A60/A62/A65/C60/C61/MC60

Level 2.5e

Repair Documentation

V 2.10

Version	Date	Department	Notes to change
V 1.00	08.09.2003	ICM MP CCQ GRM	New document
V 2.00	20.01.2004	ICM MP CCQ GRM	C61 added
V 2.10	15.12.2004	Com MD CC GRM T	Document modified

V 2.1	Page 1 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Table of Contents:

1	List o	f available level 2,5e parts A60/C60	4
2	List o	available level 2,5e parts A62/A65	6
3	List o	available level 2,5e parts MC60	8
4	List o	f available level 2,5e parts C61	11
5	Requ	red Equipment for Level 2,5e	13
6	Requ	red Software for Level 2,5e	13
7	Radio	Part	14
-	7.1 BLO	CK DIAGRAM RF PART	15
-	7.2 Pow	ER SUPPLY RF-PART	16
-	7.3 Fre	QUENCY GENERATION	16
	7.3.1	Synthesizer: The discrete VCXO (26MHz)	16
	7.3.2	Synthesizer: LO1	18
	7.3.3	Synthesizer: LO2	19
	7.3.4	Synthesizer: PLL	20
7	7.4 Anti	ENNA SWITCH (ELECTRICAL/MECHANICAL ONLY C61/MC60)	20
7	7.5 REC	EIVER	23
7	7.6 Trai	ISMITTER	24
	7.6.1	Transmitter: Modulator and Up-conversion Loop	24
-	7.7 Brig	HT IC OVERVIEW	26
	7.7.1	Transmitter: Power Amplifier	27
8	Logic	/ Control	28
8	3.1 Ove	RVIEW OF HARDWARE STRUCTURE	28
	8.1.1	Logic Block Diagram A60C60 and C61	28
	8.1.2	Logic Block Diagram MC60	29
8	3.2 EGC	DLD+	30
	8.2.1	SRAM	34
	8.2.2	FLASH	34
	8.2.3	SIM	34
	8.2.4	Vibration Motor	34
9	Powe	r Supply	34
ć	9.1 Pow	ER SUPPLY ASIC	34
	9.1.1	Power Supply Operating modes:	36
	9.1.2	Power Supply Functions:	38

V 2.1	Page 2 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

44
45
49
49
49
51
52
52
52
53
53
54
54
55
56
56
57
57
57
57
58
58
58
59
59
60
61

V 2.1	Page 3 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

1 List of available level 2,5e parts A60/C60

ID-No	Туре	Name, Location	Part-No.
D171	IC	Egold+ V3.1F , V3.1H M42	L36197-F5019-F415
D361	IC	ASIC D0950 SALZBURG	L36145-J4682-Y43
R955	Resistor	Temp_Resistor	L36120-F4223-H
V181	Diode	Diode_Battery_Interface	L36702-A1051
V211	Transistor	TranVibra	L36830-C1097-D670
V220	Diode	Diode_Vibra	L36851-Z9105-Z981
V222	Transistor	Trans_Light_	L36830-C1112-D670
V361	Transistor	TranCharge	L36830-C1110-D670
V951	Diode	Capa_Diode	L36840-D61-D670
Z171	Quartz	Quarz/Egold	L36145-F102-Y10
Z211	Filter	Logic/IO_Interface	L36197-F5000-F116
Z950	Quartz	Oszillator_26MHz	L36145-F260-Y17
N881	Filter	Ant_Switch_Diplexer	L36145-K280-Y258
N882	IC	Transceiver IC	L36820-L6142-D670
N901	IC	Power_Amplifier	L36851Z2002A 63
R141	Resistor	Resistor 0 Ohm	L36852-C X
R214	Resistor	Resistor 0 Ohm	L36852-C X
R215	Resistor	Resistor 0 Ohm	L36852-C X
R294	Resistor	Resistor 0 Ohm	L36852-C X
R804	Resistor	Resistor 0 Ohm	L36852-C X
R884	Resistor	Resistor 0 Ohm	L36852-C X
R885	Resistor	Resistor 0 Ohm	L36852-C X
R883	Resistor	Resistor 0 Ohm	L36852-C X
R950	Resistor	Resistor 0 Ohm	L36852-C X
V151	Diode	Diode KB7	L36840-D5062-D670
C368	Capacitor	Capacitor 2U2	L36377-F6225-M
C369	Capacitor	Capacitor 2U2	L36377-F6225-M
C370	Capacitor	Capacitor 2U2	L36377-F6225-M
C371	Capacitor	Capacitor 2U2	L36377-F6225-M
C373	Capacitor	Capacitor 2U2	L36377-F6225-M
C377	Capacitor	Capacitor 2U2	L36377-F6225-M
C847	Capacitor	Capacitor 2U2	L36377-F6225-M
C287	Capacitor	Capacitor 2U2	L36377-F6225-M
C288	Capacitor	Capacitor 2U2	L36377-F6225-M
C289	Capacitor	Capacitor 2U2	L36377-F6225-M
C916	Capacitor	Capacitor 2U2	L36377-F6225-M

V 2.1	Page 4 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

C283	Capacitor	Capacitor 1U0	L36377-F6105-K
C284	Capacitor	Capacitor 1U0	L36377-F6105-K
C285	Capacitor	Capacitor 1U0	L36377-F6105-K
C372	Capacitor	Capacitor 1U0	L36377-F6105-K
C286	Capacitor	Capacitor 1U0	L36377-F6105-K
C395	Capacitor	Capacitor RTC	L36392-F1107-M
C165	Capacitor	Capacitor 100N	L36853-C9104-M4
C200	Capacitor	Capacitor 100N	L36853-C9104-M4
C201	Capacitor	Capacitor 100N	L36853-C9104-M4
C202	Capacitor	Capacitor 100N	L36853-C9104-M4
C207	Capacitor	Capacitor 100N	L36853-C9104-M4
C209	Capacitor	Capacitor 100N	L36853-C9104-M4
C220	Capacitor	Capacitor 100N	L36853-C9104-M4
C362	Capacitor	Capacitor 100N	L36853-C9104-M4
C363	Capacitor	Capacitor 100N	L36853-C9104-M4
C364	Capacitor	Capacitor 100N	L36853-C9104-M4
C365	Capacitor	Capacitor 100N	L36853-C9104-M4
C366	Capacitor	Capacitor 100N	L36853-C9104-M4
C367	Capacitor	Capacitor 100N	L36853-C9104-M4
C374	Capacitor	Capacitor 100N	L36853-C9104-M4
C381	Capacitor	Capacitor 100N	L36853-C9104-M4
C382	Capacitor	Capacitor 100N	L36853-C9104-M4
C383	Capacitor	Capacitor 100N	L36853-C9104-M4
C384	Capacitor	Capacitor 100N	L36853-C9104-M4
C385	Capacitor	Capacitor 100N	L36853-C9104-M4
C386	Capacitor	Capacitor 100N	L36853-C9104-M4
C800	Capacitor	Capacitor 100N	L36853-C9104-M4
C814	Capacitor	Capacitor 100N	L36853-C9104-M4
C820	Capacitor	Capacitor 100N	L36853-C9104-M4
C821	Capacitor	Capacitor 100N	L36853-C9104-M4
C956	Capacitor	Capacitor 100N	L36853-C9104-M4
C912	Capacitor	Capacitor 100N	L36853-C9104-M4
N280	IC	VReg Display_Backlight	L36810-C6098-D670
V191	Diode	Diode_Sim Interface	L36197-F5014-F98

V 2.1	Page 5 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

2 List of available level 2,5e parts A62/A65

ID	Туре	Component Details	Partnumber
N881	Filter	Ant_Switch_Diplexer	L36145-K280-Y258
N882	IC	Transceiver IC	L36820-L6142-D670
Z950	Quartz	Oszillator_26MHz	L36145-F260-Y17
V951	Diode	Capa_Diode	L36840-D61-D670
R955	Resistor	Temp_Resistor	L36120-F4223-H
N901	IC	Power_Amplifier	L36851-Z2002-A63
D171	IC	Egold+ V3.1F , V3.1H M42	L36197-F5019-F415
Z171	Quartz	Quarz/Egold	L36145-F102-Y10
D361	IC	ASIC D0950 SALZBURG	L36145-J4682-Y43
V361	Transistor	TranCharge	L36830-C1110-D670
Z211	Filter	Logic/IO_Interface	L36197-F5000-F116
V211	Transistor	TranVibra	L36830-C1097-D670
V220	Diode	Diode_Vibra	L36851-Z9105-Z981
N280	IC	VReg Display_Backlight	L36810-C6098-D670
V222	Transistor	Trans_Light_	L36830-C1112-D670
V191	Diode	Diode_Sim Interface	L36197-F5014-F98
V151	Diode	Diode KB7	L36840-D5062-D670
R141	Resistor	Resistor 0 Ohm	L36852-C X
R294	Resistor	Resistor 0 Ohm	L36852-C X
R804	Resistor	Resistor 0 Ohm	L36852-C X
R884	Resistor	Resistor 0 Ohm	L36852-C X
R885	Resistor	Resistor 0 Ohm	L36852-C X
R950	Resistor	Resistor 0 Ohm	L36852-C X
C369	Capacitor	Capacitor 2U2	L36377-F6225-M
C370	Capacitor	Capacitor 2U2	L36377-F6225-M
C371	Capacitor	Capacitor 2U2	L36377-F6225-M
C373	Capacitor	Capacitor 2U2	L36377-F6225-M
C377	Capacitor	Capacitor 2U2	L36377-F6225-M
C825	Capacitor	Capacitor 2U2	L36377-F6225-M
C287	Capacitor	Capacitor 2U2	L36377-F6225-M
C288	Capacitor	Capacitor 2U2	L36377-F6225-M
C289	Capacitor	Capacitor 2U2	L36377-F6225-M
C916	Capacitor	Capacitor 2U2	L36377-F6225-M
C283	Capacitor	Capacitor 1U0	L36377-F6105-K
C284	Capacitor	Capacitor 1U0	L36377-F6105-K
C285	Capacitor	Capacitor 1U0	L36377-F6105-K
C372	Capacitor	Capacitor 1U0	L36377-F6105-K
C286	Capacitor	Capacitor 1U0	L36377-F6105-K
C395	Capacitor	Capacitor RTC	L36392-F1107-M
C165	Capacitor	Capacitor 100N	L36853-C9104-M4
C200	Capacitor	Capacitor 100N	L36853-C9104-M4
C201	Capacitor	Capacitor 100N	L36853-C9104-M4
C202	Capacitor	Capacitor 100N	L36853-C9104-M4

