

Technical Manual

Version 0.1

Motorola V80 Handset

J2ME™ Developer Guide

2

Table of Contents

TABLE OF CONTENTS ... 2

1 INTRODUCTION .. 6
PURPOSE .. 6
AUDIENCE .. 6
DISCLAIMER .. 6
REFERENCES .. 7
REVISION HISTORY .. 8
DEFINITIONS, ABBREVIATIONS, ACRONYMS ... 8
DOCUMENT OVERVIEW .. 9

2 J2ME INTRODUCTION... 11
THE JAVA 2 PLATFORM, MICRO EDITION (J2ME).. 11
THE MOTOROLA J2ME PLATFORM ... 12
RESOURCES AND API’S AVAILABLE.. 12

3 DEVELOPING AND PACKAGING J2ME APPLICATIONS ... 14
GUIDE TO DEVELOPMENT IN J2ME.. 14

4 DOWNLOADING APPLICATIONS .. 16
METHODS OF DOWNLOADING ... 16
ERROR LOGS .. 19

5 APPLICATION MANAGEMENT... 21
DOWNLOADING A JAR FILE WITHOUT A JAD .. 21
MIDLET UPGRADE ... 21
INSTALLATION AND DELETION STATUS REPORTS.. 22

6 BACKGROUND APPLICATIONS .. 23
BACKGROUND ATTRIBUTE... 23
BACKGROUND JAVA APPLICATION LIFECYCLE ... 23
BACKGROUND MIDLET.. 23
FLIP BEHAVIORS .. 24

7 RECORD MANAGEMENT SYSTEM .. 25
RECORD MANAGEMENT SYSTEM API.. 25

8 JAD ATTRIBUTES.. 27
JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS .. 27

9 LCDUI ... 30

Table of Contents

3

LCDUI API ... 30
10 GAMING API/MULTIPLE KEY PRESS.. 35
GAMING API ... 35
MULTIPLE KEY PRESS SUPPORT .. 35

11 MICRO3D VERSION 2 .. 38
OVERVIEW .. 38
ABOUT MICRO3D EDITION, VERSIONS 2 ... 39
BAC AND TRA DATA ... 39
DATA AND APPLICATION PROGRAMS ... 40
MICRO3D DATA CONVERSION FLOW.. 41
MODEL SCALING .. 42

12 VIBE AND BACKLIGHT API .. 43
VIBE AND BACKLIGHT API.. 43

13 JAVA.LANG IMPLEMENTATION.. 45
JAVA.LANG SUPPORT ... 45

14 ITAP ... 46
INTELLIGENT KEYPAD TEXT ENTRY API.. 46

15 NETWORK APIS .. 48
NETWORK CONNECTIONS... 48
USER PERMISSION .. 50
INDICATING A CONNECTION TO THE USER.. 50
HTTPS CONNECTION .. 51
DNS IP .. 53
PUSH REGISTRY .. 53
MECHANISMS FOR PUSH... 53
PUSH REGISTRY DECLARATION... 53
DELIVERY OF A PUSH MESSAGE ... 62
DELETING AN APPLICATION REGISTERED FOR PUSH .. 63
SECURITY FOR PUSH REGISTRY ... 63

16 INTERFACE COMMCONNECTION.. 64
COMMCONNECTION .. 64
ACCESSING .. 64
PARAMETERS .. 64
BNF FORMAT FOR CONNECTOR.OPEN () STRING.. 65
COMM SECURITY .. 66
PORT NAMING CONVENTION .. 67
METHOD SUMMARY .. 67

17 PLATFORM REQUEST API ... 68
PLATFORM REQUEST API ... 68
MIDLET REQUEST OF A URL THAT INTERACTS WITH BROWSER .. 69
MIDLET REQUEST OF A URL THAT INITIATES A VOICE CALL .. 69

18 JSR 135 MOBILE MEDIA API.. 70
JSR 135 MOBILE MEDIA API ... 70

4

TONECONTROL .. 72
VOLUMECONTROL .. 72
STOPTIMECONTROL .. 72
MANAGER CLASS .. 73
AUDIO MEDIA .. 73

19 JSR 120 – WIRELESS MESSAGING API .. 75
WIRELESS MESSAGING API (WMA).. 75
SMS CLIENT MODE AND SERVER MODE CONNECTION .. 75
SMS PORT NUMBERS ... 76
SMS STORING AND DELETING RECEIVED MESSAGES .. 77
SMS MESSAGE TYPES ... 77
SMS MESSAGE STRUCTURE ... 77
SMS NOTIFICATION ... 77

20 GET URL FROM FLEX API... 84
FLEXIBLE URL FOR DOWNLOAD FUNCTIONALITY... 84
GET URL FROM FLEX... 84
SECURITY POLICY .. 84

21 MIDP 2.0 SECURITY MODEL .. 85
UNTRUSTED MIDLET SUITES.. 86
UNTRUSTED DOMAIN .. 86
TRUSTED MIDLET SUITES ... 87
PERMISSION TYPES CONCERNING THE HANDSET .. 87
USER PERMISSION INTERACTION MODE ... 87
IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY... 88
TRUSTED 3RD PARTY DOMAIN.. 88
SECURITY POLICY FOR PROTECTION DOMAINS.. 89
DISPLAYING OF PERMISSIONS TO THE USER .. 92
TRUSTED MIDLET SUITES USING X.509 PKI ... 93
SIGNING A MIDLET SUITE.. 93
SIGNER OF MIDLET SUITES.. 93
MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES.. 93
CREATING THE SIGNING CERTIFICATE ... 94
INSERTING CERTIFICATES INTO JAD .. 94
CREATING THE RSA SHA-1 SIGNATURE OF THE JAR .. 94
AUTHENTICATING A MIDLET SUITE .. 95
VERIFYING THE SIGNER CERTIFICATE ... 95
VERIFYING THE MIDLET SUITE JAR ... 96
CARRIER SPECIFIC SECURITY MODEL ... 97

APPENDIX A: KEY MAPPING ... 98
KEY MAPPING FOR THE V80.. 98

APPENDIX B: MEMORY MANAGEMENT CALCULATION .. 100
AVAILABLE MEMORY .. 100
MEMORY CALCULATION FOR MIDLETS .. 100

APPENDIX C: FAQ .. 101
ONLINE FAQ ... 101

APPENDIX D: HTTP RANGE ... 102

Table of Contents

5

GRAPHIC DESCRIPTION... 102
APPENDIX E: SPEC SHEET ... 103
V80 SPEC SHEET... 103

6

1
Introduction

Purpose
This document describes the application program interfaces used to develop Motorola
compliant Java™ 2 Platform, Micro Edition (J2ME™) applications for the Motorola V80
handset.

Audience
This document is intended for general J2ME developers and specific carriers involved
with the development of J2ME applications for the V80 handset.

Disclaimer
Motorola reserves the right to make changes without notice to any products or services
described herein. “Typical” parameters, which may be provided in Motorola Data sheets
and/or specifications can and do vary in different applications and actual performance
may vary. Customer’s technical experts will validate all “Typicals” for each customer
application.
Motorola makes no warranty with regard to the products or services contained herein.
Implied warranties, including without limitation, the implied warranties of merchantability
and fitness for a particular purpose, are given only if specifically required by applicable
law. Otherwise, they are specifically excluded.
No warranty is made as to coverage, availability, or grade of service provided by the
products or services, whether through a service provider or otherwise.
No warranty is made that the software will meet your requirements or will work in
combination with any hardware or applications software products provided by third
parties, that the operation of the software products will be uninterrupted or error free, or
that all defects in the software products will be corrected.

1
Introduction

7

In no event shall Motorola be liable, whether in contract or tort (including negligence), for
any damages resulting from use of a product or service described herein, or for any
indirect, incidental, special or consequential damages of any kind, or loss of revenue or
profits, loss of business, loss of information or data, or other financial loss arising out of or
in connection with the ability or inability to use the Products, to the full extent these
damages may be disclaimed by law.
Some states and other jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, or limitation on the length of an implied warranty, so the above
limitations or exclusions may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights, which
vary from jurisdiction to jurisdiction.
Motorola products or services are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may
occur.
Should the buyer purchase or use Motorola products or services for any such unintended
or unauthorized application, buyer shall release, indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacture of the product or service.
Motorola recommends that if you are not the sole author or creator of the graphics, video,
or sound, you obtain sufficient license rights, including the rights under all patents,
trademarks, trade names, copyrights, and other third party proprietary rights.

References
Reference Link

RFC 2068 http://ietf.org/rfc/rfc2068.txt

SAR http://www.wapforum.org

MIDP 2.0 http://java.sun.com/products/midp/

JSR 118 http://www.jcp.org

JSR 120 http://www.jcp.org

JSR 135 http://www.jcp.org

Sun MIDP 2.0 SDK http://java.sun.com/products/midp/

TLS protocol version 1.0 http://www.ietf.org/rfc/rfc2246.txt

SSL protocol version 3.0 http://home.netscape.com/eng/ssl3/draft302.txt

GSM 03.38 standard http://www.etsi.org

8

GSM 03.40 standard http://www.etsi.org

RFC 2437 http://ietf.org/rfc/rfc2437.txt

Sun J2ME http://java.sun.com/j2me/).

Revision History
Version Date Name Reason

0.1 October 20, 2003 Adam Grabowski
(aag101)

Initial Draft

Definitions, Abbreviations, Acronyms
Acronym Description

AMS Application Management Software

API Application Program Interface.

