulator. The GMSK modulator implemented in digital technique generates In-phase (I) and Quadrature (Q) components, which are converted into analog base-band by two 10 bits DACs filters. It also includes secondary functions such as DC offset calibration and I/Q gain unbalance.

The baseband downlink path (BDL) converts the baseband analog I & Q components coming from the RF receiver into digital samples and filters these resulting signals through a digital FIR to isolate the desired data from the adjacent channels. During reception of burst I & Q digital data are sent to the DSP via the baseband serial port (BSP) at a rate of 270 KHz.

Automatic Frequency control (AFC)

The automatic frequency control function consists of a digital to analog converter optimized for high resolution DC conversion. Its purpose is to control the frequency of the GSM 13MHz oscillator to maintain mobile synchronization on the base station and allow proper transmission and demodulation.

Automatic Power Control (APC)

Purpose of the Automatic Power Control (APC) is to generate an envelope signal to control the power ramping up, ramping down and power level of the radio burst.

The APC structure is intended to support single slot and multi-slots transmission with smooth power transition when consecutive bursts are transmitted at different power level. It includes a DAC and a RAM in which the shape of the edges (ramp-up and ramp-down) of the envelope signals are stored digitally. This envelope signal is converted to analog by 10 bits digital to analog converter. Timing of the APC is generated internally and depends of the real time signals coming from the TSP and the content of two registers which control the relative position of the envelope signal versus the modulated I & Q.

Time serial port (TSP)

Purpose of the time serial port is to control in real time the radio activation windows of IOTA which are BUL power-on, BUL calibration, BUL transmit, BDL power-on, BDL calibration and BDL receive and the ADC conversion start.

These real time control signals are processed by the TPU of DBB and transmitted serially to ABB via the TSP, which consists in a very simple two pins serial port. One pin is an enable (TEN) the other one the data receive (TDR). The master clock CK13M divided by 2 (6.5MHz) is used as clock for this serial port.

Voice band Codec (VBC)

The VBC processes analog audio components in the uplink path and transmits this signal to DSP speech coder through the voice serial port (VSP). In the downlink path the VBC converts the digital samples of speech data received from the DSP via the voice serial port into analog audio signal. Additional functions such as programmable gain, volume control and side-tone are performed into the voice band codec.

Micro-controller serial port (USP)

The micro-controller serial port is a standard synchronous serial port. It consists in three terminals, data transmit (UDX), data receive (UDR) and port enable (UEN). The clock signal is 13MHz clock. The USP receives and sends data in serial mode from and to the external micro-controller and in parallel mode from and to the internal GSM Baseband a Voice A/D D/A modules. The micro-controller serial port allow read and write access of all internal registers under the arbitration of the internal bus controller.

SIM card shifters (SIMS)

The SIM card digital interface in ABB insures the translation of logic levels between DBB and SIM card, for transmission of 3 different signals; a clock derived from a clock elaborated in DBB, to the SIM card (DBBSCK \rightarrow SIMCLK). a reset signal from DBB to the SIM card (DBBSRST \rightarrow SIMRST), and serial data from DBB to SIM card (DBBSIO \rightarrow SIMIO) and vice-vera.

The SIM card interface can be programmed to drive a 1.8V and 3 V SIM card

Voltage Regulation (VREG)

Linear regulation is performed by several low dropout (LDO) regulators to supply analog and digital baseband circuits.