V 2.1	Page 6 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

C207	Capacitor	Capacitor 100N	L36853-C9104-M4
C209	Capacitor	Capacitor 100N	L36853-C9104-M4
C220	Capacitor	Capacitor 100N	L36853-C9104-M4
C362	Capacitor	Capacitor 100N	L36853-C9104-M4
C363	Capacitor	Capacitor 100N	L36853-C9104-M4
C364	Capacitor	Capacitor 100N	L36853-C9104-M4
C365	Capacitor	Capacitor 100N	L36853-C9104-M4
C366	Capacitor	Capacitor 100N	L36853-C9104-M4
C367	Capacitor	Capacitor 100N	L36853-C9104-M4
C374	Capacitor	Capacitor 100N	L36853-C9104-M4
C381	Capacitor	Capacitor 100N	L36853-C9104-M4
C382	Capacitor	Capacitor 100N	L36853-C9104-M4
C383	Capacitor	Capacitor 100N	L36853-C9104-M4
C384	Capacitor	Capacitor 100N	L36853-C9104-M4
C385	Capacitor	Capacitor 100N	L36853-C9104-M4
C386	Capacitor	Capacitor 100N	L36853-C9104-M4
C800	Capacitor	Capacitor 100N	L36853-C9104-M4
C820	Capacitor	Capacitor 100N	L36853-C9104-M4
C821	Capacitor	Capacitor 100N	L36853-C9104-M4
C956	Capacitor	Capacitor 100N	L36853-C9104-M4
C912	Capacitor	Capacitor 100N	L36853-C9104-M4

V 2.1	Page 7 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

3 List of available level 2,5e parts MC60

ID-No	Туре	Name, Location	Part-No.	
D171	IC	Egold+ V3.1F , V3.1H M42	L36197-F5019-F415	
D361	IC	ASIC D0950 SALZBURG	L36145-J4682-Y43	
R959	Resistor	Temp_Resistor	L36120-F4223-H	
V181	Diode	Diode_Battery_Interface	L36702-A1051	
V211	Transistor	TranVibra	L36830-C1097-D670	
V220	Diode	Diode_Vibra	L36851-Z9105-Z981	
V222	Transistor	Trans_Light_	L36830-C1112-D670	
V361	Transistor	TranCharge	L36830-C1110-D670	
V951	Diode	Capa_Diode	L36840-D61-D670	
Z171	Quartz	Quarz/Egold	L36145-F102-Y10	
Z211	Filter	Logic/IO_Interface	L36197-F5000-F116	
Z950	Quartz	Oszillator_26MHz	L36145-F260-Y17	
N881	Filter	Ant_Switch_Diplexer	L36145-K280-Y258	
N882	IC	Transceiver IC	L36820-L6142-D670	
N901	IC	Power_Amplifier	L36851Z2002A 63	
D200	IC	Camera ASIC	L36820-U6024-D670	
D201	IC	Camera Interface	L36810-B6079-D670	
N200	IC	Camera Powersupply	L36810-C6134-D670	
R141	Resistor	Resistor 0 Ohm	L36852-C X	
R160	Resistor	Resistor 0 Ohm	L36852-C X	
R250	Resistor	Resistor 0 Ohm	L36852-C X	
R251	Resistor	Resistor 0 Ohm	L36852-C X	
R214	Resistor	Resistor 0 Ohm	L36852-C X	
R215	Resistor	Resistor 0 Ohm	L36852-C X	
R217	Resistor	Resistor 0 Ohm	L36852-C X	
R294	Resistor	Resistor 0 Ohm	L36852-C X	
R804	Resistor	Resistor 0 Ohm	L36852-C X	
R253	Resistor	Resistor 0 Ohm	L36852-C X	
R201	Resistor	Resistor 0 Ohm	L36852-C X	
R254	Resistor	Resistor 0 Ohm	L36852-C X	
R224	Resistor	Resistor 0 Ohm	L36852-C X	
R255	Resistor	Resistor 0 Ohm	L36852-C X	
R908	Resistor	Resistor 0 Ohm	L36852-C X	
R256	Resistor	Resistor 0 Ohm	L36852-C X	
R257	Resistor	Resistor 0 Ohm	L36852-C X	
R258	Resistor	Resistor 0 Ohm	L36852-C X	
R232	Resistor	Resistor 0 Ohm	L36852-C X	

V 2.1	Page 8 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

R884	Resistor	Resistor 0 Ohm	L36852-C X
R885	Resistor	Resistor 0 Ohm	L36852-C X
R259	Resistor	Resistor 0 Ohm	L36852-C X
R271	Resistor	Resistor 0 Ohm	L36852-C X
R273	Resistor	Resistor 0 Ohm	L36852-C X
R274	Resistor	Resistor 0 Ohm	L36852-C X
R275	Resistor	Resistor 0 Ohm	L36852-C X
R276	Resistor	Resistor 0 Ohm	L36852-C X
V151	Diode	Diode KB7	L36840-D5062-D670
L361	Diode	Cam Sensor	L36840-D5062D670
C368	Capacitor	Capacitor 2U2	L36377-F6225-M
C369	Capacitor	Capacitor 2U2	L36377-F6225-M
C370	Capacitor	Capacitor 2U2	L36377-F6225-M
C371	Capacitor	Capacitor 2U2	L36377-F6225-M
C373	Capacitor	Capacitor 2U2	L36377-F6225-M
C377	Capacitor	Capacitor 2U2	L36377-F6225-M
C219	Capacitor	Capacitor 2U2	L36377-F6225-M
C847	Capacitor	Capacitor 2U2	L36377-F6225-M
C287	Capacitor	Capacitor 2U2	L36377-F6225-M
C288	Capacitor	Capacitor 2U2	L36377-F6225-M
C289	Capacitor	Capacitor 2U2	L36377-F6225-M
C916	Capacitor	Capacitor 2U2	L36377-F6225-M
C283	Capacitor	Capacitor 1U0	L36377-F6105-K
C284	Capacitor	Capacitor 1U0	L36377-F6105-K
C285	Capacitor	Capacitor 1U0	L36377-F6105-K
C372	Capacitor	Capacitor 1U0	L36377-F6105-K
C286	Capacitor	Capacitor 1U0	L36377-F6105-K
C395	Capacitor	Capacitor RTC	L36392-F1107-M
C165	Capacitor	Capacitor 100N	L36853-C9104-M4
C200	Capacitor	Capacitor 100N	L36853-C9104-M4
C201	Capacitor	Capacitor 100N	L36853-C9104-M4
C202	Capacitor	Capacitor 100N	L36853-C9104-M4
C203	Capacitor	Capacitor 100N	L36853-C9104-M4
C204	Capacitor	Capacitor 100N	L36853-C9104-M4
C207	Capacitor	Capacitor 100N	L36853-C9104-M4
C209	Capacitor	Capacitor 100N	L36853-C9104-M4
C220	Capacitor	Capacitor 100N	L36853-C9104-M4
C230	Capacitor	Capacitor 100N	L36853-C9104-M4
C231	Capacitor	Capacitor 100N	L36853-C9104-M4
C232	Capacitor	Capacitor 100N	L36853-C9104-M4

V 2.1	Page 9 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

C233	Capacitor	Capacitor 100N	L36853-C9104-M4
C234	Capacitor	Capacitor 100N	L36853-C9104-M4
C362	Capacitor	Capacitor 100N	L36853-C9104-M4
C363	Capacitor	Capacitor 100N	L36853-C9104-M4
C364	Capacitor	Capacitor 100N	L36853-C9104-M4
C365	Capacitor	Capacitor 100N	L36853-C9104-M4
C366	Capacitor	Capacitor 100N	L36853-C9104-M4
C367	Capacitor	Capacitor 100N	L36853-C9104-M4
C374	Capacitor	Capacitor 100N	L36853-C9104-M4
C381	Capacitor	Capacitor 100N	L36853-C9104-M4
C382	Capacitor	Capacitor 100N	L36853-C9104-M4
C383	Capacitor	Capacitor 100N	L36853-C9104-M4
C384	Capacitor	Capacitor 100N	L36853-C9104-M4
C385	Capacitor	Capacitor 100N	L36853-C9104-M4
C386	Capacitor	Capacitor 100N	L36853-C9104-M4
C800	Capacitor	Capacitor 100N	L36853-C9104-M4
C814	Capacitor	Capacitor 100N	L36853-C9104-M4
C820	Capacitor	Capacitor 100N	L36853-C9104-M4
C821	Capacitor	Capacitor 100N	L36853-C9104-M4
C956	Capacitor	Capacitor 100N	L36853-C9104-M4
C235	Capacitor	Capacitor 100N	L36853-C9104-M4
C229	Capacitor	Capacitor 100N	L36853-C9104-M4
C803	Capacitor	Capacitor 100N	L36853-C9104-M4
C809	Capacitor	Capacitor 100N	L36853-C9104-M4
C912	Capacitor	Capacitor 100N	L36853-C9104-M4
N280	IC	VReg Display_Backlight	L36810-C6098-D670
V191	Diode	Diode_Sim Interface	L36197-F5014-F98