CLDC Connected Limited Device Configuration

GPS Global Positioning System

IDE Integrated Development Environment

ITU International Telecommunication Union

JAD Java Application Descriptor

JAL Java Application Loader

JAR Java Archive. Used by J2ME applications for compression and packaging.

J2ME Java 2 Micro Edition

JSR 120 Java Specification Request 120 defines a set of optional APIs that provides
standard access to wireless communication resources.

JVM Java Virtual Machine

KVM Kilo Virtual Machine

MIDP Mobile Information Device Profile

MMA Multimedia API

MT Mobile Terminated

1
Introduction

9

OEM Original Equipment Manufacturer

OTA Over The Air

RMS Record Management System

RTOS Real Time Operating System

SDK Software Development Kit

SMS Short Message Service

SMSC Short Messaging Service Center

SU Subscribe Unit

UI User Interface

URI Unified Resource Identifier

VM Virtual Machine

WMA Wireless Messaging API

Document Overview
This developer’s guide is organized into the following chapters and appendixes:
Chapter 1 – Introduction: this chapter has general information about this document,
including purpose, scope, references, and definitions.
Chapter 2 – J2ME Introduction: this chapter describes the J2ME platform and the
available resources on the Motorola V80 handset.
Chapter 3 – Developing and Packaging J2ME Applications: this chapter describes
important features to look for when selecting tools and emulation environments. It also
describes how to package a J2ME application, how to package a MIDlet, and generate
JAR and JAD files properly.
Chapter 4 –Downloading Applications: this chapter describes the process for
downloading applications.
Chapter 5 – Application Management: this chapter describes the lifecycle,
installation/de-installation, and updating process for a MIDlet suite.
Chapter 6 -- Background Applications: this chapter describes all background
applications.
Chapter 7 – Record Management System: this section describes the Record
Management System API.
Chapter 8 – JAD Attributes: this chapter describes what attributes are supported.
Chapter 9 – LCDUI: this chapter describes the Limited Connected Device User Interface
API.
Chapter 10 – Gaming API/Multiple Key Press: this chapter describes the Gaming API.

10

Chapter 11 – Micro3D: this chapter describes the process for using Micro3D.
Chapter 12 -- Vibe and Backlight API – this chapter describes the Vibe and Backlight
API.
Chapter 13 – Java.lang Implementation: this chapter describes the java.lang
implementation.
Chapter 14 – iTAP: this chapter describes iTAP support.
Chapter 15 – Networking APIs: this chapter describes the Java Networking API.
Chapter 16 – CommConnection Interface: this chapter describes the CommConnection
API.
Chapter 17 – Platform Request API: this chapter describes the platform request APIs.
Chapter 18 – JSR 135 Mobile Media: this chapter describes image types and supported
formats.
Chapter 19 – JSR 120 Wireless Messaging API: this chapter describes JSR 120
implementation.
Chapter 20 – Get URL from Flex API: this chapter describes the Get URL from Flex API.
Chapter 21 – MIDP 2.0 Security Model: this chapter describes the MIDP 2.0 default
security model.
Appendix A – Key Mapping: this appendix describes the key mapping of the Motorola
V80 handset, including the key name, key code, and game action of all Motorola keys.
Appendix B – Memory Management Calculation: this appendix describes the memory
management calculations.
Appendix C – FAQ: this appendix provides a link to the dynamic online FAQ.
Appendix D – HTTP Range: this appendix provides a graphic description of HTTP
Range.
Appendix E – Spec Sheets: this appendix provides the spec sheet for the Motorola V80
handset.

2
J2ME Introduction

11

2
J2ME Introduction

The Motorola V80 handset includes the Java™ 2 Platform, Micro Edition, also known as
the J2ME platform. The J2ME platform enables developers to easily create a variety of
Java applications ranging from business applications to games. Prior to its inclusion,
services or applications residing on small consumer devices like cell phones could not be
upgraded or added to without significant effort. By implementing the J2ME platform on
devices like the Motorola V80 handset, service providers, as well as customers, can easily
add and remove applications allowing for quick and easy personalization of each device.
This chapter of the guide presents a quick overview of the J2ME environment and the
tools that can be used to develop applications for the Motorola V80 handset.

The Java 2 Platform, Micro Edition (J2ME)
The J2ME platform is a new, very small application environment. It is a framework for the
deployment and use of Java technology in small devices such as cell phones and pagers.
It includes a set of APIs and a virtual machine that is designed in a modular fashion
allowing for scalability among a wide range of devices.
The J2ME architecture contains three layers consisting of the Java Virtual Machine, a
Configuration Layer, and a Profile Layer. The Virtual Machine (VM) supports the
Configuration Layer by providing an interface to the host operating system. Above the VM
is the Configuration Layer, which can be thought of as the lowest common denominator of
the Java Platform available across devices of the same “horizontal market.” Built upon this
Configuration Layer is the Profile Layer, typically encompassing the presentation layer of
the Java Platform.

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

12

The Configuration Layer used in the Motorola V80 handset is the Connected Limited
Device Configuration 1.0 (CLDC 1.0) and the Profile Layer used is the Mobile Information
Device Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide common APIs for
I/O, simple math functionality, UI, and more.
For more information on J2ME, see the Sun™ J2ME documentation
(http://java.sun.com/j2me/).

The Motorola J2ME Platform
Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to
implement and support. By adding to the standard APIs, manufacturers can allow
developers to access and take advantage of the unique functionality of their handsets.
The Motorola V80 handset contains OEM APIs for extended functionality ranging from
enhanced UI to advanced data security. While the Motorola V80 handset can run any
application written in standard MIDP, it can also run applications that take advantage of
the unique functionality provided by these APIs. These OEM APIs are described in this
guide.

Resources and API’s Available
MIDP 2.0 will provide support to the following functional areas on the Motorola V80
handset:

MIDP 2.0

• Application delivery and billing

• Application lifecycle

• Application signing model and privileged security model

• End-to-end transactional security (HTTPS)

• MIDlet push registration (server push model)

• Networking

• Persistent storage

• Sounds

• Timers

• User Interface

• File Image Support (.PNG, .JPEG, .GIF)

2
J2ME Introduction

13

Additional Functionality

• WMA (JSR 120)

• MMA (JSR 135)

• Fun Lights API

• Phonebook API

• File System API

14

3
Developing and Packaging

J2ME Applications

Guide to Development in J2ME

Introduction to Development
This appendix assumes the reader has previous experience in J2ME development and
can appreciate the development process for Java MIDlets. This appendix will provide
some information that a beginner in development can use to gain an understanding of
MIDlets for J2ME handsets.
There is a wealth of material on this subject on websites maintained by Motorola, Sun
Microsystems and others. Please refer to the following URLs for more information:

 http://www.motocoder.com
 http://www.java.sun.com/j2me
 http://www.corej2me.com/
 http://www.javaworld.com/

As an introduction, brief details of J2ME are explained below.
The MIDlet will consist of two core specifications, namely Connected, Limited Device
Configuration (CLDC) and Mobile Information Device Profile (MIDP). Both of these
specifications (Java Specification Requests) can be located at the http://www.jcp.org/ site
for reading.

 For MIDP 1.0; JSR 37 should be reviewed.
 For MIDP 2.0; JSR 118 should be reviewed.
 For CLDC 1.0.4; JSR 30 should be reviewed.
 For CLDC 1.1; JSR 139 should be reviewed.

To determine what implementation is on Motorola handset, review the “Java System”
details through the menu on the Motorola handset (located under Java Settings).

3
Developing and Packaging J2ME Applications

15

For beginning development, key points to remember are memory size, processing power,
screen capabilities and wireless network characteristics. These points all play an
important part in development of a MIDlet. The specifications listed above are designed to
work upon devices that have these characteristics.
Network conditions would only apply for networked applications such as streaming tickers,
email clients, etc.
In addition to the specifications, an array of tools is available to assist the development
cycle. These range from the command line tools provided with Software Development Kits
(SDK) from Sun (as of writing 1.4.1_04) to Integrated Development Environments (IDEs)
which can be free or purchased. These IDEs come from a range of sources such as Sun,
IBM, Metrowerks and Borland to name a few.
For a look at such environments, review the “Motorola T720 Handset Developer Guide”
which is available from the MOTOCODER website.
In addition to the IDEs and Sun SDK for development, Motorola offers access to our own
SDK which contains Motorola device emulators. From here, a MIDlet can be built and
then deployed onto an emulated target handset. This will enable debugging and validation
of the MIDlet before deployment to a real, physical handset. The latest Motorola SDK can
be downloaded from the MOTOCODER website.
Please refer to the product specifications at the back of this guide for detailed information
on each handset.

16

4
Downloading Applications

Methods of Downloading
There are two options open to the developer for deploying the MIDlet to a physical
Motorola device. These are OTA (over -the-air) downloading or direct cable (Serial)
downloading through a PC to the target device.
Method 1 - OTA
To use the OTA method, the developer will have a connection through a wireless network
to a content server. This content server could be, for example, Apache
(http://httpd.apache.org) which is free to use, deployable on multiple operating systems,
and has extensive documentation on how to configure the platform.
The required file will be downloaded (either .jad and/or .jar) by issuing a direct URL
request to the file in question or it could be a URL request to a WAP page and a hyperlink
on that page to the target file. This request will be made through the Motorola Internet
Browser (MIB). In MIDP 2.0, the need for a JAD file before download is not required, so
the JAR file can be downloaded directly. The information about the MIDlet will be pulled
from the manifest file.
The transport mechanism used to download the file will be one of two depending on the
support from the network operators WAP Gateway and the size of file requested.