- LDO VRDBB generates the supply voltage (1.85V, 1.5V, and 1.35V) for the digital core of DBB. In 56E30, it is programmed to 1.5V. This regulator takes power from the battery voltage
- (2) LDO **VRABB** generates the supply voltage 2.8V for the analog function of ABB. It is supplied by the battery.
- (3) LDO **VRIO** generates the supply voltage 2.8V for the digital core of ABB and digital I/O's of DBB and ABB. It is supplied from battery voltage.
- (4) LDO VRMEM generates the supply voltages 2.8V for DBB memory interfaces I/O's.
- (5) LDO VRRAM generates the supply voltages 2.8V for DBB memory interfaces I/O's
- (6) LDO **VRRTC** generates the supply voltages (1.85, 1.5, or 1.35V) and supply voltage 1.5V for the following block of DBB (real time clock and 32K oscillator). It's supplied by UPR
- (7) LDO VRSIM generates the supply voltages (1.8V, 2.9V) for SIM card interface I/O's

Baseband Serial Port (BSP)

The BSP serial interface is used for both configuration of the GSM baseband and voice A/D D/A (read and write operation in the internal registers), and transmission of the radio data to the DSP during reception of a burst by the downlink part of the GSM baseband & voice A/D D/A. Four pins are used by the serial port: BFSR and BDR for receive, BFSX and BDX for transmit. BDX is the transmitted serial data output. BFSX is the transmit frame synchronization and is used to initiate the transfer of the transmit data. BDR is the received serial input. BFSR is the receive frame synchronization and is used to initiate the reception data.

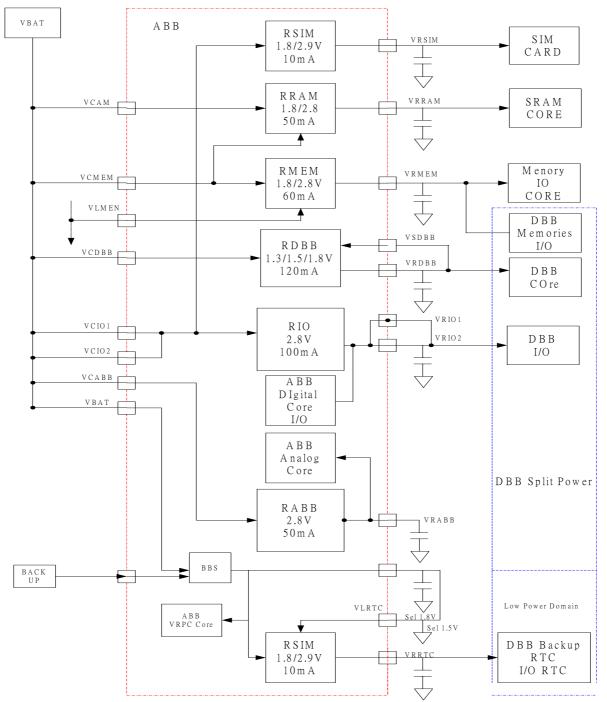
Battery charger Interface (BCI)

The main function of the ABB charger interface is the charging control of either a 1-cell Li-ion Battery or 3-serie Ni-MH cell batteries with the support of the micro-controller. The battery monitoring uses the 10 bit ADC converter from the MADC to measure the battery voltage, battery temperature, battery type, battery charge current, battery charger input voltage. The magnitude of the charging current is set by the 10 bits of a programming register converted by a 10 bit Digital to Analog Converter, whose output sets the reference input of the charging current control loop. The battery charger interface performs also some auxiliary functions. They are battery precharge, battery trickle charge and back-up battery charge if it is rechargeable.

Monitoring ADC (MADC)

The MADC consists in a 10-bit analog to digital converter combined with a nine inputs analog multiplexer. Out of the nine inputs five are available externally, the four remaining being dedicated to main battery voltage, back up battery voltage, charger voltage and charger current monitoring. On the five available externally three are standard inputs intended for battery temperature, battery type measurements.

Reference Voltage / Power on Control (VRPC)


An integrated band-gap generates a reference voltage. This reference is available on an external pin for external filtering purpose only. This filtered reference is internally used for analog functions. The external resistor connected between pin IBIAS and GNDREF sets, from the band-gap voltage, the value of the bias currents of the analog functions. The VRPC block is in charge to control the Power ON, Power OFF, Switch On, and Switch OFF sequences. Even in Switch OFF state some blocks functions are performed. These "permanent" functions are functions, which insure the wake-up of the mobile such as ON/OFF button detection or charger detection. Interrupts are generated at power-down detection of the PWON button and when abnormal voltage conditions are detected.