V 2.1	Page 10 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

4 List of available level 2,5e parts C61

No	Туре	Name, Location	Part-No.
D171	IC	Egold+ V3.1F , V3.1H M42	L36197-F5019-F415
D361	IC	ASIC D0950 SALZBURG	L36145-J4682-Y43
R955	Resistor	Temp_Resistor	L36120-F4223-H
V181	Diode	Diode_Battery_Interface	L36702-A1051
V211	Transistor	TranVibra	L36830-C1097-D670
V220	Diode	Diode_Vibra	L36851-Z9105-Z981
V222	Transistor	Trans_Light_	L36830-C1112-D670
V361	Transistor	TranCharge	L36830-C1110-D670
V951	Diode	Capa_Diode	L36840-D61-D670
Z171	Quartz	Quarz/Egold	L36145-F102-Y10
Z211	Filter	Logic/IO_Interface	L36197-F5000-F116
Z950	Quartz	Oszillator_26MHz	L36145-F260-Y17
N880	Filter	Ant_Switch_Diplexer FEM	L36145-K280-Y259
N882	IC	Transceiver IC	L36820-L6142-D670
N901	IC	Power_Amplifier	L36851-Z2002-A63
R141	Resistor	Resistor 0 Ohm	L36852-C X
R214	Resistor	Resistor 0 Ohm	L36852-C X
R215	Resistor	Resistor 0 Ohm	L36852-C X
R294	Resistor	Resistor 0 Ohm	L36852-C X
R804	Resistor	Resistor 0 Ohm	L36852-C X
R884	Resistor	Resistor 0 Ohm	L36852-C X
R885	Resistor	Resistor 0 Ohm	L36852-C X
R950	Resistor	Resistor 0 Ohm	L36852-C X
V151	Diode	Diode KB7	L36840-D5062-D670
C368	Capacitor	Capacitor 2U2	L36377-F6225-M
C369	Capacitor	Capacitor 2U2	L36377-F6225-M
C370	Capacitor	Capacitor 2U2	L36377-F6225-M
C371	Capacitor	Capacitor 2U2	L36377-F6225-M
C373	Capacitor	Capacitor 2U2	L36377-F6225-M
C377	Capacitor	Capacitor 2U2	L36377-F6225-M
C847	Capacitor	Capacitor 2U2	L36377-F6225-M
C287	Capacitor	Capacitor 2U2	L36377-F6225-M
C288	Capacitor	Capacitor 2U2	L36377-F6225-M
C289	Capacitor	Capacitor 2U2	L36377-F6225-M
C916	Capacitor	Capacitor 2U2	L36377-F6225-M
C283	Capacitor	Capacitor 1U0	L36377-F6105-K
C284	Capacitor	Capacitor 1U0	L36377-F6105-K

V 2.1	Page 11 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

C285	Capacitor	Capacitor 1U0	L36377-F6105-K
C372	Capacitor	Capacitor 1U0	L36377-F6105-K
C286	Capacitor	Capacitor 1U0	L36377-F6105-K
C395	Capacitor	Capacitor RTC	L36392-F1107-M
C165	Capacitor	Capacitor 100N	L36853-C9104-M4
C200	Capacitor	Capacitor 100N	L36853-C9104-M4
C201	Capacitor	Capacitor 100N	L36853-C9104-M4
C202	Capacitor	Capacitor 100N	L36853-C9104-M4
C207	Capacitor	Capacitor 100N	L36853-C9104-M4
C209	Capacitor	Capacitor 100N	L36853-C9104-M4
C220	Capacitor	Capacitor 100N	L36853-C9104-M4
C362	Capacitor	Capacitor 100N	L36853-C9104-M4
C363	Capacitor	Capacitor 100N	L36853-C9104-M4
C364	Capacitor	Capacitor 100N	L36853-C9104-M4
C365	Capacitor	Capacitor 100N	L36853-C9104-M4
C366	Capacitor	Capacitor 100N	L36853-C9104-M4
C367	Capacitor	Capacitor 100N	L36853-C9104-M4
C374	Capacitor	Capacitor 100N	L36853-C9104-M4
C381	Capacitor	Capacitor 100N	L36853-C9104-M4
C382	Capacitor	Capacitor 100N	L36853-C9104-M4
C383	Capacitor	Capacitor 100N	L36853-C9104-M4
C384	Capacitor	Capacitor 100N	L36853-C9104-M4
C385	Capacitor	Capacitor 100N	L36853-C9104-M4
C386	Capacitor	Capacitor 100N	L36853-C9104-M4
C800	Capacitor	Capacitor 100N	L36853-C9104-M4
C814	Capacitor	Capacitor 100N	L36853-C9104-M4
C820	Capacitor	Capacitor 100N	L36853-C9104-M4
C821	Capacitor	Capacitor 100N	L36853-C9104-M4
C956	Capacitor	Capacitor 100N	L36853-C9104-M4
C912	Capacitor	Capacitor 100N	L36853-C9104-M4
N280	IC	VReg Display_Backlight	L36810-C6098-D670
V191	Diode	Diode_Sim Interface	L36197-F5014-F98

V 2.1	Page 12 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

SIEMENS Com

5 Required Equipment for Level 2,5e

- GSM-Tester (CMU200 or 4400S incl. Options)
- PC-incl. Monitor, Keyboard and Mouse
- Bootadapter 2000/2002 (L36880-N9241-A200)
- Adapter cable for Bootadapter due to <u>new</u> Lumberg connector (F30032-P226-A1)
- Troubleshooting Frame A60/C60/C61/MC60 (F30032-P307-A1)
- Troubleshooting Frame A62/A65 (F30032-P405-A1)
- Power Supply NGMO1/NGMO2
- Spectrum Analyser
- Active RF-Probe incl. Power Supply
- Oscilloscope incl. Probe
- RF-Connector (N<>SMA(f))
- Power Supply Cables
- Dongle (F30032-P28-A1) if USB-Dongle is used a special driver for NT is required
- BGA Soldering equipment

Reference: Equipment recommendation V1.4 (downloadable from the technical support page)

6 Required Software for Level 2,5e

- Windows NT Version4
- Winsui version1.45 or higher
- Software for GSM-Tester (Cats(Acterna/Wiltek) or CMU-GO(Rohde&Schwarz))
- Software for reference oscillator adjustment
- Internet unblocking solution (JPICS)
- Dongle driver for USB-Dongle if used with WIN NT4

V 2.1	Page 13 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7 Radio Part

The radio part realizes the conversion of the GMSK-HF-signals from the antenna to the baseband and vice versa.

In the receiving direction, the signals are split in the I- and Q-component and led to the D/Aconverter of the logic part. In the transmission direction, the GMSK-signal is generated in an Up Conversion Modulation Phase Locked Loop by modulation of the I- and Q-signals which were generated in the logic part. After that the signals are amplified in the power amplifier.

Transmitter and Receiver are never active at the same time. Simultaneous receiving in two bands is impossible. Simultaneous transmission in two bands is impossible, too. However the monitoring band (monitoring timeslot) in the TDMA-frame can be chosen independently of the receiving respectively the transmitting band (RX- and TX timeslot of the band).

The RF-part of the A60/A62/A65/C60/MC60 is dimensioned for triple band operation (EGSM900, GSM1800, GSM1900) supporting GPRS functionality up to multiclass 8. C61 is dimensioned for dual band operation (GSM850, GSM1900) supporting GPRS functionality up to multiclass 8.

The RF-circuit consists of the following components:

- Hitachi Bright VE chip set with the following functionality:
 - PLL for local oscillator LO1 and LO2 and TxVCO
 - Integrated local oscillators LO1, LO2 (without loop filter)
 - Integrated TxVCO (without loop filter and core inductors for GSM)
 - Direct conversion receiver including LNA, DC-mixer, channel filtering and PGCamplifier
 - Active part of 26 MHz reference oscillator
- Hitachi LTCC transmitter power amplifier with integrated power control circuitry
- Hitachi Frontend-Module including RX-/TX-switch and EGSM900 / GSM1800 / GSM 1900 receiver SAW-filters for A60/C60/MC60
- Hitachi Frontend-Module including RX-/TX-switch and GSM850 / GSM 1900 receiver SAW-filters for C61

Quartz and passive circuitry of the 26MHz VCXO reference oscillator.

V 2.1	Page 14 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.1 Block diagram RF part

V 2.1	Page 15 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.2 Power Supply RF-Part

The voltage regulator for the RF-part is located inside the ASIC D361.(see chapter 5.2).It generates the required 2,8V "RF-Voltages" named VCC2_8 and VCC_SYN. The voltage regulator is activated as well as deactivated via SLEEPQ (TDMA-Timer H16) and VCXOEN_UC (Miscellaneous R6) provided by the EGOLD+. The temporary deactivation is used to extend the stand by time.

7.3 Frequency generation

7.3.1 Synthesizer: The discrete VCXO (26MHz)

The A60/A62/A65/C60/C61/MC60 mobile is using a reference frequency of 26MHz. The generation of the 26MHz signal is done via a VCXO. This oscillator consists mainly of:

A 26MHz crystal	Z950
A capacity diode	V951

TP (test point) of the 26MHz signal is the TP 820

The oscillator output signal 26MHz_RF is directly connected to the BRIGHT IC (pin 35) to be used as reference frequency inside the Bright (PLL). The signal leaves the Bright IC as BB_SIN26M (pin 31) to be further used from the EGOLD+ (D171 (functional T3)).

V 2.1	Page 16 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

To compensate frequency drifts (e.g. caused by temperature) the oscillator frequency is controlled by the (AFC) signal, generated through the internal EGOLD+ (D100 (functional U5)) PLL via the capacity diode V951. Reference for the "EGOLD-PLL" is the base station frequency received via the Frequency Correction Burst. To compensate a temperature caused frequency drift, the temperature-depending resistor R955 is placed near the VCXO to measure the temperature. The measurement result TVCXO is reported to the EGOLD+(Analog Interface P3) via R138 as the signal TENV.

The required voltage VCC_SYN is provided by the ASCI D361

Waveform of the AFC_PNM signal from EGOLD+ to Oscillator

Circuit diagram

V 2.1	Page 17 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.3.2 Synthesizer: LO1

The first local oscillator (LO1) consists of a PLL and VCO inside Bright (N882) and an external loop filter The first local oscillator is needed to generate frequencies which enable the transceiver IC to demodulate the receiver signal and to perform the channel selection in the TX part. To do so, a control voltage for the LO1 is used, gained by a comparator. This control voltage is a result of the comparison of the divided LO1 and the 26MHz reference Signal. The division ratio of the dividers is programmed by the EGOLD+, according to the network channel requirements.