 HTTP Range – see specification RFC 2068 at http://www.rfc-editor.org/rfc.html
if content greater than 30k in size. Below is a ladder diagram showing the flow
through HTTP range transfer, although recall use of the .JAD is optional.

 SAR (Segmentation & Reassembly) – see specification of wireless transaction
protocol at the http://www.wapforum.org if less than 30k in size.

During a download of the application, the user will see the MIB 2.2 browser displaying
‘Downloading’ followed by “x% completed” for either SAR or HTTP Byte Range type
downloads.
A complete guide for setting up an OTA server can be obtained through the
MOTOCODER website (http://www.motocoder.com). This includes details of configuring
the server and also example WAP pages.

4
Downloading Applications

17

In this handset, the user is given an option of deleting any MIDlets that are on the phone if
an OTA download cannot be achieved due to lack of space.

The following error codes are supported:

 900 Success
 901 Insufficient Memory
 902 User Cancelled
 903 Loss Of Service
 904 JAR Size Mismatch
 905 Attribute Mismatch
 906 Invalid Descriptor
 907 Invalid JAR
 908 Incompatible Configuration or Profile
 909 Application Authentication Failure
 910 Application Authorization Failure
 911 Push Registration Failure
 912 Deletion Notification

Please be aware that the method used by the handset, as per the specifications, is POST.
Using a GET (URL encoding) style for the URL will fail. This is not the correct use of the
MIDlets JAD parameters.

Possible Screen Messages Seen With Downloading:

 If JAR -file size does not match with specified size, it displays “Failed Invalid File”. Upon
time-out, the handset goes back to browser.

 When downloading is done, the handset displays a transient notice “Download

Completed” and starts to install the application.

 Upon completing installation, the handset displays a transient notice “Installed”
and returns to Browser after time-out.

 If the MANIFEST file is wrong, the handset displays a transient notice “Failed File

Corrupt” and returns to Browser after time-out.

If JAD does not contain mandatory attributes, “Failed Invalid File” notice appears

Method 2 - Direct Cable & Motorola MIDway Tool
The direct cable approach can be performed using a tool available from MOTOCODER
called MIDway. The version available of writing is 2.6, which supports USB cable
download. In order to use the tool properly, review FAQ 64 which contains the following
about downloading:

1. MIDway 2.7.x executable
2. USB Driver for the cable to handset
3. Instructions on installation
4. User Guide for 2.7.x MIDway

18

In addition to the software the following parts will also be needed:
 USB Cable Part Number (SKN6311A).

It is important to note that the MIDway tool will only work with a device that has been
enabled to support direct cable Java download. This feature is not available by purchasing
a device through a standard consumer outlet.
The easiest method of confirming support for this is by looking at the “Java Tool” menu on
the phone in question and seeing if a “Java app loader” option is available on that menu. If
it is not, then contact MOTOCODER support for advice on how to receive an enabled
handset.
Motorola provides a User Guide with the MIDway tool (as listed above) as well as a
document outlining the tool for version 2.6 on the MOTOCODER website entitled
“Installing J2ME MIDlet using MIDway Tool”.

The USER-AGENT String
The following table describes USER_AGENT strings associated with Motorola devices:

Motorola Device USER_AGENT STRING
V80 User-Agent: MOT-V80/xx.xx.xxR MIB/2.2 Profile/MIDP-2.0

Configuration/CLDC-1.0
V80 User-Agent: MOT-V80/xx.xx.xxR MIB/2.2 Profile/MIDP-2.0

Configuration/CLDC-1.0
V80 User-Agent: MOT-V80/xx.xx.xxR MIB/2.2 Profile/MIDP-2.0

Configuration/CLDC-1.0

The USER_AGENT string can be used to identify a handset and render specific content to
it based on it information provided in this string (example CGI on a content server). These
strings can be found in the connection logs at the content server.
This table above provides information about the following components:
1. WAP Browser Release, Motorola Internet Browser (MIB) 2.2

4
Downloading Applications

19

2. MIDP version 2.0
3. CLDC version 1.0
4. The Phone Software Version is detailed by xx.xx.xx

Error Logs
The following table represents the error logs associated with downloading applications.

Error Dialog Scenario Possible Cause Install-Notify

Failed: Invalid File JAD
Download

Missing or incorrectly formatted mandatory
JAD attributes
Mandatory:
MIDlet-Name (up to 32 symbols)
MIDlet-Version
MIDlet-Vendor (up to 32 symbols)
MIDlet-JAR-URL (up to 256 symbols)
MIDlet-JAR_Size

906 Invalid
descriptor

Download Failed OTA JAR
Download

The received JAR size does not match the
size indicated

904 JAR Size
Mismatch

Cancelled:
<Icon> <Filename>

OTA JAR
Download

User cancelled download 902 User
Cancelled

Download Failed OTA JAR
Download

Browser lost connection with server
Certification path cannot be validated
JAD signature verification failed
Unknown error during JAD validation
See ‘Details’ field in the dialog for information
about specific error

903 Loss of
Service

Insufficient Storage OTA JAR
Download

Insufficient data space to temporarily store the
JAR file

901 Insufficient
Memory

Application Already
Exists

OTA JAR
Download

MIDlet version numbers are identical 905 Attribute
Mismatch

Different Version
Exists

OTA JAR
Download

MIDlet version on handset supercedes version
being downloaded

Failed File Corrupt Installation Attributes are not identical to respective JAD
attributes

Insufficient Storage Installation Insufficient Program Space or Data Space to 901 Insufficient

20

install suite Memory

Application Error Installation Class references non-existent class or method
Security Certificate verification failure
Checksum of JAR file is not equal to
Checksum in MIDlet-JAR-SHA attribute
Application not authorized

Application Expired MIDlet
Launching

Security Certificates expired or removed

Application Error MIDlet
Execution

Authorization failure during MIDlet execution
Incorrect MIDlet

5
Application Management

21

5
Application Management

The following sections describe the application management scheme for the Motorola V80
handset. This chapter will discuss the following:

• Downloading a JAR without a JAD

• MIDlet upgrade

• Installation and Deletion Status Reports

Downloading a JAR file without a JAD
In Motorola’s MIDP 2.0 implementation, a JAR file can be downloaded without a JAD. In
this case, the user clicks on a link for a JAR file, the file is downloaded, and a confirmation
will be obtained before the installation begins. The information presented is obtained from
the JAR manifest instead of the JAD.

MIDlet Upgrade
Rules from the JSR 118 will be followed to help determine if the data from an old MIDlet
should be preserved during a MIDlet upgrade. When these rules cannot determine if the
RMS should be preserved, the user will be given an option to preserve the data.
The following conditions are used to determine if data can be saved:

• The data is saved if the new MIDlet-version is the same or newer, and if the new
MIDlet-data-space requirements is the same or more than the current MIDlet.

• The data is not saved if the new MIDlet-data-space requirement is smaller than
the current MIDlet requirement.

• The data is not saved if the new MIDlet-version is older than the current version.
If the data cannot be saved, the user will be warned about losing data. If the user
proceeds, the application will be downloaded. If the user decides to save the data from
the current MIDlet, the data will be preserved during the upgrade and the data will be
made available for the new application. In any case, an unsigned MIDlet will not be
allowed to update a signed MIDlet.

22

Installation and Deletion Status Reports
The status (success or failure) of an installation, upgrade, or deletion of a MIDlet suite will
be sent to the server according to the JSR 118 specification. If the status report cannot be
sent, the MIDlet suite will still be enabled and the user will be allowed to use it. In some
instances, if the status report cannot be sent, the MIDlet will be deleted by operator’s
request. Upon successful deletion, the handset will send the status code 912 to the
MIDlet-Delete-Notify URL. If this notification fails, the MIDlet suite will still be deleted. If
this notification cannot be sent due to lack of network connectivity, the notification will be
sent at the next available network connection.
Refer to the table below for application management feature/class support for MIDP 2.0:

Feature/Class

Application upgrades performed directly through the AMS

When removing a MIDlet suite, the user will be prompted to confirm the entire MIDlet suite will be
removed

Application Descriptor included the attribute MIDlet-Delete-Confirm, its value will be included in the
prompt

Prompt for user approval when the user has chosen to download an application that is identical to, or an
older version of an application currently in the handset

Unauthorized MIDlets will not have access to any restricted function call

AMS will check the JAD for security indicated every time a download is initiated

Application descriptor or MIDlet fails the security check, the AMS will prevent the installation of that
application and notify the user that the MIDlet could not be installed

Application descriptor and MIDlet pass the security check , the AMS will install the MIDlet and grant it the
permissions specified in the JAD

A method for launching Java application that maintains the same look and feel as other features on the
device will be provided

User will be informed of download and installation with a single progress indicator and will be given an
opportunity to cancel the process

User will be prompted to launch the MIDlet after installation

A method for creating shortcuts to Java applications will be provided.

A no forward policy on DRM issues, included but not limited to transferring the application over-the-air,
IRDA, Bluetooth, I/O Cables, External storage devices, etc until further guidance is provided

6
Background Applications

23

6
Background Applications

Background Attribute
A Motorola specific JAD attribute called background exists. MIDlets with JAD file
containing Background = True can run in the background mode.