Internal bus and interrupt controller (IBIC)

Read and write access to all internal registers being possible via both the BSP and USP, purpose of the internal bus controller is to arbitrate the access on the internal bus and to direct the read data to the proper serial port. During reception of a burst the internal bus controller assign the transmit part of the BSP to the base-band downlink to transfer the I & Q samples to the DSP.

This block also handles the internal interrupts generated by the MADC, BCI and VRPC blocks and generates the micro-controller interrupt signal INT2.

6.3 Power Supply

Description:

The voltage regulators embedded in IOTA consists of seven sub blocks. Several low-dropout (LDO) regulators perform linear voltage regulation. These regulators supply power to internal analog and digital circuit, to DBB processor, and to external memory.

• LDO (**VRDBB**) is a programmable regulator that generates the supply voltages (1.8V,1.5V and 1.3V) for the core of the DBB processor. The main battery supplies VRDBB.

 \cdot LDO (**VRIO**) generates the supply voltage (2.8V) for the digital core and I/O of the TWL3025 device. The main battery supplies VRIO.

• LDO (**VRMEM**) is a programmable regulator that generates the supply voltages (2.8V and 1.8V) for external memories (typically flash memories) and DBB memory interface I/O. The main battery supplies VRMEM.

· LDO (**VRRAM**) is a programmable regulator that generate the supply voltages (2.8V and 1.8V) the external memory (typically SRAM memories) and DBB memory interface I/Os. The main battery supplies VRRAM.

 \cdot LDO (**VRABB**) generates the supply voltage (2.8V) for the analog functions of the TWL 3014 devices. The main battery supplies VRABB.

• LDO (**VRSIM**) is a programmable regulator that generates the supply voltages (2.9V and 1.8V) SIM card and SIM card devices. The main battery supplies VRSIM.

• LDO (**VRTC**) is a programmable regulator that generates the supply voltage (1.8V.1.5Vand 1.3V) for real time clock and the 32-KHZ oscillator located in the DBB device during all modes. The main or backup battery supplies VRTC.

6.3.1 System power on/off Sequence

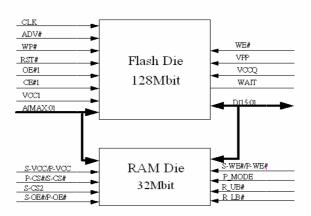
Power on mode

On the plug-in of the valid main battery or backup battery, an internal reset is generated (POR). After a power-on sequence, the TWL3025 device is in the BACKUP or OFF state.

When these conditions occur in the power on state, the hardware power on sequence starts:

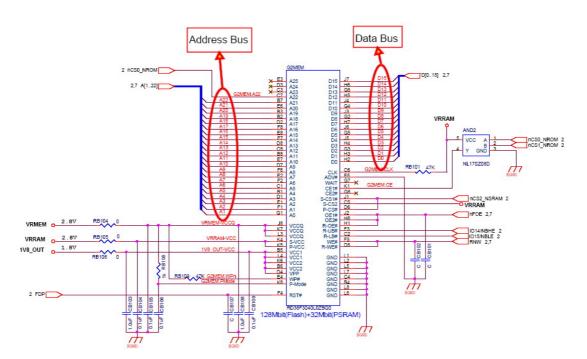
1. Enable band-gap (VREF and IREF)

- 2. Check if Main Battery voltage is greater than 3.2V
- 3. Enable charge VRDBB-VRABB-VRMEM-VRRAM
- 4. Regulator OK.
- 5. ON_nOFF=1, ABB RSTz=1
- 6. NRESET pin is set from 'L' to 'H'
- 7. 13MHz clock oscillator is enabled

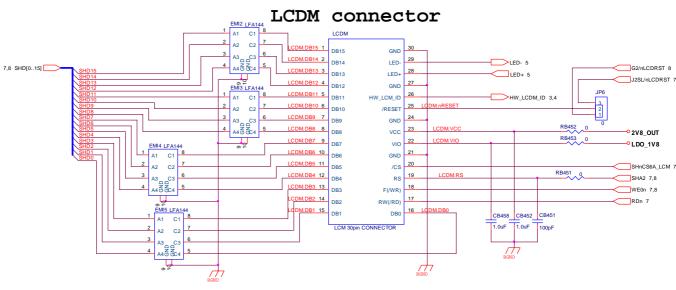

Power off mode

This state is reached when there is not enough voltage in the main battery and backup battery or when both batteries are disconnected.