Matrix to calculate the TX and RX frequencies A60/A62/A65/C60/MC60:

Band	RX / TX	Channels	RF frequencies	LO1 frequency	IF freq.
EGSM 900	Receive:	0124	935,0 - 959,8 MHz	LO1 = 4*RF	
EGSM 900	Transmit:	0124	890,0 - 914,8 MHz	LO1 = 4*(RF+IF)	80,0 MHz
EGSM 900	Receive:	9751023	925,2 - 934,8 MHz	LO1 = 4*RF	
EGSM 900	Transmit:	9751023	880,2 - 889,8 MHz	LO1 = 4*(RF+IF)	82,0 MHz
GSM 1800	Receive:	512661	1805,2 - 1835,0 MHz	LO1 = 2*RF	
GSM 1800	Transmit:	512661	1710,2 - 1740,0 MHz	LO1 = 2*(RF+IF)	80,0 MHz
GSM 1800	Receive:	661885	1835,0 - 1879,8 MHz	LO1 = 2*RF	
GSM 1800	Transmit:	661885	1740,0 - 1784,8 MHz	LO1 = 2*(RF+IF)	82,0 MHz
GSM 1900	Receive:	512810	1930,2 - 1989,8 MHz	LO1 = 2*RF	
GSM 1900	Transmit:	512810	1850,2 - 1909,8 MHz	$LO1 = 2^{*}(RF+IF)$	80,0 MHz

V 2.1	Page 18 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Band	RX / TX	Channels	RF frequencies	LO1 frequency	IF freq.
GSM 850	Receive:	128251	869,2 - 893,8 MHz	LO1 = 4*RF	
GSM 850	Transmit:	128251	824,2 - 848,8 MHz	LO1 = 4*(RF+IF)	80,0 MHz
GSM 1900	Receive:	512810	1930,2 - 1989,8 MHz	LO1 = 2*RF	
GSM 1900	Transmit:	512810	1850,2 - 1909,8 MHz	$LO1 = 2^{*}(RF+IF)$	80,0 MHz

Matrix to calculate the TX and RX frequencies C61:

The required voltage VCC_SYN is provided by the ASIC D361.

7.3.3 Synthesizer: LO2

The second local oscillator (LO2) consists of a PLL and a VCO which are integrated in Bright and a second order loopfilter which is realized external (R801; C815; C816). Due to the direct conversion receiver architecture, the LO2 is only used for transmit-operation. The LO2 covers a frequency range of at least 16 MHz (640MHz – 656MHz).

Before the LO2-signal gets to the modulator it is divided by 8. So the resulting TX-IF frequencies are 80/82 MHz (dependent on the channel and band). The LO2 PLL and powerup of the VCO is controlled via the tree-wire-bus of Bright (EGOLD+ signals RFDATA; RFCLK; RFSTR). To ensure the frequency stability, the 640MHz VCO signal is compared by the phase detector of the 2nd PLL with the 26Mhz reference signal. The resulting control signal passes the external loop filter and is used to control the 640/656MHz VCO.

The required voltage VCC_SYN is provided by the ASIC D361

V 2.1	Page 19 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.3.4 Synthesizer: PLL

The frequency-step is 400 kHz in GSM1800/GSM1900 mode and 800kHz in GSM850/EGSM900 mode due to the internal divider by two for GSM1800/GSM19000 and divider by four for GSM850/EGSM900. To achieve the required settling-time in GPRS operation, the PLL can operate in fastlock-mode a certain period after programming to ensure a fast settling. After this the loopfilter and currents are switched into normal-mode to get the necessary phasenoise-performance. The PLL is controlled via the tree-wire-bus of Bright.

7.4 Antenna switch (electrical/mechanical only C61/MC60)

Internal/External <> Receiver/Transmitter

The C61/MC60 mobile have two antenna switches. A60/A62/A65 and C60 have no external antenna connector/mechanical antenna switch.

- a) The mechanical antenna switch for the differentiation between the internal and external antenna
- b) The electrical antenna switch, for the differentiation betwee.. the receiving and transmitting signals.

To activate the correct settings of this diplexer, the EGOLD+ signals RF_SW and TXON_GSM are required

MC60 has an integrated "SAR detection" circuit. This circuit is used to decide if the internal antenna or an external antenna is used. The goal is, to reduce the transmit power when the internal antenna is used and the mobile is held very close to the body. On the other hand, the mobile can send with more power, if the external antenna is used. This distinction is done by the SAR detection circuit which consists of the voltage divider R872 and R873. The ANT_DET output provides a high level when the external antenna is used. ANT_DET(serial Interface L16) is connected to the EGOLD+

Internal/External antenna switch (example MC60)

V 2.1	Page 20 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

The electrical antenna switch C61

V 2.1	Page 21 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

The electrical antenna switch A60/A62/A65/C60/MC60

Top View N880/N881

Select Mode	Vc(EGSM)	Vc(DCS/PCS)
EGSM-RX	Low	Low
EGSM-TX	High	Low
DCS -RX	Low	Low
PCS-RX	Low	Low
DCS/PCS-TX	Low	High

Switching Matrix N880/N881

Pin, No	Function
1	ANT
9	PCS Rz-1
6	PCS Rx-2
0	DCS Rx-1
0	DCS Rx-2
9	G8M850 Rx-1
0	GSM850 Rx-2
•	GSM850-CONT.
1)	GBM850-Tx
Û	DCS/PCS-Tx
Û	DCS/PCS-CONT.
030	GND
ിത്്്	

Pin. No	Function
	ANT
5	PCS Rx-1
6	PCS Rx-2
0	DCS Rx-1
8	DCS Rx-2
9	EGSM Rx-1
10	EGSM Rx-2
12	EGSM-CONT.
(13)	EGSM-Tx
(15)	DCS/PCS-Tx
17	DCS/PCS-CONT.
234	GND
11	

Pin assignment N880 Pin assignment N881

V 2.1	Page 22 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.5 Receiver

Receiver: Filter to Demodulator

The band filters are located inside the frontend module (N880/N881). The filters are centred to the band frequencies. The symmetrical filter output is matched to the LNA input of the Bright (N882). The Bright VE incorporates three RF LNAs for GSM850/EGSM900, GSM1800 and GSM1900 operation. The LNA/mixer can be switched in High- and Low-mode to perform an amplification of ~ 20dB. For the "High Gain" state the mixers are optimised to conversion gain and noise figure, in the "Low Gain" state the mixers are optimised to large-signal behavior for operation at a high input level. The Bright performs a direct conversion mixers which are IQ-demodulators. For the demodulation of the received GSM signals the LO1 is required. The channel depending LO1 frequencies for 1800MHz/1900MHz bands are divided by 2 and by 4 for 850MHG/900MHz band. Furthermore the IC includes a programmable gain baseband amplifier PGA (90 dB range, 2dB steps) with automatic DC-offset calibration. LNA and PGA are controlled via EGOLD+ signals RFDATA; RFCLK; RFSTR(RF Control J15, J16, J17). The channel-filtering is realized inside the chip with a three stage baseband filter for both IQ chains. Only two capacitors which are part of the first passive RC-filters are external. The second and third filters are active filters and are fully integrated. The IQ receive signals are fed into the A/D converters in the EGAIM part of EGOLD+. The post-switched logic measures the level of the demodulated baseband signal and regulates the level to a defined value by varying the PGA amplification and switching the appropriate LNA gains.

From the antenna switch, up to the demodulator the received signal passes the following blocks to get the demodulated baseband signals for the EGOLD+:

The required voltage VCC_SYN is provided by the ASIC D361

V 2.1	Page 23 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.6 Transmitter

7.6.1 Transmitter: Modulator and Up-conversion Loop Transmitter

Up conversion loop

The generation of the GMSK-modulated signal in Bright (N882) is based on the principle of up conversion modulation phase locked loop. The incoming IQ-signals from the baseband are mixed with the divided LO2-signal. The modulator is followed by a lowpass filter (corner frequency ~80 MHz) which is necessary to attenuate RF harmonics generated by the modulator. A similar filter is used in the feedback-path of the down conversion mixer.

With help of an offset PLL the IF-signal becomes the modulated signal at the final transmit frequency. Therefore the GMSK modulated rf-signal at the output of the TX-VCOs is mixed with the divided LO1-signal to a IF-signal and sent to the phase detector. The I/Q modulated signal with a center frequency of the intermediate frequency is send to the phase detector as well.

The output signal of the phase detector controls the TxVCO and is processed by a loop filter whose components are external to the Bright. The TxVCO which is realized inside the Bright chip generates the GSMK modulated frequency.

V 2.1	Page 24 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Circuit diagram

V 2.1	Page 25 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.7 Bright IC Overview

BRIGHT VE

IC Top View

V 2.1	Page 26 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

7.7.1 Transmitter: Power Amplifier

The output signals (PCN_PA_IN , and GSM_PA_IN) from the TxVCO are led to the power amplifier. The power amplifier is a PA-module N901 from Hitachi. It contains two separate 3-stage amplifier chains GSM850/EGSM900 and GSM1800 / GSM1900 operation. It is possible to control the output-power of both bands via one VAPC-port. The appropriate amplifier chain is activated by a logic signal VBAND(RF control J15, J16, J17) which is provided by the Egold+.

To ensure that the output power and burst-timing fulfills the GSM-specification, an internal power control circuitry is use. The power detect circuit consists of a sensing transistor which operates at the same current as the third rf-transitor. The current is a measure of the output power of the PA. This signal is square-root converted and converted into a voltage by means of a simple resistor. It is then compared with the PA_RAMP(Analog Interface J2) signal. The N901 is activated through the signal TXONPA(GSM TDMA-Timer F14).

The required voltage BATT+ is provided by the battery.

Top View

Block Diagram

- 8 Logic / Control
- 8.1 Overview of Hardware Structure
- 8.1.1 Logic Block Diagram A60/A62/A65/C60 and C61

V 2.1	Page 28 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

8.1.2 Logic Block Diagram MC60

V 2.1	Page 29 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

8.2 EGOLD+

Block Diagram EGOLD+

The EGOLD+ contains a 16-bit micro-controller (µC part), a GSM analog | terface (EGAIM), a DSP computing core (DSP part) and an interface for application-specific ε vitch-functions.

The µC part consists of the following:

- Micro-controller
- System interfaces for internal and external peripheries
- On-chip peripheries and memory

The Controller Firmware carries out the following functions:

- Control of the Man Machine Interface (keypad, LCD, sensing eleme it, control of the illumination,...)
- GSM Layer 1,2,3 /GPRS
- Control of radio part (synthesizer, AGC, AFC, Transmitter, Receiver...),
- Control of base band processing (EGAIM)
- Central operating system functions (general functions, chip select logic, IW driver, control of mobile phones and accessories...).