Background Java Application Lifecycle
A MIDlet with background attributes will continue running when not in focus (in the
background mode) or when the flip is closed if the MIDlet is flip insensitive. MIDlets are
able to accept incoming data if they are running in the background.
For example:

• The phonebook application can automatically synchronize new entries when in
background mode.

Background MIDlet
When a MIDlet with background attributes is running, the user can press the END (red)
key to initiate the following options shown below:

24

Pressing the END key will force the handset to display a Java service menu with the
above options listed.
If the user selects to run the application in the background, the MIDlet will run in the
background without focus. A Java icon will be displayed in the status bar to indicate to the
user that a MIDlet is currently suspended or running in the background. When a MIDlet is
suspended or runs in the background, all multimedia services will be blocked.
When in the Java Service Menu, the following apply when selected:

• Suspend – suspends the background MIDlet.

• Resume – brings the background MIDlet to the foreground and multimedia
resources will be available for the MIDlet.

• End – destroys the background MIDlet.

• Run in background – lets the MIDlet continue to run in the background. Note: A
Java icon will be displayed in the status bar.

Flip Behaviors
A Motorola specific JAD attribute called FlipInsensitive exists. When a MIDlet is running
and the flip is closed by the user, the MIDlet will follow one of the following behaviors:

• Suspend – if the FlipInsensitive attribute is = false.

• Continue running – if the FlipInsensitive attribute is = true. In this case, audio
resources will be available for the MIDlet.

7
Record Management System

25

7
Record Management System

Record Management System API
If the MIDlet has not specified a data space requirement in the JAD attribute
(MIDlet_data_space_requirement) or the manifest file, a limit of 16Kb will be used as the
maximum RMS space for that MIDlet. No additional Motorola implementation clarifications
are necessary.
Refer to the table below for RMS feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited methods for the
InvalidRecordDException class in the javax.microedition.rms package

Supported

All fields and methods for the RecordComparator interface in the
javax.microedition.rms package

Supported

All methods for the RecordEnumeration interface in the
javax.microedition.rms package

Supported

All methods for the RecordFilter interface in the
javax.microedtition.rms package

Supported

All methods for the RecordListener interface in the
javax.microedition.rms package

Supported

All fields, methods, and inherited methods fort the RecordStore
interface in the javax.microedition.rms package

Supported

Initial version number of a record to be zero Supported

All constructors, methods, and inherited methods for the
RecordStoreException class in the javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for the
RecordStoreFullException class in the javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for the
RecordStoreNotOpenException class in the javax.microedition.rms
package

Supported

26

All constructors, methods, and inherited methods for the
InvalidRecordIDException class in the javax.microedition.rms package

Supported

All fields and methods for the RecordComparator interface in the
javax.microedition.rms package

Supported

All methods for the RecordEnumeration interface in the
javax.microedition.rms package

Supported

All methods for the RecordFilter interface in the javax.microedition.rms
package

Supported

All methods for the RecordListener interface in the
javax.microedition.rms package

Supported

All fields, methods, and inherited methods for the RecordStore
interface in the javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for the
RecordStoreException class in the javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for the
RecordStoreNotFoundException class in the javax.microedition.rms
package

Supported

All constructors, methods, and inherited methods for the
RecordStoreNotOpenException class in the javax.microedition.rms
package

Supported

8
JAD Attributes

27

8
JAD Attributes

JAD / Manifest Attribute Implementations

The JAR manifest defines attributes to be used by the application management software
(AMS) to identify and install the MIDlet suite. These attributes may or may not be found in
the application descriptor.
The application descriptor is used, in conjunction with the JAR manifest, by the application
management software to manage the MIDlet. The application descriptor is also used for
the following:

• By the MIDlet for configuration specific attributes

• Allows the application management software on the handset to verify the MIDlet
is suited to the handset before loading the JAR file

• Allows configuration-specific attributes (parameters) to be supplied to the
MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application
Descriptor attributes as outlined in the JSR-118. The table below lists all MIDlet attributes,
descriptions, and its location in the JAD and/or JAR manifest that are supported in the
Motorola implementation. Please note that the MIDlet will not install if the MIDlet-Data-
Size is greater than 500K.

Attribute Name Attribute Description JAR Manifest JAD
MIDlet-Name The name of the MIDlet suite that

identifies the MIDlets to the user
Yes Yes

MIDlet-Version The version number of the MIDlet suite Yes Yes

MIDlet-Vendor The organization that provides the
MIDlet suite.

Yes Yes

28

MIDlet-Icon The case-sensitive absolute name of a
PNG file within the JAR used to
represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet suite. No No

MIDlet-Info-URL A URL for information further
describing the MIDlet suite.

Yes No

MIDlet-<n> The name, icon, and class of the nth
MIDlet in the JAR file.
Name is used to identify this MIDlet to
the user. Icon is as stated above.
Class is the name of the class
extending the
javax.microedition.midl
et.MIDletclass.

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MIDlet-Jar-URL The URL from which the JAR file can
be loaded.

 Yes

MIDlet-Jar-Size The number of bytes in the JAR file. Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the MIDlet.

Yes Yes

MicroEdition-Profile The J2ME profiles required. If any of
the profiles are not implemented the
installation will fail.

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MicroEdition-
Configuration

The J2ME Configuration required, i.e
CLDC 1.0

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MIDlet-Permissions Zero or more permissions that are
critical to the function of the MIDlet
suite.

Yes Yes

MIDlet-Permissions-Opt Zero or more permissions that are non-
critical to the function of the MIDlet
suite.

Yes Yes

MIDlet-Push-<n> Register a MIDlet to handle inbound
connections

Yes Yes

MIDlet-Install-Notify The URL to which a POST request is
sent to report installation status of the
MIDlet suite.

Yes Yes

MIDlet-Delete-Notify The URL to which a POST request is
sent to report deletion of the MIDlet
suite.

Yes Yes

MIDlet-Delete-Confirm A text message to be provided to the
user when prompted to confirm
deletion of the MIDlet suite.

Yes Yes

8
JAD Attributes

29

FlipInsensitive MIDlets with this Motorola specific
attribute will enable the MIDlet to run
with the flip closed.

Yes Yes

Background MIDlets with this Motorola specific
attribute will continue to run when not
in focus.

Yes Yes

30

9
LCDUI

LCDUI API
The following table lists the specific interfaces supported by Motorola implementation:

Interface Description
Choice Choice defines an API for user interface components implementing

selection from a predefined number of choices.

CommandListener This interface is used by applications which need to receive high-level
events from implementation

ItemCommandListener A listener type for receiving notification of commands that have been
invoked on Item286 objects

ItemStateListener This interface is used by applications which need to receive events that
indicate changes in the internal state of the interactive items within a
Form231 screen.

The following table lists the specific classes supported by Motorola implementation:

Classes Description
Alert An alert is a screen that shows data to the user and waits for a certain

period of time before proceeding to the next Displayable.

AlertType The AlertType provides an indication of the nature of alerts.

Canvas The Canvas class is a base class for writing applications that need to
handle low-level events and to issue graphics calls for drawing to the
display.

ChoiceGroup A ChoiceGroup is a group of selectable elements intended to be
placed within a Form.

Command The Command class is a construct that encapsulates the semantic

9
LCDUI

31

information of an action.

CustomItem A CustemItem is customizable by sub classing to introduce new
visual and interactive elements into Forms.

DateField A DateField is an editable component for presenting date and time
(calendar) information that will be placed into a Form.

Display Display represents the manager of the display and input devices of
the system.

Displayable An object that has the capability of being placed on the display.

Font The Font class represents fonts and font metrics.

Form A Form is a Screen that contains an arbitrary mixture of items:
images, read-only text fields, editable text fields, editable date fields,
gauges, choice groups, and custom items.

Gauge Implements a graphical display, such as a bar graph of an integer value.

Graphics Provides simple 2D geometric rendering capability.

Image The Image class is used to hold graphical image data.

ImageItem An item that can contain an image.

Item A superclass for components that car be added to a Form231.

List A Screen containing a list of choices.

Screen The common superclass of all high-level user interface classes.

Spacer A blank, non-interactive item that has a settable minimum size.

StringItem An item that can contain a string.

TextBox The TextBox class is a Screen that allows the user to enter and edit
data.

TextField A TextField is an editable text component that will be placed into a
Form.

Ticker Implements a “ticker-tape”, a piece of text that runs continuously across
the display.