- 1. Send INT1
- 2. Start 5*T watchdog Timer , T= 32K period
- 3. ON_nOFF=0
- 4. ABB RSTz=0
- 5. Disable the LDO's using MSKOFF content and the band-gap
- 6. "MBATLOW"=0


6.4 Memory circuit

Block diagram


Description:

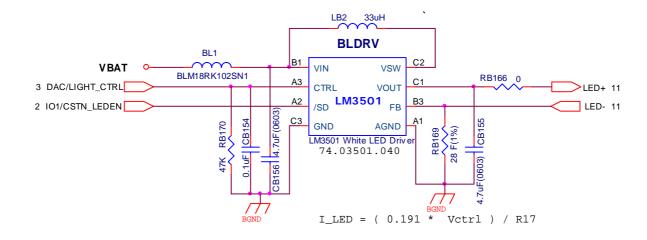
The two diagrams show the memory circuit of E61 and internal package connections for the Stacked CSP family with multiple die. The 128-Mbit 1.8 Volt Intel Wireless Flash Memory Stacked CSP Family encompass multiple flash memory + 32M bit RAM die combinations.

Schematic

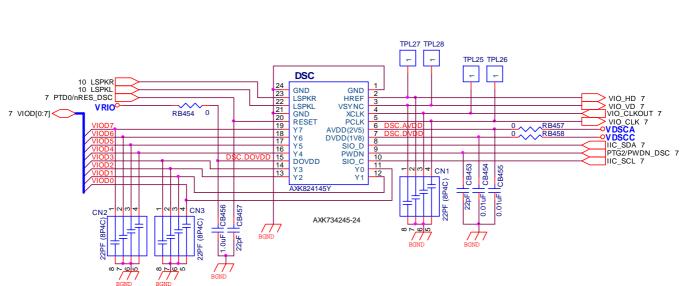
Technical Documentation TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf

6.5 LCD module (LCDM)

WD-F1216VO-6FLWb is a color active matrix TFT (Thin Film Transistor) normally white liquid crystal display (LCD). This module is composed of a 1.8" Transmit type TFT-LCD Panel with Micro reflector, a LCD driver (Renesas HD66791) circuit and a back-light unit. The resolution of a TFT-LCD panel contains 128 x 160 (RGB vertical stripe) pixels, and can display up to 65K/262K colors.


The backlight unit consists of a light guide system with three series LEDs. A board-to-board connector (Matsushita AXK6F30345Y) is used for the connection between the FPC board of handset and the LCM.

The interface of the LCD module includes a 16-bit 80-system data bus with CS, RS, READ, WRITE, which are controlled by the SH-Mobile multimedia processor, J2SL and the RESET pin which is controlled by the digital base band processor G2.


LCM Backlight LED driver schematic

6.6 Camera Module

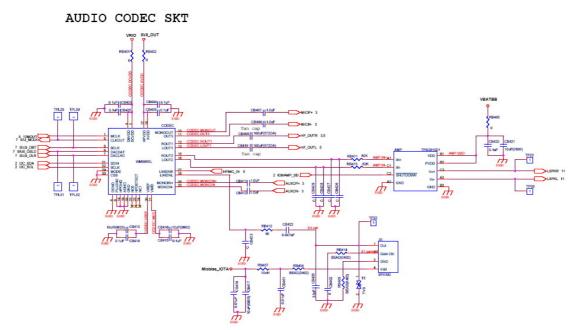
LED Driver SKT

LM3501 is a fixed operating frequency (1MHz) step-up DC/DC converter which can drive up to 3 white leds in series. The white LED current is set by the following equation: IIed = 0.197*Vctrl/RB169, in which Vctrl is the voltage of pin CTRL.