V 2.1	Page 30 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

The EGAIM part contains the interface between the digital and the analogue signal processing:

- 2 Sigma Delta A/D converters for RX signal, and for the necessary signals for the charge control and temperature measurement. For this, the converter inputs are switched over to the various signals via the multiplexer.
- 2 D/A converters for the GMSK-modulated TX signal,
- 1 D/A converter for the Power Ramping Signal,
- 1 Sigma Delta A/D and D/A converter for the linguistic signal.

Measurement of Battery and Ambient Temperature

The battery temperature is measured via the voltage divider R1387, R138 by the EGOLD+ (Analog Interface P2). For this, the integrated $\Sigma\Delta$ converter of the RX-I base band branch is used. This $\Sigma\Delta$ converter compares the voltage of TBAT and TENV internally. Through an analogue multiplexer, either the RX-I base band signal, or the TBAT signal and the TENV signal is switched to the input of the converter. The signal MEAS_ON from the EGOLD+(GSM TDMA-TIMER H15) activates the battery voltage measurement The ambient temperature TENV is measured directly at of the EGOLD+(Analog Interface P3).

Measurement of the Battery Voltage

The measurement of the battery voltage is done in the Q-branch of the EGOLD+, for this BATT+ is connected via a voltage divider R143, R146 to the EGOLD+(Analog Interface P1). An analogue multiplexer does the switching between the baseband signal processing and the voltage measurement.

V 2.1	Page 31 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

A/D conversion of MIC-Path signals incl. coding

The Microphone signals (MICN2, MIP2, MICP1, MICN1) arrive at the voiceband part of the EGOLG+. For further operations the signals will be converted into digital information, filtered, coded and finally formed into the GMSK-Signal by the internal GMSK-Modulator. This so generated signals (RF_I, RF_IX, RF_Q, RF_QX) are given to the Bright IC in the transmitter path.

D/A conversion of EP-Path signals incl. decoding

Arriving at the baseband-Part the demodulated signals (RF_I, RF_IX, RF_Q, RF_QX) will be filtered and A/D converted. In the voiceband part after decoding (with help of the μ C part) and filtering the signals will be D/A converted amplified and given as (EPP1_FIL, EPN1_FIL) to the Power Supply ASIC.

Generation of the PA Control Signal (PA_RAMP)

The RF output power amplifier needs an analogue ramp up/down control voltage. For this the system interface on EGOLD+ generates 2^{15} digital values which have to be transferred serially to the power ramping path. After loading into an 10 bit latch the control value will be converted into the corresponding analogue voltage with a maximum of ~2V

V 2.1	Page 32 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

The DSP part contains:

- DSP signal processor
- Separate program/data memory
- a hardware block for processing the RX signal,
- a hardware block for "ciphers",
- a hardware block for processing the linguistic signal,
- a hardware block for the "GMSK modulator",
- De-/ interleaving memory,
- Communication memory
- a PLL for processing and reproducing the VCXO pulse signal.

In the DSP Firmware are implemented the following functions:

- scanning of channels, i.e., measurement of the field strengths of neighbouring base stations
- detection and evaluation of Frequency Correction Bursts
- equalisation of Normal Bursts and Synchronisation Bursts
- channel encoding and soft-decision decoding for fullrate, enhanced-fullrate and adaptive multirate speech, fullrate and halfrate data and control channels.
- channel encoding for GPRS coding
- fullrate, enhanced fullrate and adaptive multirate speech encoding and decoding
- mandatory sub-functions like
 - discontinuous transmission, DTX
 - voice activity detection
 - background noise calculation
- generation of tone and side tone
- hands-free functions
- support for voice memo
- support for voice dialling
- loop-back to GSM functions
- GSM Transparent Data Services and Transparent Fax
- calculation of the Frame Check Sequence for a RLP frame used for GSM NonTransparent Data Services
- support of the GSM ciphering algorithm

Real Time Clock (integrated in the EGOLD+):

The real time clock is powered via a separate voltage regulator inside the Power Supply ASIC. Via a capacitor, data are kept in the internal RAM during a battery change for at least 30 seconds. An alarm function is also integrated with which it is possible to switch the phone on and off.

V 2.1	Page 33 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

8.2.1 SRAM

Memory for volatile	e data	
Memory Size: Data Bus:	A62/A65/C60/C61/MC60 - 16 Mbit 16Bit	A60 - 8 Mbit
8.2.2 FLASH		
Memory Size: (4Mbyte)	A62/A65/C60/C61/MC60 - 64 Mbit (8Mbyte)	A60 - 32 Mbit
Data Bus:	16 Bit	

8.2.3 SIM

SIM cards with supply voltages of 1.8V and 3V are supported.

8.2.4 Vibration Motor

The vibration motor is mounted in the lower case. The electrical connection to the PCB is realised with pressure contacts.

9 Power Supply

9.1 Power Supply ASIC

The power supply ASIC will contain the following functions:

- Powerdown-Mode
- Sleep Mode
- Trickle Charge Mode
- Power on Reset
- Digital state machine to control switch on and supervise the µC with a watchdog
- Voltage regulator
- Low power voltage regulator
- Additional output ports
- Voltage supervision
- Temperature supervision with external and internal sensor
- Battery charge control
- I2C interface
- Audio multiplexer
- Audio amplifier stereo/mono
- 16 bit Sigma/Delta DAC with Clock recovery and I2S
- Bandgap reference*

V 2.1	Page 34 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

SIEMENS Com

Power Supply Diagram

V 2.1	Page 35 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

9.1.1 Power Supply Operating modes:

The ASIC can	be used in	different of	operating	modes:

Mode	Pin Requirements	Description
Power down mode with minimum activity	ON/OFF ON/OFF2 VDD_CHARGE	In power down mode the current consumption of the ASIC is very low. The inputs for switch on conditions (ON/OFF-PinH2, ON/OFF2-PinJ3, VDD_CHARGE-PinC3), the LPREG, Bandgap reference and the POR cells are active. All other blocks are switched off, so the battery is not discharged. This state is called "phone off.
Start Up Mode	ON_OFF ON_OFF2	Start Up Mode can be initiated by ON_OFF(PinH2) or ON_OFF2(PinC3). In this mode a sequential start-up of references, oscillator, voltage supervision and regulators is controlled by digital part. In failure case (under voltage, over voltage or time out of the μ C reaction)., the ASIC is shut down.
Full operating mode	VDD_CHARGE CHARGE_UC	All blocks are active. Trickle charge is switched off. The blocks fast charge and charge monitor can be active only in this mode. These modes will be activated with VDD_CHARGE(PinC3) or CHARGE_UC(PinH4). The name of this mode is "phone on" or "active mode". The border between the startup phase and the active mode is the rising edge of the RESET2_N (PinG1) signal. This will allow the μ C(EGOLD+) to start working.
Active Mode (submode of Full operating mode)		In this mode, the μ C(EGOLD+) controls the charging block and most of the failure cases. The ASIC can be controlled by the TWI interface (I2CC-PinJ2, I2CD-PinG3, I2CI-PinE2), interrupts can be sent by the ASIC. Further, the temperature and the voltages are supervised (in case of failure, the uC will be informed). In case of watchdog failure, over voltage or power on reset, the ASIC will be switched off immediately. The mono and stereo audio block can be switched on in active mode.
Sleep Mode with special low current operating mode for the LDOs (submode of Full operating mode)	SLEEP1_N TC_ON CHARGE_uC	A low level at the signal VCOEN_UC (PinH1) will switch the phone from the mode "PHONE ON" to sleep mode. This mode can be activated out of the active mode. In sleep mode trickle charge, fast charge, supply over voltage detection, supply under voltage detection, audio function are switched off. LDO under voltage detection, clock and all reference voltages are active. LDOs are working in low current mode. The possibility to supply the ASIC from VDD_CHARGE (PinC3) with the internal LDO is switched off. Only the battery can be used for supply. This mode is called "phone stand-by".

V 2.1	Page 36 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Mode	Pin	Description
	Requirements	
Trickle charge mode to be able to support charging of the battery	Requirements VDD_CHARGE EXT_PWR	In case of a rising edge at VDD_CHARGE (PinC3) the ASIC goes from power down to interim mode. In this mode, the oscillator and the reference are started. The fuses are read in. If the voltage is high enough (after a delay time of 1 ms to filter a ringing), the internal signal EXT_PWR is going to H and the power up continues. The ASIC shuts off if the voltage is below threshold. In Trickle Charge Mode, first the charge unit starts and charges the battery in case of under voltage. After reaching this threshold voltage or if the battery has enough voltage from the beginning, a start up similar to the regular startup mode is initiated. In case of voltage drop under battery threshold, the first trickle charging can be started again until the Active Mode is entered. In this case, the internal VDDREF regulator, the reference generator and oscillator are started and the ASIC is supplied by VDDREF. If any failure is detected the ASIC is
		switched off.