Refer to the following table for LCDUI feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, constructors, methods, and inherited methods for the Alert
class in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, and inherited methods for the
AlertType class in the javax.microedition.lcdui package

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of ALARM

Supported

32

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of ERROR

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of WARNING

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of CONFIRMATION

Supported

Will provide and play an audible sound when the play Sound() method
is called with an AlertType of INFO

Supported

All fields, constructors, methods, and inherited methods for the
Canvas Class in the javax.microedition.lcdui. package

Supported

Status indicators out of full-screen mode will consume a portion of the
display

Supported

UP field in javax.microedition.lcdui.Canvas to the top position of the
key

Supported

DOWN field in javax.microedition.lcdui.Canvas to the bottom position
of the key

Supported

LEFT field in javax.microedition.lcdui.Canvas to the left position of the
key

Supported

RIGHT field in javax.microedition.lcdui.Canvas to the right position of
the key

Supported

All fields and methods for the Choice interface in the
javax.microedition.lcdui package

Supported

Truncate an image in a Choice object if it exceeds the capacity of the
device display

Supported

Truncation of very long elements will not occur in a Choice object Text in forms is wrapped and
scrolled

Will display a portion of long elements to display and provide a means
for the user to view all of the parts of the element

Supported

Truncation in elements w/line breaks will not occur in a Choice object Supported

Portion of line break elements to display and provide a means for the
user to view all parts of the element

Supported

All constructors, methods, inherited fields, and inherited methods for
the ChoiceGroup class in the javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the Command
class in the javax.microedition.lcdui package

Supported

All methods for the CommandListener interface in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the CustomItem abstract class in the
javax.microedition.lcdui package

Supported

9
LCDUI

33

All fields, constructors, methods, inherited fields, and inherited
methods for the DateField class in the javax.microedition.lcdui
package

Supported

All fields, methods, and inherited methods for the Display class in the
javax.microedition.lcdui package

Supported

Maximum colors for the numColors() method in
javax.microedition.lcdui.Display

64K colors
supported

All methods and inherited methods for the Displayable class in the
javax.microedition.lcdui package

Supported

Adding commands to soft buttons before placing it in a menu for the
addCommand() method in javax.microedition.lcdui.Displayable

Supported

All fields, methods, and inherited methods for the Font class in the
javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the FORM class
in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the Gauge class in the javax.microedition.lcdui package

Supported

All fields, methods, and inherited methods for the Graphics class in the
javax.microedition.lcdui package

Supported

DOTTED stroke style Supported

SOLID stroke style Supported

All methods and inherited methods for the Image class in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the ImageItem class in the javax.microedition.lcdui
package

Supported

All fields, methods, and inherited methods for the Item class in the
javax.microedition.lcdui package

Supported

Label field Supported

All methods for the ItemCommandListener interface in the
javax.microedition.lcdui package

Supported

All methods ItemStateListener interface in the javax.microedition.lcdui
package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the List class in the javax.microedition.lcdui package

Supported

All constructors, methods, inherited fields, and inherited methods for
the Spacer class in the javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the StringItem
class in the javax.microedition.lcdui package

Supported

34

All constructors, methods, and inherited methods for the TextBox class
in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and inherited
methods for the TextField class in the javax.microedition.lcdui package

Supported

Visual indication with UNEDITABLE field set will be provided Supported

All constructors, methods, and inherited methods for the Ticker class
in the javax.microedition.lcdui package

Supported

OEM Lights API providing control to the lights present on the handset Supported, Fun Lights API

All fields, constructors, methods, inherited fields, and inherited
methods for the TextField class in the havax.microedition.lcdui
package

Supported

10
Gaming API/Multiple Key Press

35

10
Gaming API/Multiple Key Press

Gaming API
The Gaming API provides a series of classes that enable rich gaming content for the
handset. This API improves performance by minimizing the amount of work done in Java,
decreasing application size. The Gaming API is structured to provide freedom in
implementation, extensively using native code, hardware acceleration, and device-specific
image data formats as needed.
The API uses standard low-level graphic classes from MIDP so the high-level Gaming API
classes can be used in conjunction with graphics primitives. This allows for rendering a
complex background using the Gaming API while rendering something on top of it using
graphics primitives.
Methods that modify the state of Layer, LayerManager, Sprite, and TiledLayer objects
generally do not have any immediate visible side effects. Instead, this state is stored
within the object and is used during subsequent calls to the paint() method. This
approach is suitable for gaming applications where there is a cycle within the objects’
states being updated and the entire screen is redrawn at the end of every game cycle.

Multiple Key Press Support
Multi-button press support enhances the gaming experience for the user. Multi-button
press support gives the user the ability to press two (2) keys simultaneously and the
corresponding actions of both keys will occur simultaneously. An example of this action
would be the following:

• Simultaneously moving to the right and firing at objects in a game.
The following sets of keys will support multi-button press support on the Motorola V80
handset. Multi-button press within each set will be supported, while multi-button press
across these sets or with other keys will not be supported.
Set 1 – Nav (Up), Nav (Down), Nav (Right, Nav (Left), 9
Set 2 – 2, 4, 6, 8, 7

36

Set 3 – 0, #

Refer to the table below for gaming and keypad feature/class support for MIDP 2.0:

Feature/Class Implementation

lcdui.game package Supported

setBacklight as defined in javax.microedition.lcdui.Display Supported

setVibrator as defined in javax.microedition.lcdui.Display Supported

All constructors and inherited classes for the IllegalStateException in
java.lang

Supported

All constructors, methods, and inherited classes for the Timer class in
java.util

Supported

All the constructors, methods, and inherited classes for the TimerTask
class in java.util

Supported

All fields, constructors, methods, inherited fields and inherited methods
for the GameCanvas class in javax.microedition.lcdui.game

Supported

GameCanvas size 9x larger than screen

Map the UP_PRESSED field in
javax.microedition.lcdui.game.GameCanvas to the top position of the
key.

Supported

Map the DOWN_PRESSED field in
javax.microedition.lcdui.GameCanvas to the bottom position of the key

Supported

Map the LEFT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the left position of the key

Supported

Map the RIGHT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the right position of the key

Supported

All methods and inherited methods for the Layer class in
javax.microedition.lcdui.game

Supported

All constructors, methods, and inherited methods for the
LayerManager class in javax.microedition.lcdui.game.Layer

Supported

All fields, constructors, methods, and inherited methods for the Sprite
Class in javax.microedition.lcdui.game

Supported

Sprite Frame height will not be allowed to exceed the height of the
view window in javax.microedition.lcdui.Layer

Any, limited by heap size only

Sprite frame width will not be allowed to exceed the width view of the
view window in javax.microedition.lcdui.Layer

Any, limited by heap size only

Sprite recommended size 16*16 or 32*32

All constructors, methods, and inherited methods for the TiledLayer
class in javax.microedition.lcdui.game

Supported

10
Gaming API/Multiple Key Press

37

MIDlet Queries to keypad hardware Supported

Alpha Blending Transparency only

38

11
Micro3D Version 2

Overview
This overview outlines the process for converting 3D models created using various
commercially available 3D authoring tools into executable model and action data that run
on the Mascot Capsule Engine (the 3D rendering engine embedded in handsets built to
be compatible with the Motorola V80 handset). Data is exported from the various 3D tools
and put into bac and tra data formats, which are the intermediate formats of such data.
Micro3D Converter is used to convert the data further into mbac and mtra data. Mascot
Capsule Engine Micro3D Edition is the edition of the engine for rendering modeled 3D
characters and worlds on embedded mobile devices using mbac and mtra files. A full
description of the Micro3D conversion process and software tools is provided in the
Micro3D Tools Manual.
The following tool operating environements are required for the data conversion:

• Windows 2000/NT/XP

The following file formats are required for data conversion:

Format Description
bac Intermediate model data exported from 3D authoring tools
tra Intermediate action data exported from 3D authoring tools
mbac The model data format used in Micro3D
mtra The action data format used in Micro3D
bmp The bmp file format is for texture and is compatible with commercially available

paint tools.

The following proprietary Micro3D tools are required for data conversion:

File Name Description
PAC Polygon attribute modification tool
Micro3D_Conv Tool for converting bac and tra data to mbac and mtra data
PV_Micro Tool for viewing and verifying Micro3D files (mbac, mtra)

11
Micro3D Version 2

39

About Micro3D Edition, Versions 2
The following table describes the features and functions available for Micro3D version 2,
where O is equal to available and X is equal to not available.

Version 2-
sided

Transparency Blend Lighting Specular Multiple
Textures

Flat-
color

Polygon

Texture
Animation

2 O O O O O X X X

As listed in the table below, there are restrictions when 3D data is created for Micdo3D.
Please be aware of these when creating 3D data using the various 3D tools.

Item Description
Rotation ±2880 degrees
Translation rate (varies with scale of the
model)

±32000 length units (e.g., mm, cm)

Scale Maximum of 8 times

bac and tra Data
Micro3D uses bac data and tra data as intermediate format 3D data. Bac data is the
model data, while tra data is the action data. Each file has a version. For bac data, it will
be versions 5 and 6; for tra data, it will be versions 3 and 4. Bac data version 5 and tra
data version 3 correspond to the rendering functions of Micro3D edition versions 1 and 2
and the Web edition.
The following table describes model attributes permitted by bac data version, where O is
equal to available and X is equal to not available.

Version 2-
sided

Transparency Blend Lighting Specular Multiple
Textures

Flat-color
Polygon

Texture
Animation

5 O O O O O X X X
6 O O O O O O O O

The following table describes action attributes permitted by tra data version, where O is
equal to available and X is equal to not available.

Version Texture Animation
3 X
4 O

40

Data and Application Programs
Converting data respectively from bac versions 5 and 6 and from tra versions 3 and 4 to
mbac and mtra for mobile application programs involves the Micro3D converter
(Micro3Dconv.exe). A unique ID-coded Micro3D converter will be used to prepare 3D data
for the Motorola V80 handset. Micro3D application data has backward compatibility. Thus,
it is possible to run version 1 3D data using Mascot Capsule Engine Micro3D Edition
Version 2. However, the 3D rendering functions will be limited to what is compatible with
Micro3D Edition Version 1. The diagram below shows the conversion from bac and tra
formats to mbac and mtra formats.

Changes and saves attributes

bac/v5
tra/v3

PAC
(polygon attribute editor)

Micro3D_Converter

Converts bac and tra data to mbac
and mtra data

mbac�mtra
<Micro3D/ver2>

3D data for Micro3D/ver. 2

Texture size 128x128 or less
BMP texture (256 colors max.)