DSC connector @ MB side

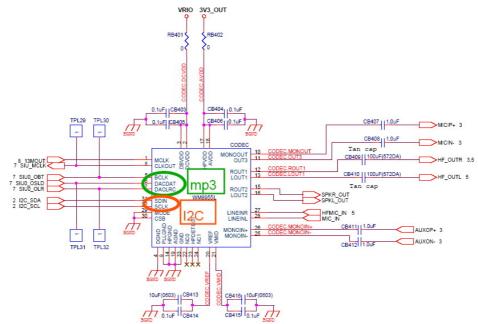
Technical Documentation TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf

The CM-5633 CMOS DSC module consists of COMS Sensor (OV7660) and Lens (Largon 923). The DSC module requires three different voltages of power supplies, which include VDSCA = 2.5V, DSCC = 1.8V and DOVDD = 2.8V. The DSC module is controlled by the J2SL, the multimedia processor, using the standard I2C control interface. Other interfaces between the DSC module and J2SL includes 8-bit YUV data bus, an external 24MHz clock input XCLK provided by J2SL, an output clock PCLK and the synchronous signal of VSYNC and HREF from the DSC module.

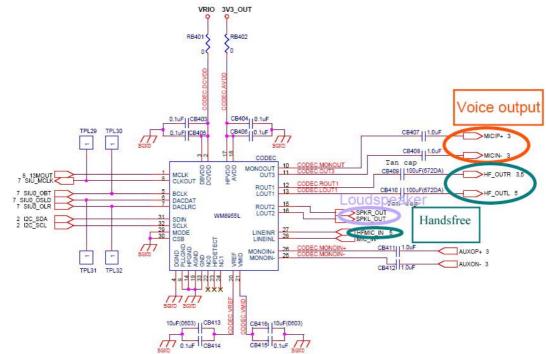

7 Interfaces

7.1 Audio Codec and Audio Amplifier

IQ DBB Mic RIF BSP Voice Handsfree VSP /SP ABB MCS Main board Daughter board MMP Audio codec MONOIN OUTS Handsfree OUTI CIM AC (Receiver) 125 12S Loud SPK LINEINP LINEINL Handsfree (Mic) Mic

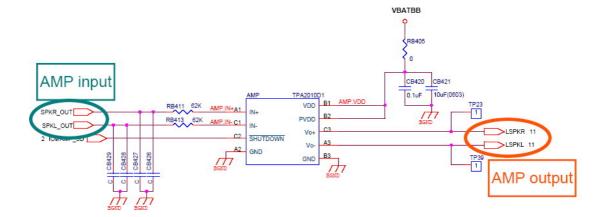

7.1.1 Audio codec function block

The audio circuit used to new component (Wolfson WM8955) for audio total solution. So IOTA voice path, MMP (MP3) the mixer to audio codec control input path. The input path have five blocks diagram by Fig 1, the include analogy path two input (MONOIN and LINEIN) and four output (OUT1, OUT2, OUT3 and MONOOUT). So digital input path to include I2S and PCM interface, they provides digital signal application for MP3 play.

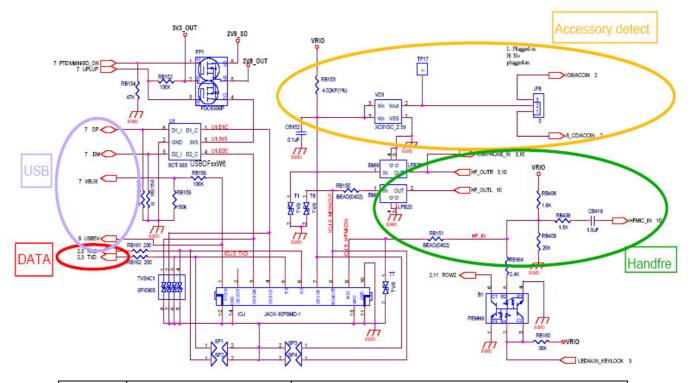

The voice input used to audio codec microphone port transmission the voice signal. Microphone input path to handheld and hands-free application. The handheld used to differential input for main path. However hands-free used to signal input transmission voice the uplink path.