V 2.1	Page 37 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

9.1.2 Power Supply Functions:

Functions	Pin Requirements	Sequence
Switching on the mobile phone	ON_OFF, ON_OFF2, VDD_CHARGE	 There are 3 different possibilities to switch on the phone by external pins: VDD_CHARGE (PinC3) with rising edge after POR or high level at end of POR signal ON/OFF (PinH2) with falling edge ON/OFF2 (PinJ3) with rising edge In order to guarantee a defined start-up behavior of the external components, a sequential power up is used and the correct start up of these blocks is supervised. In active mode, a continuous signal at watchdog is needed to keep the system running. If the signals fails, the ASIC will switch to power down mode. It must be guaranteed that each start-up condition does not interfere and block the other possible startup signals. In case of failure during start-up, the device will go back to power down mode. To guarantee that VDDCHARGE (PinC3) is always sensed we must be able to detect whether the VDDCHARGE (PinC3) will have a rising edge during POR (this can happen in case of an empty battery). Therefore this signal is sensed as level sensitive at the end of POR and edge sensitive after POR signal.
Watchdog monitoring	WDOG	As soon as the first WDOG (PinH3) pin rising is detected during the TE4 timer, the device start the watchdog monitoring procedure. Standard switch off of the phone is the watchdog. The first edge of watchdog is rising. If a falling edge is detected as the first transient the device will go to power down mode again and the whole phone is switched off. Rising and falling edges must be detected alternated. With any edge on WDOG (PinH3) pin a counter will be loaded. The next - compared to the previous edge - inverted edge must occur between end of T1, and end of T2. If the signal occurs before end of T1 or is not detected until end of T2, the device will go to power down mode immediately after the violation of the watchdog criteria occurs. T1 min. 0,327s/ typ. 0,360s/ max. 0,400s T2 min. 2,600s/ typ. 2,860s/ max. 3,178s

V 2.1	Page 38 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Functions	Pin Requirements	Sequence
Power-On-Reset (POR)	RESET_N RESET2_N	To guarantee a correct start-up of the ASIC, a power on reset is needed at first power supply ramping. Therefore a static/dynamic power on reset circuit is added, which creates a reset each time the power supply is connected. After POR the ASIC starts up the reference and the oscillator, read in the fuse content and goes back to power down mode. If the power supply will drop under the POR threshold a synchronous reset is done and the ASIC will go to power down mode independently of the previous operating mode.
Voltage Supply Logics	REG1 (2.9V)	The linear controller is designed for 2.9V(±2%) and a maximum load current of 140 mA. Voltage and current for the external Logic is supplied from the internal 2.9V logic regulator. The operating voltage VREG1 is kept constant up to the maximum rated load current. A reference voltage for the regulator circuit is generated from a bandgap reference
Voltage Supply Logics	REG2 (1,92V)	The linear controller is designed for $1.82V(\pm 3\%)$ and a maximum load current of 300 mA. The REG2 supplies the Baseband Processor. For a high power application, the power has to be dissipated outside of the chip. This is done with a series diode at the input of REG2, which will force the regulator to a lower input voltage and therefore lower power dissipation.
Voltage Supply Logics	REG3 (2.65V)	The linear controller is designed for $2.65V(\pm 3\%)$ and a maximum load current of 220 mA. It will consist basically of an internal operation amplifier, an integrated p-channel output transistor as well as a capacitor (C = 2.2μ F) for stabilizing the voltage. The required reference voltage for the regulating circuit will be generated internally via a bandgap. The negative feedback of the regulating circuit shall be done via chip-internal resistances.
Voltage Supply RF	VREGRF1, RF_EN, RESET_N	The linear controller is designed for 2.85V(min. 2.79V, max. 2.91V) and a maximum load current of 120 mA. Voltage and current for RF-VCO and Transceiver is supplied from the internal 2.85V LDO. The operating voltage RF12LDO is kept constant up to the maximum rated load current. A reference voltage for the regulator circuit is generated from a bandgap reference. A low noise must be guaranteed. RF1LDO is controlled by RF_EN. If it is set to high, the regulator is enabled. The control method can be modified by TWI interface between external and internal control mode. If internal control mode is set, RF1LDO can only be enabled by RF_EN. RF1LDO is released with rising edge of RESET_N signal.

V 2.1	Page 39 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Functions	Pin	Sequence
	Requirements	
Voltage Supply	VREGRF2,	The linear controller is designed for 2.85V(min. 2.79V, max.
RF	SLEEP1_N,	2.91V) and a maximum load current of 180 mA.
	SLEEP2_N,	Voltage and current for RF-VCO and Transceiver is supplied
	POWER_ON	from the internal 2.85V LDO. The operating voltage RF2LDO is
		kept constant up to the maximum rated load current. A reference
		voltage for the regulator circuit is generated from a bandgap
		reference. A low noise must be guaranteed.
		RF2LDO is controlled by VCXO_EN (PinH1). If it is set to high,
		the regulator is enabled. The control method can be modified by
		TWI interface between external and internal control mode. If
		internal control mode is set, RF2LDO can only be enabled by
		TWI bit. In external mode, RF2LDO can only be enabled by
		VCXO EN (PinH1).
		RF2LDO is released with rising edge of POWER_ON signal.
Voltage Supply	VREGA	The linear controller is designed for 2.9V(min. 2.84V, max.
Audio		2.96V) and a maximum load current of 190 mÅ.
		BATT+ (PinA9) is used for the whole stereo analog supply. The
		DAC digital VDDDAC (PinC6), Low Noise Bandgap, Mono- and
		Stereoamplifier supplies are connected to VREGA (PinB9). The
		AUDIO performances are guaranteed only, if the VREGA
		supplies all the stereo path.
		VREGA is controlled with TWI registers directly by the µC.
Voltage Supply	VLPREG	The linear controller is designed for 2.00V(min. 1.9V, max. 2.1V)
RTC		and a maximum load current of 1 mA.
		The output voltage can be adjusted to four different values with
		TWI register by the µC. The selectable values are 2.00(default),
		1.82, 1.92 and 2.07V. LP-LDO is always working and will switch
		of only with POR signal.
Voltage Supply	VREGSIM	The linear controller is designed for 2.9V(min. 2.84V, max.
SIM		2.96V) and a maximum load current of 60 mA. The output
		voltage can be adjusted to a different value with TWI register by
		the µC to 1.8V(min. 1.76V, max. 1.84V).
		This regulator can be activated by TWI register, but only in
		active mode. If the regulator is in power down, the output is
		pulled down by a transistor to avoid electrostatic charging of
		VREGSIM (PinB8)

V 2.1	Page 40 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Functions	Pin Requirements	Sequence
Charge Support	CHARGE_UC, CHARGE, VDDCHARGE, AVDD, SENSE_IN, TBAT	A charge support will be integrated for controlling the battery charge function. It consists basically of a temperature sensor, an external charge FET, an integrated High-side driver for the external FET with an external resistor between the source and the gate of the charge FET. In the case of a rising edge at the CHARGE_UC(PinH4) the power source will be switched on. In this way the charge FET becomes conducting, provided that the integrated temperature comparator does not give the signal for extreme temperature and that no over voltage is present at the VDD. In the case of falling slope at the CHARGE_UC(PinH4), the current source is switched off and the pull-up resistor will make sure that the charge FET is blocked after a definite time. Temperature switchoff becomes effective at approx. T>60°C.
Voltage		The levels of regulator REG1 and REG2 and also the supply
supervision Supervision of REG1 and REG2	REG1 REG2	voltage BATT+ are supervised with comparators. In active mode the regulators are supervised permanently. If the voltage is under the threshold, the pin RESET_N2 (PinG1) stay Low and the ASIC goes back to the power down mode. If the voltage is longer than Tmin under threshold voltage, the RESET_N2 (PinG1) is going to Low (Missing Watchdog signal -> phone switched off). The level of regulator REG1 and REG2 will be supervised permanently. If the voltage doesn't reach the threshold value at switch on, the RESET_N2 (PinG1) will stay low and the ASIC will go back to power down mode. The voltages are sensed continuously and digitally filtered with a time constant Tmin. If the regulator voltage is under threshold longer than Tmin, the RESET_N2 (PinG1) signal change to low and the μ C will go to RESET condition (Missing Watchdog signal -> phone switched off).
Powersupply supervision	VDD	If the battery voltage BATT+ exceeds VDD high, everything is switched off immediately within 1µs. Only the pull-up circuitry for the external charge PMOS are active and will discharge the gate of the external PMOS
VDDA supervision	VDDA	To provide a short circuit protection at output of VDDA (PinA9) and output of stereo buffer a voltage supervision is implemented. If the VDDA output is less then this threshold, the VDDA will be switched off for 128ms. After this time the VDDA will be started again. The VDDA supervision starts 60ms after startup of VDDA.
Battery temperature supervision		Charging is stopped, when over temperature occurs. Within 128ms, 3 values are measured. When these 3 values are identical status can be changed. The supervision is active in fast charge or trickle charge mode. Voltage on pin TBAT (PinB3) becomes smaller when temperature increases. If Vbat < (Vref_exe - Vhyst) charging is disabled. Only when Vtbatt > Vref_exe charging is enabled again.

V 2.1	Page 41 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Functions	Pin Requirements	Sequence
Device temperature supervision		To protect the ASIC, the temperature is supervised. The temperature is polled every 128ms and is filtered as in battery temperature supervision. If over temperature is detected, a bit in the STATUS register is set and an interrupt is generated. Monitoring is started only in active mode.
Analog switch Outport		The level can be defined by the bit out_port_high of the TWI register. The high level can be derived of VREG2 or VREG3. Additional a pull down transistor is connected to this node.
TWI Interface	TWI_CLK, TWI_DATA, TWI_INT	The TWI interface (I2CC-PinJ2, I2CD-PinG3, I2CI-PinE2) is an I2C compatible 2-wire interface with an additional interrupt pin to inform the μ C about special conditions. The interface can handle clock rates up to 400 kHz.
Audio mode functions		 Four audio amplifiers are integrated to support these modes: Supply the speaker in the phone with audio signals including the possibility of handsfree switch on and off. This is the AUDIO MONO MODE. Supply the speaker in the phone with ringing signal (RINGER MODE) Transfer a key click, generated in digital part to the speaker. (KEY-CLICK FUNCTION) Supply of stereo head set with stereo signal with short circuit protection. This is called the AUDIO STEREO MODE. These different modes with gain and multiplexing can be controlled via TWI. Also the output can be switched to TRI-STATE via TWI interface
Audio Mono Mode	VREGA MONO1 MONO2 VREFEX_M	This mode is the main function of the amplifier. The two amplifiers are used as differential mono amplifier to drive the speaker in the phone as external load. This differential approach allows delivering an optimum of power to the speaker also in low voltage mode. Both amplifier paths are inverting amplifiers with external AC coupling at the input to compensate offset failures. The gain can be adjusted with the TWI interface. The output stage of the amplifiers must be able to drive a low impedance load as an external speaker for the handsfree application. General parameters: Gain can be adjusted for each channel separately in steps of 1.5dB in the range of 21dB to -54 dB and in steps of 3 dB in the range of -54dB to -75dB. The signals for the amplifier are connected via an audio multiplexer with 3 pairs of input signals.