Micro3D/ver. 2
Application Program

Intermediate format 3D data
Micro3D/vers 1,2

Changes and edits polygon
attributes and converts bac and tra

data

11
Micro3D Version 2

41

Micro3D Data Conversion Flow
To convert data to Micro3D, the various 3D tools are used to create models, their actions
and textures, and then a special plug-in is used to export data into the intermediate bac
and tra data formats, converting these to Micro3D. After this, the Micro3Dconverter is
used to convert the data to the Micro3D engine-executable data formats, mbac and mtra.
The 3D data can then be executed using the Mascot Capsule Engine Micro3D Edition.
The PAC tool is used to set the attributes of polygons that cannot be handled as
exportable data from the various 3D tools but is featured for Micro3D data. This tool is
also used to convert bac version 5 and tra version 3 data into bac version 6 and tra
version 4 data. A color reduction tool is used to convert texture data, used in the various
3D tools, into 8-bit (256 colors) bmp files.
The following diagram shows the data conversion flow.

Intermediate format
3Ddata

LightWave7.0/7.5

3ds MAX4.2/5.0/5.1 SoftImage3.9/4.0

MAYA4.5

bac5,tra3 Exporter Plugin bac6,tra4 Exporter Plugin

Color reduction tool

Micro3DConv

PAC

PVMicro

Texture depends
on the 3D CG tool

Texture
(8 bits、256 colors)

Micro3D application program

Micro3D preview of
bac and tra data

bac5
tra3

bac6
tra4

mbac�mtra

Changing and editing polygon attributes
and converting bac and tra data

Data Conversion Flow

42

Model Scaling
Model scaling can be specified when exporting from 3D tools, when converting
intermediate data to Micro3D data, and when displaying data in programs.
It is recommended that the scale of the exporter and converter be set to the same level
and then that the 3D tool be used to create a reference model. After that, all other models
can be created based on the reference model. As a guide, the scaling should present no
problems if the model data is large enough to be verified when displayed in the default
condition in a normal PVMicro viewer window. In the normal PVMicro window, perspective
projection is off.
The diagram below shows the conversion from bac to tra formats to mbac and mtra
formats.

3D tool

bac

tra

mbac

mtra

Mobile
device

Exporter Converter Program

12
Vibe and Backlight API

43

12
Vibe and Backlight API

Vibe and Backlight API
The Vibe and Backlight API allows J2ME applications access to vibrator, backlight, and
keypad controls. This API gives a MIDlet the ability to turn these features on or off based
on the applications needs. The MIDlet will use this API to enhance the activity being
performed by the application.
Examples of this enhancement are the following:

1. When in a driving game application, the vibrator is turned on during a crash.
2. An alarm application would have access to turn the vibrator on and off.
3. A stock ticker application turns the backlight on and off when a specified stock

hits a target price.
Native constraints are in place to protect the battery life of the product. These native
constraints will be flexible to allow the operator to make the final call on implementation.
For more information refer to the MIDP 2.0 specification.

The following are code samples to show implementation of the Vibe and Backlight API:

Sample of code for calling of ‘vibrate(int)’ method of Display class:

int duration = 3000;

returnValue = display.vibrate(duration);

if (returnValue != false) {
System.out.println("Invoke vibrate method with parameter = "
+ duration + ", method returns : " + returnValue);
}
else {
System.out.println("Failed: invoke vibrate(" + duration +
"), method returns false");
}

44

Sample of code for calling of ‘flashBacklight(int)’ method of Display class:

int duration = 3000;

returnValue = display.flashBacklight(duration);
if (returnValue != false) {
System.out.println("Invoke flashBacklight method with
parameter = " + duration + ", method returns : " +
returnValue);
}
else {
System.out.println("Failed: invoke flashBacklight(" +
duration + "), method returns false");
}

13
Java.lang Implementation

45

13
Java.lang Implementation

java.lang support
Motorola implementation for the java.lang.System.getProperty method
will support additional system properties beyond what is outlined in the JSR 118
specification.
The additional system properties are as follows:

• Cell ID: The current Cell ID of the device will be returned during implementation.

• Battery Level: The current battery level of the application will be returned during
implementation. Battery values are the following: low battery, 1, 2, and 3, based
on the battery level.

• IMEI: The IMEI number of the device will be returned during implementation.

• MSISDN: The MSISDN of the device will be returned during implementation.

The IMEI and MSISDN properties will not be available for unsigned MIDlets.

46

14
iTAP

Intelligent Keypad Text Entry API
When users are using features such as SMS (short message service), or “Text
Messaging”, they can opt for a predictive text entry method from the handset. The J2ME
environment has the ability to use SMS in its API listing. The use of a predictive entry
method is a compelling feature to the MIDlet.
This API will enable a developer to access iTAP, Numeric, Symbol and Browse text entry
methods. With previous J2ME products, the only method available was the standard use
of TAP.
Predictive text entry allows a user to simply type in the letters of a word using only one
key press per letter, as apposed to the TAP method that can require as many as four or
more key presses. The use of the iTAP method can greatly decrease text-entry time. Its
use extends beyond SMS text messaging, but into other functions such as phonebook
entries.
The following J2ME text input components will support iTAP.

 javax.microedition.lcdui.TextBox

The TextBox class is a Screen that allows the user to edit and enter text.
 javax.microedition.lcdui.TextField

A TextField is an editable text component that will be placed into a Form. It is
given a piece of text that is used as the initial value.

Refer to the table below for iTAP feature/class support for MIDP 2.0:

Feature/Class

Predictive text capability will be offered when the constraint is set to ANY

User will be able to change the text input method during the input process when the constraint is set to
ANY (if predictive text is available)

Multi-tap input will be offered when the constraint on the text input is set to EMAILADDR, PASSWORD, or

14
iTAP

47

URL

48

15
Network APIs

Network Connections
The Motorola implementation of Networking APIs will support several network
connections. The network connections necessary for Motorola implementation are the
following:

• CommConnection for serial interface

• HTTP connection

• HTTPS connection

• Push registry

• SSL

• Socket Support

• Datagram (UDP)

Refer to the table below for Network API feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, methods, and inherited methods for the Connector class in
the javax.microedition.io package

Supported

Mode parameter for the open () method in the Connector class the
javax.microedition.io package

READ, WRITE, READ_WRITE

The timeouts parameter for the open () method in the Connector class
of the javax.microedition.io package

Supported

HttpConnection interface in the javax.microedition.io package Supported

HttpsConnection interface in the javax.microedition.io package Supported

SecureConnection interface in the javax.microedition.io package Supported

SecurityInfo interface in the javax.microedition.io package Supported

15
Network APIs

49

ServerSocketConnection interface in the javax.microedition.io package Supported

UDPDDatagramConnection interface in the javax.microedition.io
package

Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

CommConnection interface in the javax.microedition.io package Supported

Dynamic DNS allocation through DHCP Supported

HttpConnection interface in the javax.microedition.io.package. Supported

HttpsConnection interface in the javaxmicroedition.io.package Supported

SecureConnection interface in the javax.microedition.io.package Supported

SecurityInfo Interface in the javax.microedition.io.package Supported

ServerSocketConnection interface in the javax.microedition.io.package Supported

UDPDatagramConnection interface in the
javax.microedition.io.package

Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io.package Supported

CommConnection interface in the javax.microedition.io.package Supported

The following is a code sample to show implementation of Socket Connection:
Socket Connection
import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

….

 try {
 //open the connection and io streams
 sc =
(SocketConnection)Connector.open("socket://www.myserver.com
:8080", Connector.READ_WRITE, true);
 is = sc[i].openInputStream();
 os = sc[i].openOutputStream();

 } catch (Exception ex) {
 closeAllStreams();
 System.out.println("Open Failed: " +
ex.getMessage());
 }
 }
 if (os != null && is != null)
 {

50

 try
 {
 os.write(someString.getBytes()); //write
some data to server

 int bytes_read = 0;
 int offset = 0;
 int bytes_left = BUFFER_SIZE;

 //read data from server until done
 do
 {
 bytes_read = is.read(buffer, offset,
bytes_left);

 if (bytes_read > 0)
 {
 offset += bytes_read;
 bytes_left -= bytes_read;
 }
 }
 while (bytes_read > 0);

 } catch (Exception ex) {
 System.out.println("IO failed: "+
ex.getMessage());
 }
 finally {
 closeAllStreams(i); //clean up
 }
 }

User Permission
The user of the handset will explicitly grant permission to add additional network
connections.

Indicating a Connection to the User
When the java implementation makes any of the additional network connections, it will
indicate to the user that the handset is actively interacting with the network. To indicate
this connection, the network icon will appear on the handset’s status bar as shown below.

15
Network APIs

51

Conversely, when the network connection is no longer used the network icon will be
removed from the status bar.
If the handset supports applications that run when the flip is closed, the network icon on
the external display will be activated when the application is in an active network
connection with the flip closed. Please note that this indication is done by the
implementation.