7.1.2 Multimedia Application Input Circuit Design

The schematic provides audio codec input path circuit design, the two signal input used to voice path apply to bypass IOTA downlink signal. However one differential input path used to melody function the transmission. The MP3 utilize audio codec digital input control, data transmission the I2C digital voice input transfer, the I2C control for audio codec command.


Technical Documentation	06/2006
TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf	Page 26 of 33

7.1.3 Multimedia Application Output Circuit Design

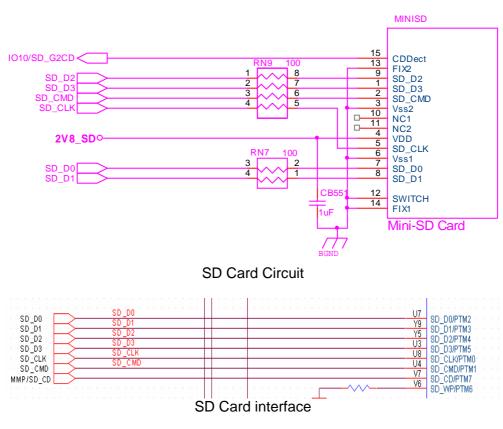

LSPK& Audio AMP SKT

The audio codec provides output path application, two mono output and one stereo output. A mono output use so d to differential signal applies to uplink voice output transfer IOTA produce. The OUT2 output used to differential signal for Loudspeaker function, but design addition the D amplifier for gain amplifier provides MP3 play, melody and speaker phone function the application .The stereo output supply to hands-free

Technical Documentation	06/2006
TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf	Page 27 of 33

7.2 10 Pins I/O connector

10 pin I/O SKT

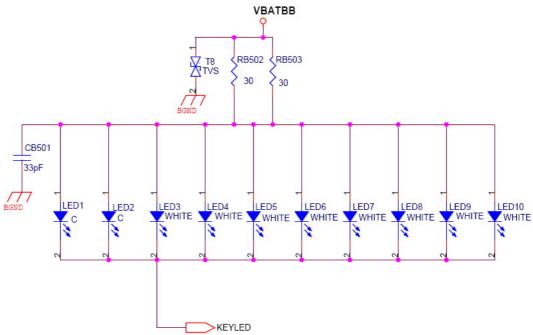

Pin No.	Pin Definition	Function description		
1	DC in/USB 5V	External accessory power supply to the mobile		
		phone		
2	DC out(default)	Internal power provides for any powered		
		accessory		
3	USB data -	USB differential data line: D-		
4	USB data +	USB differential data line: D+		
5	UART Tx	UART data out line		
6	UART Rx	UART data in line		
7	Stereo out(right	Use of the right audio path of the hands-free and		
	channel)	the accessory plug in detection		
8	Mono out(left channel)	The left audio path of the hands-free		
9	Mic	The microphone of the hands-free		
10	Ground			

Description

The 10pin I/O Jack circuit is used for 4 kind of BenQ type accessory service: mono headset, stereo headset, UART data cable, and pure USB cable. Whenever the accessory plugs into the mobile, I/O 6 will be pull to low level. And then according to the difference resistance value mounted on the accessory, the system will get the difference ADC value from the EARPHONE_IN pin and recognize what type has plugged in. The VD1 is used to detect the voltage on the pin 7. In non-plugged-in situation, the pin 7 always has 2.8v potential, and output the high level (2.8v). Until the accessory plug in, the Vin of the VD1 will detect a voltage under 2.3v, and the Vout connecting to I/O 6 will fall down to low level(0.0v). At the same time the line voltage is changed by the plugged in accessory. When the system poll low level from I/O 6, it will read the current line voltage and convert it to digital value from the EARPHONE_IN pin. Each ADC value represent different type accessory.