V 2.1	Page 42 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Functions	Pin	Sequence
	Requirements	
Ringer function	RINGIN	In ringer mode the ringing signal is transferred via the amplifier to the speaker to eliminate the additional buzzer. The speaker is controlled with a rectangular signal RINGIN (PinG9). Input signal is digital signal with variable frequency. Amplitude is adjusted by TWI register. For start-up a smaller time constant must be used to allow a fast switch on behavior. Ringing function can be started at any time. If the audio is off, the start-up is done with RINGER time constant. If audio is starting with AUDIO start-up, the time constant is switched to RINGER mode, too. If the audio amplifier is already up and running, the RINGIN (PinG9) is connected to
		the amplifier and audio signal is muted due to open multiplexer.
Key click function		Pushing a key of the phone can be combined with a key click. This function is also realized with the audio amplifier in pulsed mode. The ASIC creates a digital PWM signal. Frequency of the PWM signal is 3.5 kHz. The start-up is similar to the ringer function. If the audio is off, the start-up is done with KEYCLICK time constant. If audio is starting with AUDIO start-up, the time constant is switched to KEYCLICK mode, too. If the audio amplifier is already up and running, the KEYCLICK is connected to the amplifier and audio signal is muted due to open multiplexer.
Audio Multiplex Matrix	AUDIOA1 AUDIOA2 AUDIOB1 AUDIOB2 AUDIOC1	Each of the three input sources should be switched to Mono and Stereo outputs. Furthermore a conversion can be done. Following sources: - Mono differential - Mono Single Ended (both channels parallel)
	AUDIOC2	- Stereo The DAC can be switched off for using the analog external inputs. This principle will allow to do each combination and have different modes for stereo and mono in parallel.
I2S Interface	CLO, WAO, DAO	The I2S Interface is a three-wire connection that handles two time multiplexed data channels. The three lines are the clock (CLO), the serial data line (DAO) and the word select line (WAO). The master I2S also generates the appropriate clock frequency for CLO set to 32 times the sampling rate (FS)

V 2.1	Page 43 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Functions	Pin	Sequence
Audio DAC	VDDDAC	For digital to analog conversion a 16-bit sigma delta converter is used. Digital input signal is delivered with an I2S interface. The I2S interface should be 16-bit format. To be able to work with all possible operating modes, the sampling frequency can vary from 8kHz to 48kHz. The performance of the audio output signal must be guaranteed over the full range the human ear is able to hear. This means for FS=8kHz the noise at frequencies higher than FS/2 must be suppressed. This is done by DSP and a single ended 2 nd order Low Pass filter. The clock for the I2S will be varied accordingly to the sampling frequency. Therefore a clock recovery based on CLO signal of the I2S can be implemented. This clock recovery must smooth any jitter of this clock to reduce the noise of the DAC.
PLL	VDDPLL PLLOUT	The PLL will have three frequency modes to produce a 32xCLO clock for the DSP and the DAC. The loop filter is realized with an external RC circuit. This PLL also contains a lock detector circuit.
Audio Stereo Mode	VDDSTEREO STEREO2 STEREOM	For stereo mode 2 single ended buffers are used. These buffers will be supplied by the additional regulator with 2.9 Volt to be more stable against the GSM ripple on the battery voltage. Also reference voltage for the buffers is generated by a high precision, low noise bandgap reference for better performance. An external capacitor is needed to filter this reference additionally. The gain steps for the programmable gain amplifier is identical with the mono amplifier. No keyclick and ringer needed for the stereo part. Gain can be controlled with the TWI. The connected speaker has an impedance of typical 16 Ohm. To guarantee an ANTI-POP noise a digital startup is implemented. This will allow a soft start of the VMID and creates a "clean" audio band during the startup. For eliminating external coupling capacitors for the speaker, an additional amplifier creates virtual ground (for both speakers). Accordingly to this, the max current of the virtual ground has to be the double of the normal output amplifier. Due to the power amplifier offset a DC current appear in the headset. Gain can be adjusted for each channel separately in steps of 1.5dB in the range of 21dB to -54 dB and in steps of 3 dB in the range of -54dB to -75dB

9.2 Battery

As a standard battery a Lilon battery with a nominal capacity of 3,7 Volt/700mAh is used.

V 2.1	Page 44 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

9.3 Charging Concept

9.3.1.1 Charging Concept

General

The battery is charged in the unit itself. The hardware and software is designed for Lilon with 4.2V technology.

Charging is started as soon as the phone is connected to an external charger. If the phone is not switched on, then charging takes place in the background (the customer can see this via the "Charge" symbol in the display). During normal use the phone is being charged (restrictions: see below).

Charging is enabled via a PMOS switch in the phone. This PMOS switch closes the circuit for the external charger to the battery. The EGOLD+ takes over the control of this switch depending on the charge level of the battery, whereby a disable function in the POWER SUPPLY ASIC hardware can override/interrupt the charging in the case of over voltage of the battery (only for Manganese Chemistry Battery types e.g. NEC).

With the new slim Lumberg IO connector we lose the charger recognition via SB line. Now we measure the charge current inside the POWER SUPPLY ASIC with a current monitor.

The charging software is able to charge the battery with an input current within the range of 350-600mA. If the Charge-Fet is switched off, then no charging current will flow into the battery (exception is trickle charging, see below).

For controlling the charging process it is necessary to measure the ambient (phone) temperature and the battery voltage. The temperature sensor will be an NTC resistor with a nominal resistance of $22k\Omega$ at 25°C. The determination of the temperature is achieved via a voltage measurement on a voltage divider in which one component is the NTC. The NTC for the ambient temperature will be on the PCB (13 MHz part).

V 2.1	Page 45 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Measurement of Battery, Battery Type and Ambient Temperature

The voltage equivalent of the temperature and battery code on the voltage separator will be calculated as the difference against a reference voltage of the EGOLD. For this, the integrated $\Sigma\Delta$ converter in the EGOLD of the RX-I base band branch will be used. Via an analogue multiplexer, either the RX-I base band signal, the battery code voltage or the ambient temperature voltage can be switched over to the input of the converter. The 1-Bit data stream of the converter will be subjected to a data reduction via the DSP circuit so that the measured voltage (for battery and ambient temperature) will be available at the end as a 10-bit data word.

Measurement of the Battery Voltage

Analogue to the I-branch either the RX-Q base band signal or the battery voltage can be measured in the Q-branch. Processing in the DSP circuit will be done analogue to the I-branch. The EGOLD will be specified internally at voltage measurement input BATT+ for an input voltage of 3V...4.5V.

Timing of the Battery Voltage Measurement

Unless the battery is charging, the measurement is made in the TX time slot. During charging it will be done after the TX time slot. At the same time, either the battery temperature (in the Ibranch) and the battery voltage (in the Q-branch) or the ambient temperature in the I-branch can be measured (the possibility of measurement in the Q-branch, the analogue evaluation of the battery coding, is used for HW-Coding). Other combinations are not possible. For the time of the measurement the multiplexer in the EGAIM must be programmed to the corresponding measurement.

Recognition of the Battery Type

The battery code is a resistor with a resistance depending on the manufacturer.

V 2.1	Page 46 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Charging Characteristic of Lithium-Ion Cells

Lilon batteries are charged with a U/I characteristic, i.e. the charging current is regulated in relation to the battery voltage until a minimal charging current has been achieved. The maximum charging current is approx. 600mA, minimum about 100mA. The battery voltage may not exceed $4.2V \pm 50mV$ average. During the charging pulse current the voltage may reach 4.3V. The temperature range in which charging of the phone may be started ranges from 5...40°C, and the temperature at which charging takes place is from 0...45°C. Outside this range no charging takes place, the battery only supplies current.

Trickle Charging

The POWER SUPPLY ASIC is able to charge the battery at voltages below 3.2V without any support from the charge SW. The current will by measured indirectly via the voltage drop over a shunt resistor and linearly regulated inside the POWER SUPPLY ASIC. The current level during trickle charge for voltages <2.8V is in a range of 20-50mA and in a range of 50-100mA for voltages up to 3.75V. To limit the power dissipation of the dual charge FET the trickle charging is stopped in case the output voltage of the charger exceeds 10 Volt. The maximum trickle time is limited to 1 hour. As soon as the battery voltage reaches 3.2 V the POWER SUPPLY ASIC will switch on the phone automatically and normal charging will be initiated by software (note the restrictions on this item as stated below).

Normal Charging

For battery voltages above 3.2 Volt and normal ambient temperature between 5 and 40°C the battery can be charged with a charge current up to 1C*. This charging mode is SW controlled and starts if an accessory (charger) is detected with a supply voltage above 6.4 Volt by the POWER SUPPLY ASIC. The level of charge current is limited/controlled by the accessory or charger.

INFO:

* C-rate

The charge and discharge current of a battery is measured in C-rate. Most portable batteries, are discharge with 1C. A discharge of 1C draws a current equal to the battery capacity. For example, a battery value of 1000mAh provides 1000mA for one hour if discharged at 1C. The same battery discharged at 0.5C provides 500mAfor two hours. At 2C, the same battery delivers 2000mA for 30 minutes. 1C is often referred to as a one-hour discharge; a 0.5 would be a two-hour, and a 0.1C a 10 hour discharge.

V 2.1	Page 47 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

Restrictions

- A battery which has completely run down can not be re-charged quickly because the battery voltage is less than 3.0V and the logic which implements the charge control cannot be operated at this low voltage level. In this case the battery is recharged via trickle-charging. However, the charging symbol cannot be shown in the display because at this time logic supply voltages are not operating. The charging time for this trickle-charging (until the battery can be fast-charged from then on) is in the range of 1 hour. If, within this time, the battery voltage exceeds 3.2V, then the POWER SUPPLY ASIC switches on the mobile and charging continues in the Charge-Only Mode. In some circumstances it can happen that after trickle-charging and the usually initiated switch-on procedure of the mobile, the supply voltage collapses so much that the mobile phone switches off again. In this case trickle charging starts again with a now raised threshold voltage of 3.75V instead of 3.2V, at maximum for 20 minutes. The POWER SUPPLY ASIC will retry switching on the phone up to 3 times (within 60 minutes overall).
- Charging the battery will not be fully supported in case of using old accessory (generation '45' or earlier). It is not recommended to use any cables that adapt "old" to "new" Lumberg connector. Using such adapters with Marlin will have at least the following impact:
 - 1) half-sine wave chargers (e.g. P35 & home station) can not be used for trickle charging 2) normal charging might be aborted before the battery is fully charged
 - 3) EMC compliance can not be guaranteed
- A phone with a fully charged Lilon battery will not be charged immediately after switch-on. Any input current would cause an increase of the battery voltage above the maximum permissible value. As soon as the battery has been discharged to a level of about 95% (due to current consumption while use), it will be re-charged in normal charging mode.
- The phone cannot be operated without a battery.
- The phone will be destroyed if the battery is inserted with reversed polarity:
 ⇒ design-wise it is impossible to wrongly pole the phone. This is prevented by mechanical means.