HTTPS Connection
Motorola implementation supports a HTTPS connection on the Motorola V80 handset.
Additional protocols that will be supported are the following:

• TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt

• SSL protocol version 3.0 as defined in
http://home.netscape.com/eng/ssl3/draft302.txt

The following is a code sample to show implementation of HTTPS:
HTTPS
import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;
…

 try {
 hc[i] =
(HttpConnection)Connector.open(“https://” + url[i] + "/");

 } catch (Exception ex) {
 hc[i] = null;
 System.out.println("Open Failed: " +
ex.getMessage());

52

 }

 if (hc[i] != null)
 {
 try {
 is[i] = hc[i].openInputStream();

 byteCounts[i] = 0;
 readLengths[i] = hc[i].getLength();

 System.out.println("readLengths = " +
readLengths[i]);

 if (readLengths[i] == -1)
 {
 readLengths[i] = BUFFER_SIZE;
 }

 int bytes_read = 0;
 int offset = 0;
 int bytes_left = (int)readLengths[i];

 do
 {
 bytes_read = is[i].read(buffer, offset,
bytes_left);
 offset += bytes_read;
 bytes_left -= bytes_read;
 byteCounts[i] += bytes_read;
 }
 while (bytes_read > 0);

 System.out.println("byte read = " +
byteCounts[i]);

 } catch (Exception ex) {
 System.out.println("Downloading Failed: "+
ex.getMessage());
 numPassed = 0;
 }
 finally {
 try {
 is[i].close();
 is[i] = null;
 } catch (Exception ex) {}
 }
 }
 /**
 * close http connection
 */

15
Network APIs

53

 if (hc[i] != null)
 {
 try {
 hc[i].close();
 } catch (Exception ex) { }
 hc[i] = null;
 }

DNS IP
The DNS IP will be flexed on or off (per operator requirement) under Java Settings as
read only or as user-editable. In some instances, it will be flexed with an operator-
specified IP address.

Push Registry
The push registry mechanism allows an application to register for notification events that
are meant for the application. The push registry maintains a list of inbound connections.

Mechanisms for Push
Motorola implementation for push requires the support of certain mechanisms. The
mechanisms that will be supported for push are the following:

• SMS push: an SMS with a port number associated with an application used to
deliver the push notification

• WAP push: the push notification is delivered through the WAP infrastructure.
The formats for registering any of the above mechanisms will follow those detailed in JSR
118 specification.

Push Registry Declaration
The application descriptor file will include information about static connections that are
needed by the MIDlet suite. If all static push declarations in the application descriptor
cannot be fulfilled during the installation, the MIDlet suite will not be installed. The user will
be notified of any push registration conflicts despite the mechanism. This notification will
accurately reflect the error that has occurred.

54

Push registration can fail as a result of an Invalid Descriptor. Syntax errors in the push
attributes can cause a declaration error resulting in the MIDlet suite installation being
cancelled. A declaration referencing a MIDlet class not listed in the MIDlet-<n> attributes
of the same application descriptor will also result in an error and cancellation of the MIDlet
installation.
Two types of registration mechanisms will be supported. The registration mechanisms to
be supported are the following:

• Registration during installation through the JAD file entry using a fixed port
number

• Dynamically register using an assigned port number

If the port number is not available on the handset, an installation failure notification will be
displayed to the user while the error code 911 push is sent to the server. This error will
cease the download of the application.
Applications that wish to register with a fixed port number will use the JAD file to identify
the push parameters. The fixed port implementation will process the MIDlet-Push-n
parameter through the JAD file.

The following is a code sample to show implementation of Push Registry:
Push Registry Declaration

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;

public class PushTest_1 extends MIDlet implements
CommandListener{

 public Display display;

 public static Form regForm;
 public static Form unregForm;
 public static Form mainForm;
 public static Form messageForm;

 public static Command exitCommand;
 public static Command backCommand;
 public static Command unregCommand;
 public static Command regCommand;

 public static TextField regConnection;
 public static TextField regFilter;
 public static ChoiceGroup registeredConnsCG;
 public static String[] registeredConns;

 public static Command mc;
 public static Displayable ms;

 public PushTest_1(){

15
Network APIs

55

 regConnection = new TextField("Connection
port:", "1000", 32, TextField.PHONENUMBER);
 regFilter = new TextField("Filter:", "*", 32,
TextField.ANY);

 display = Display.getDisplay(this);

 regForm = new Form("Register");
 unregForm = new Form("Unregister");
 mainForm = new Form("PushTest_1");
 messageForm = new Form("PushTest_1");

 exitCommand = new Command("Exit", Command.EXIT,
0);
 backCommand = new Command("Back", Command.BACK,
0);
 unregCommand = new Command("Unreg",
Command.ITEM, 1);
 regCommand = new Command("Reg", Command.ITEM,
1);

 mainForm.append("Press \"Reg\" softkey to
register a new connection.\n" +
 "Press \"Unreg\" softkey to
unregister a connection.");
 mainForm.addCommand(exitCommand);
 mainForm.addCommand(unregCommand);
 mainForm.addCommand(regCommand);
 mainForm.setCommandListener(this);

 regForm.append(regConnection);
 regForm.append(regFilter);
 regForm.addCommand(regCommand);
 regForm.addCommand(backCommand);
 regForm.setCommandListener(this);

 unregForm.addCommand(backCommand);
 unregForm.addCommand(unregCommand);
 unregForm.setCommandListener(this);

 messageForm.addCommand(backCommand);
 messageForm.setCommandListener(this);

 }
 public void pauseApp(){}

 protected void startApp() {
 display.setCurrent(mainForm);
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

56

 public void showMessage(String s) {
 if(messageForm.size() != 0)
messageForm.delete(0);
 messageForm.append(s);
 display.setCurrent(messageForm);
 }

 public void commandAction(Command c, Displayable s) {

 if((c == unregCommand) && (s == mainForm)){
 mc = c;
 ms = s;
 new runThread().start();
 }

 if((c == regCommand) && (s == mainForm)){
 display.setCurrent(regForm);
 }

 if((c == regCommand) && (s == regForm)){
 mc = c;
 ms = s;
 new runThread().start();
 }

 if((c == unregCommand) && (s == unregForm)){
 mc = c;
 ms = s;
 new runThread().start();
 }

 if((c == backCommand) && (s == unregForm)){
 display.setCurrent(mainForm);
 }
 if((c == backCommand) && (s == regForm)){
 display.setCurrent(mainForm);
 }

 if((c == backCommand) && (s == messageForm)){
 display.setCurrent(mainForm);
 }

 if((c == exitCommand) && (s == mainForm)){
 destroyApp(false);
 }

 }

 public class runThread extends Thread{
 public void run(){
 if((mc == unregCommand) && (ms ==
mainForm)){
 try{
 registeredConns =
PushRegistry.listConnections(false);
 if(unregForm.size() > 0)
unregForm.delete(0);

15
Network APIs

57

 registeredConnsCG = new
ChoiceGroup("Connections", ChoiceGroup.MULTIPLE,
registeredConns, null);
 if(registeredConnsCG.size() > 0)
unregForm.append(registeredConnsCG);
 else unregForm.append("No
registered connections found.");
 display.setCurrent(unregForm);
 } catch (Exception e) {
 showMessage("Unexpected " +
e.toString() + ": " + e.getMessage());
 }

 }

 if((mc == regCommand) && (ms == regForm)){
 try{

PushRegistry.registerConnection("sms://:" +
regConnection.getString(), "Receive",
regFilter.getString());
 showMessage("Connection
successfully registered");
 } catch (Exception e){
 showMessage("Unexpected " +
e.toString() + ": " + e.getMessage());
 }
 }

 if((mc == unregCommand) && (ms ==
unregForm)){
 try{
 if(registeredConnsCG.size() > 0){
 for(int i=0;
i<registeredConnsCG.size(); i++){

if(registeredConnsCG.isSelected(i)){

PushRegistry.unregisterConnection(registeredConnsCG.getStri
ng(i));

registeredConnsCG.delete(i);

if(registeredConnsCG.size() == 0){

unregForm.delete(0);

unregForm.append("No registered connections found.");
 }
 }
 }
 }
 } catch (Exception e) {
 showMessage("Unexpected " +
e.toString() + ": " + e.getMessage());
 }
 }

58

 }
 }
}

WakeUp.java
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import javax.microedition.rms.*;
import java.util.*;
import javax.microedition.io.*;

public class WakeUp extends MIDlet implements
CommandListener{

 public static Display display;
 public static Form mainForm;
 public static Command exitCommand;
 public static TextField tf;
 public static Command registerCommand;

 public void startApp() {

 display = Display.getDisplay(this);

 mainForm = new Form("WakeUp");
 exitCommand = new Command("Exit", Command.EXIT, 0);
 registerCommand = new Command("Register",
Command.SCREEN, 0);
 tf = new TextField("Delay in seconds", "10", 10,
TextField.NUMERIC);
 mainForm.addCommand(exitCommand);
 mainForm.addCommand(registerCommand);
 mainForm.append(tf);
 mainForm.setCommandListener(this);

 display.setCurrent(mainForm);

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void commandAction(Command c, Displayable s) {
 if((c == exitCommand) && (s == mainForm)){
 destroyApp(false);
 }
 if(c == registerCommand){

15
Network APIs

59

 new regThread().start();

 }
 }

 public class regThread extends Thread{

 public void run(){

 try {
 long delay =
Integer.parseInt(tf.getString()) * 1000;

 long curTime = (new Date()).getTime();

 System.out.println(curTime + delay);

 PushRegistry.registerAlarm("WakeUp",
curTime + delay);
 mainForm.append("Alarm registered
successfully");

 } catch (NumberFormatException nfe) {
 mainForm.append("FAILED\nCan not decode
delay " + nfe);
 } catch (ClassNotFoundException cnfe) {
 mainForm.append("FAILED\nregisterAlarm
thrown " + cnfe);
 } catch (ConnectionNotFoundException cnfe) {
 mainForm.append("FAILED\nregisterAlarm
thrown " + cnfe);
 }