7.3 Mini-SD Card

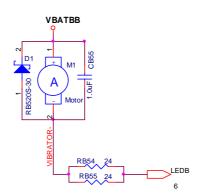
The SD Memory Card supports two alternative communication protocols: SD and SPI Bus Mode. Host System can choose either one of modes. Same Data of the SD Card can read and write by both modes. SD Mode allows the 4-bit high performance data transfer. SPI Mode allows easy and common interface for SPI channel. The disadvantage of this mode is loss of performance, relatively to the SD mode.



Mini-SD SKT @ Sub-PCB

Technical Documentation TTD_Repair_L3 _Theory of Operation_E61_R1.0.pdf

7.4 Keypad LED circuit

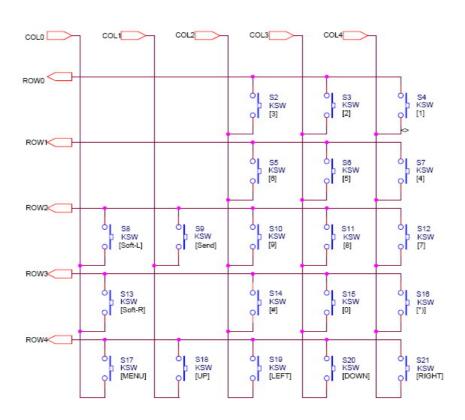


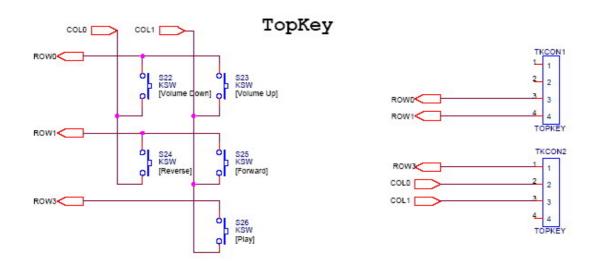
Description

E61 employs eight white LEDs for keypad backlight. When KEYLED sets to "L", Keypad LEDs are turned on; otherwise the Keypad LEDs are turned off. The default VBATBB is 3.8 Volt.

7.5 Vibrator

Schematic



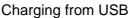

Description

Vibrator is enabled by LEDB control logic in IOTA. When the logic is set to 'H', the motor will activate. RB54 and RB55 are used to control operating current and D1 is used to reduce EMF. Under the condition of VBAT = 3.8V, the average drain current is around 66.5mA.

7.6 Keypad

Schematics

Description


- 1. The keypad is made of a 5 Column x 5 Row matrixes.
- 2. The keypad matrix is as follows:

	COT0	COL1	COL2	COL3	COL4	
ROW0	Volume Down	Volume Up	3	2	1	
ROW1	Reverse	Forward	6	5	4	
ROW2	SOFT LEFT	SEND	9	8	7	HF_S/E KEY
ROW3	SOFT RIGHT	mp3	#	0	*	END/POWER
ROW4	MENU	UP	LEFT	DOWN	RIGHT	

8 Charging circuit

Schematic

Description

E61 can charge the Li-ion/Li Polymer Battery from AC adaptor and USB, red line is the charging route from adaptor show the route of USB, red line is the charging route from USB. While USB and adaptor have plugged in at the same time, FP2 allows charging only from adaptor. D4 avoids charging current flowing back to adaptor when USB is charging. Over voltage protection can be done by DZB1 and B2. Whatever adaptor or USB is plugged in, there will be a voltage on VCHG pin, VCHG informs IOTA adaptor or USB is plugged in and IOTA controls CHRIC by ICTL and PCHG .CHRIC, Intersil ISL 6292C is described as below