 \Rightarrow electrically, a correctly poled battery is presumed, i.e. correct polarity must be guaranteed by suitable QA measures at the supplier

The mobile phone might be destroyed by connecting an unsuitable charger:
 ⇒ a charger voltage >15V can destroy resistances or capacitors
 ⇒ a charger voltage >20V can destroy the switch transistor of the charging circuit

In case the transistor fails the ASIC will be destroyed. In the case of voltages lower than 15V and an improper current limitation the battery might be permanently damaged. A protection against grossly negligent use by the customer (e.g. direct connection of the charge contact to the electricity supply in a motor car) is not provided. Customer safety will not be affected by this restriction.

V 2.1	Page 48 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

10 Camera (only MC60)

10.1 Camera Power Supply

A voltage regulators with a nominal output voltage of 2.9V in the is used for the camera. The voltage regulator N200 is activated via CAM_SENSOR_PD provided by the EGOLD+ (Keypad T11).

The name of the voltage is VCC_CAM

10.2 Camera Interfaces

The interface between EGOLD+ V3 and the camera modul is done by a camera interface ASIC D200. The name of this chip is SAA8130. The EGOLD controls the camera via a serial interface which is also used for communication to the display modul.

XG226	56	SPICS
XG225	55	SPICK
XG224	54	SPII
XG223	53	SP IO
XG222	52	SPI_IRQ
		•

V 2.1	Page 49 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

For syncronizion of the camera and the interface chip the two signals "V_SYNC" and "H_SYNC" is used.

The camera interface ASIC is supported via the EGOLD+ with the 13 MHz clock (MODUL_13MHz (Miscellaneous U6))

The camera get from the interface chip the clock of 13MHz and also the camera have a clock output towards the interface chip for the pixel transmission (DATA_CLK_CAMERA). The transmission of the pixels is realized by a 8 bit parallel bus (Pixel_DATA 0:7)

V 2.1	Page 50 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

SIEMENS Com

10.3 Camera Module Connector

The camera modul is connected via a Board to Board Connector (X210) connected with the Camera Interface ASIC D200.

V 2.1	Page 51 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

11 Interfaces

11.1 Vibra

XG227

Pin	IN/OUT	Remarks
1		BATT+
2	0	The FET V211, switching this signal, is controlled via the EGOLD+ signal VIBRA_UC.

11.2 Earpiece

XG250

Pin	Name	IN/OUT	Remarks
1	EPP1	0	1st connection to the internal earpiece. Earpiece can be switched off in the case of accessory operation. EPP1 builds together with EPN1 the differential output to drive the multifunctional "earpiece" (earpiece, ringer, handsfree function).
2	EPN1	0	2nd connection to the internal earpiece. Earpiece can be switched off in the case of accessory operation.

V 2.1	Page 52 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

11.3 Microphone

XG242

Pin	Name	IN/OUT	Remarks
1	MICP1	0	Microphone power supply. The same line carries the low frequency speech signal.
2	MICN1	I	Speech signal. The same line carries the microphone power supply.
3	GND_MIC		

11.4 Battery

Pin	Name	Level	Remarks
1	GND	-	Ground
2	AKKU_TYP	0V2.65V	Recognition of battery/supplier
3	BATT+	3 V 4.5V	Positive battery pole

V 2 1	Page 52 of 61	
V Z.1	Fage 53 01 61	
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

11.5IO Connector with ESD protection

11.5.1 IO Connector – New Slim Lumberg

Pin	Name	IN/OUT	Notes
1	POWER	I/O	POWER is needed for charging batteries and for supplying the accessories. If accessories are supplied by mobile, talk- time and standby-time from telephone are reduced. Therefore it has to be respected on an as low as possible power consumption in the accessories.
2	GND		
3	TX	0	Serial interface
4	RX	_	Serial interface
5	DATA/CTS	I/O	Data-line for accessory-bus Use as CTS in data operation.
6	RTS	I/O	Use as RTS in data-operation.
7	CLK/DCD	I/O	Clock-line for accessory-bus. Use as DTC in data-operation.
8	AUDIO_L	Analog O	driving ext. left speaker With mono-headset Audio_L and Audio_R differential mode
9	AUDIO_RE F	Analog O	mid-voltage in stereo mode reference to AUDIO_L and AUDIO_R in mono mode not used
10	AUDIO_R	Analog O	driving ext. right speaker With mono-headset Audio_L and Audio_R differential Signal
11	GND_MIC	Analog I	for ext. microphone
12	MICP2	Analog I	External microphone

V 2.1	Page 54 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

The Z211 is a 5-channel filter with over-voltage and ESD Protection array which is designed to provide filtering of undesired RF signals in the 800-4000MHz frequency band Additionally the Z211 contains diodes to protect downstream components from Electrostatic Discharge (ESD) voltages up to 8 kV.

Pin configuration of the Z211 $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$

Α

в

С

D

Z211 Circuit Configuration

V 2.1	Page 55 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

11.6 SIM

Pin	Name	IN/OUT	Remarks
3	CCLK	0	Pulse for chipcard.
			The chipcard is controlled directly from the EGOLD+.
2	CCRST	0	Reset for chipcard
7	CCIO	1	Data pin for chipcard;
		0	10 k Ω pull up at the CCVCC pin
1	CCVCC	-	Switchable power supply for chipcard;
			220 nF capacitors are situated close to the chipcard pins and are
			necessary for buffering current spikes.

11.7 Display

Pin	Name	Remarks	GND
1	2.9V	Power supply display controller	
2	LCD_CLK	Clock	
3	LCD_DAT	Data line	
4	LCD_RS	Register select	
5	LCD_CS	Chip select	
6	GND	GND	
7	VLCD	Power supply display	
8	LCD_RESET	Reset	

V 2.1	Page 56 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

12 Acoustic

The buzzer and the keypad clicks will be realized over the earpiece. At normal buzzer the signaling will realized with swelling tones. At the same time a maximum sound pressure level in the coupler of 135 + 5dB(A) is fixed.

The standard sounds will be generated by the EGOLD+, the advanced sounds will be generated via firmware running on the DSP.

12.1 Microphone

12.1.1 Mechanical

The microphone is built in the Mounting Frame Lower Part and is mechanically fixed with a rubber seal (gasket). The contact on the PCB is realized via spiral springs, which are integrated in the gasket. Because of usage of Unidirectional Microphone, the gasket has a front- and a back sound-inlet hole. The front sound-inlet is acoustically tighten connected with a sound-inlet at the rear-side of the mounting frame lower part. The back sound-inlet is acoustically tighten connected with a sound-inlet at the bottom-side of the mounting frame lower part. The gasket of the microphone has a asymmetrical shape in order to provide non-rotating, guaranteed covering of the sound-inlets of mounting frame lower part to the corresponding sound-inlets at microphone gasket.

12.1.2 Electrical

Both Microphones are directly connected to the EGOLD+.(Analog Interface G2, F1-G3, H2) via the signals MICN1, MICP1 (Internal Microphone) and MICN2, MICP2 (External Microphone/Headset). Power supply for the Microphone is VMIC (EGOLD+.(Analog Interface G1))

V 2.1	Page 57 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

SIEMENS Com

12.2 Earpiece/Loudspeaker

12.2.1 Mechanical

The speaker module is designed to provide optimal performance for mobile handsfree and sound ringer. Plus independent from mobile leakage sound performance. Therefore speaker module is a system that has a closed front volume with sound-outlets towards the ear of the user. Back volume of Speaker module is using the unused air between the antenna and the PCB. Back volume is just used for resonance, there is no sound output from back volume. The speaker module is glued to the light guide and contacted via two bending springs to the PCB. The light guide itself is screwed with six screws via the PCB to the mounting frame lower part. Two of the six screws are located besides of the connection of speaker module and PCB should be provided.

12.2.2 Electrical

The internal and external Loudspeaker (Earpiece) is connected to the voiceband part of the EGOLD+ (Analog Interface B1, C1) via audio amplifier inside the ASIC (D361). Input EPN1_FIL - EPP1_FIL. Output for external loudspeaker AUDIO_L - AUDIO_R, for internal Loudspeaker EPP! – EPN1. The ringing tones are generated with the loudspeaker too. To activate the ringer, the signal RINGIN from the EGOLD+ (Miscellaneous,D16) is used

V 2.1	Page 58 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

13 Display and Illumination

13.1 Display

The display is provided with 2,65V from the ASIC (D361). The communication with the EGOLD+ by the LCD-Signals, directly connected to the EGOLD+

Pin	Name	Remarks
1	LCD_CS	Chip select
2	LCD_RESET	Reset
3	LCD_RS	Register select
4	LCD_CLK	Clock
5	LCD_DAT	Data line
6	2.9V	Power supply display controller
7	GND	GND
8	LCD_LED2_A	Power supply display led 2
9	LIGHT_K	Switched GND for display led 1 and led 2
10	LCD_LED1_A	Power supply display led 1

V 2.1	Page 59 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

13.2 Illumination

The light is switched via switches inside the EGOLD+. With the signal LIGHT_KB (Miscellaneous T17) the illumination for the keyboard is controlled, with LIGHT_LCD. (GSM TDMA-Timer G15).

Required voltage for the display illumination is LCD_LED1_A and LCD_LED2_A. The voltage regulator N280 with a nominal output voltage of 2.8V is used.

Required voltage for the keypad illumination is 2.9V from the Power Supply ASIC.

V 2.1	Page 60 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04

14 Keyboard

The keyboard is connected via the lines KB0 – KB9 with the EGOLD+.

KB 7 is used for the ON/OFF switch. The lines KB0 – KB5 are used as output signals. In the matrix KB6, KB8 and KB9 are used as input signals for the EGOLD+.

V 2.1	Page 61 of 61	Com MD CC GRM T
A60/A62/A65/C60/C61/MC60	Company Confidential Copyright 2004© Siemens AG	12/04