 }
 }

}

SMS_send.java
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SMS_send extends MIDlet implements
CommandListener{

 public Display display;

60

 public static Form messageForm;
 public static Form mainForm;

 public static Command exitCommand;
 public static Command backCommand;
 public static Command sendCommand;

 public static TextField address_tf;
 public static TextField port_tf;
 public static TextField message_text_tf;

 String[] binary_str = {"Send BINARY message"};
 public static ChoiceGroup binary_cg;

 byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 String address;
 String text;

 MessageConnection conn = null;
 TextMessage txt_message = null;
 BinaryMessage bin_message = null;

 public SMS_send(){
 address_tf = new TextField("Address:", "", 32,
TextField.PHONENUMBER);
 port_tf = new TextField("Port:", "1000", 32,
TextField.PHONENUMBER);

 message_text_tf = new TextField("Message
text:", "test message", 160, TextField.ANY);
 binary_cg = new ChoiceGroup(null,
Choice.MULTIPLE, binary_str, null);

 display = Display.getDisplay(this);

 messageForm = new Form("SMS_send");
 mainForm = new Form("SMS_send");

 exitCommand = new Command("Exit", Command.EXIT,
0);
 backCommand = new Command("Back", Command.BACK,
0);
 sendCommand = new Command("Send", Command.ITEM,
1);

 mainForm.append(address_tf);
 mainForm.append(port_tf);
 mainForm.append(message_text_tf);
 mainForm.append(binary_cg);

 mainForm.addCommand(exitCommand);
 mainForm.addCommand(sendCommand);
 mainForm.setCommandListener(this);

 messageForm.addCommand(backCommand);
 messageForm.setCommandListener(this);

15
Network APIs

61

 }

 public void pauseApp(){
 }

 protected void startApp() {
 display.setCurrent(mainForm);
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void showMessage(String s) {
 if(messageForm.size() != 0)
messageForm.delete(0);
 messageForm.append(s);
 display.setCurrent(messageForm);
 }

 public void commandAction(Command c, Displayable s) {
 if((c == backCommand) && (s == messageForm)){
 display.setCurrent(mainForm);
 }
 if((c == exitCommand) && (s == mainForm)){
 destroyApp(false);
 }
 if((c == sendCommand) && (s == mainForm)){
 address = "sms://" +
address_tf.getString();
 if(port_tf.size() != 0) address += ":" +
port_tf.getString();
 text = message_text_tf.getString();
 new send_thread().start();
 }
 }

 public class send_thread extends Thread{
 public void run(){
 try{
 conn = (MessageConnection)
Connector.open(address);
 if(!binary_cg.isSelected(0)){
 txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);
 txt_message.setPayloadText(text);
 conn.send(txt_message);
 } else {
 bin_message = (BinaryMessage)
conn.newMessage(MessageConnection.BINARY_MESSAGE);

bin_message.setPayloadData(binary_data);
 conn.send(bin_message);
 }
 conn.close();

62

 showMessage("Message sent");
 } catch (Throwable t) {
 showMessage("Unexpected " +
t.toString() + ": " + t.getMessage());
 }
 }
 }
}

Delivery of a Push Message
A push message intended for a MIDlet on the Motorola V80 handset will handle the
following interactions:

• MIDlet running while receiving a push message – if the application receiving the
push message is currently running, the application will consume the push
message without user notification.

• No MIDlet suites running – if no MIDlets are running, the user will be notified of
the incoming push message and will be given the option to run the intended
application as shown below.

• Push registry with Alarm/Wake-up time for application – push registry supports

one outstanding wake-up time per MIDlet in the current suite. An application will
use the TimerTask notification of time-based events while the application is
running.

• Another MIDlet suite is running during an incoming push – if another MIDlet is
running, the user will be presented an option to launch the application that had
registered for the push message. If the user selects the launch, the current
MIDlet is terminated.

• Stacked push messages – it is possible for the handset to receive multiple push
messages at one time while the user is running a MIDlet. The user will be given

15
Network APIs

63

the option to allow the MIDlets to end and new MIDlets to begin. The user will be
given the ability to read the messages in a stacked manner (stack of 5
supported), and if not read, the messages should be discarded.

• No applications registered for push – if there are no applications registered to
handle this event, the incoming push message will be ignored.

Deleting an Application Registered for Push
If an application registered in the Push Registry is deleted, the corresponding push entry
will be deleted, making the PORT number available for future Push Registrations.

Security for Push Registry
Push Registry is protected by the security framework. The MIDlet registered for the push
should have the necessary permissions. Details on permissions are outlined in the
Security chapter.

64

16
Interface CommConnection

CommConnection
The CommConnection interface defines a logical serial port connection. A logical serial
port connection is a logical connection through which bytes are transferred serially. This
serial port is defined within the underlying operating system and may not correspond to a
physical RS-232 serial port. For example, IrDA IRCOMM ports can be configured as a
logical serial port within the operating system so it can act as a logical serial port.

Accessing
The comm port is accessed using a Generic Connection Framework string with an explicit
port identifier and embedded configuration parameters, each separated with a semi-colon
(;). Only one application may be connected to a particular serial port at a given time. A
java.io.IOException is thrown if an attempt is made to open the serial port with
Connector.open() if the connection is already open.
A URI with the type and parameters is used to open the connection. The scheme, as
defined in RFC 2396, will be the following:

• Comm.: <port identifier> [<optional parameters>]

Parameters
The first parameter will be a port identifier, which is a logical device name. These port
identifiers are device specific and should be used with care.
The valid identifiers for a particular device and OS can be queried through the
System.getproperty() method using the key microedition.commports. A
list of ports, separated by commas, is returned which can be combined with a comm:
prefix as the URL string to open a serial port connection.

16
Interface CommConnection

65

Any additional parameters will be separated by a semi-colon (;) without spaces. If a
particular parameter is not applicable to a particular port, the parameter will be ignored.
The port identifier cannot contain a semi-colon (;).
Legal parameters are defined by the definition of the parameters below. Illegal or
unrecognized parameters cause an IllegalArgumentException. If the value of a
parameter is supported by the device, it will be honored. If the value of a parameter is not
supported, a java.io.IOException is thrown. If a baudrate parameter is
requested, it is treated the same way that a setBaudRate method handles baudrates.
For example, if the baudrate requested is not supported, the system will substitute a valid
baudrate which can be discovered using the getBaudRate method.
The table below describes optional parameters.

Parameter Default Description
baudrate platform dependent The speed of the port.
bitsperchar 8 The number bits per character(7 or 8).
stopbits 1 The number of stop bits per char(1 or 2)
parity none The parity can be odd, even, or none.
blocking on If on, wait for a full buffer when reading.
autocts on If on, wait for the CTS line to be on

before writing.
autorts on If on, turn on the RTS line when the input

buffer is not full. If off, the RTS line is
always on.

BNF Format for Connector.open () string
The URI must conform to the BNF syntax specified below. If the URI does not conform to
this syntax, an IllegalArgumentException is thrown.

<comm_connection_string> ::= "comm:"<port_id>[<options_list>] ;
<port_id> ::= string of alphanumeric characters
<options_list> ::= *(<baud_rate_string>| <bitsperchar>| <stopbits>| <parity>| <blocking>|

<autocts>| <autorts>) ;
; if an option duplicates a previous option in the
; option list, that option overrides the previous
; option

<baud_rate_string> ::= ";baudrate="<baud_rate>
<baud_rate> ::= string of digits
<bitsperchar> ::= ";bitsperchar="<bit_value>
<bit_value> ::= "7" | "8"
<stopbits> ::= ";stopbits="<stop_value>
<stop_value> ::= "1" | "2"
<parity> ::= ";parity="<parity_value>
<parity_value> ::= "even" | "odd" | "none"

66

<blocking> ::= ";blocking="<on_off>
<autocts> ::= ";autocts="<on_off>
<autorts> ::= ";autorts="<on_off>
<on_off> ::= "on" | "off"

Comm Security
Access to serial ports is restricted to prevent unauthorized transmission or reception of
data. The security model applied to the serial port connection is defined in the
implementing profile. The security model will be applied on the invocation of the
Connector.open () method with a valid serial port connection string. Should the
application not be granted access to the serial port through the profile authorization
scheme, a java.lang.SecurityException will be thrown from the
Connector.open () method. The security model will be applied during execution,
specifically when the methods openInputStream(),
openDataInputStream(), openOutputStream(), and
openDataOutputStream() are invoked.

The following are code samples to implementation of CommConnection:

Sample of a CommConnection accessing a simple loopback program
CommConnection cc = (CommConnection)
 Connector.open("comm:com0;baudrate=19200");
 int baudrate = cc.getBaudRate();
 InputStream is = cc.openInputStream();
 OutputStream os = cc.openOutputStream();
 int ch = 0;
 while(ch != 'Z') {
 os.write(ch);
 ch = is.read();
 ch++;
 }
 is.close();
 os.close();
 cc.close();

Sample of a CommConnection discovering available comm Ports
String port1;
 String ports =
System.getProperty("microedition.commports");
 int comma = ports.indexOf(',');
 if (comma > 0) {
 // Parse the first port from the available ports list.
 port1 = ports.substring(0, comma);
 } else {
 // Only one serial port available.
 port1 =ports;

16
Interface CommConnection

67

 }

Port Naming Convention
Logical port names can be defined to match platform naming conventions using any
combination of alphanumeric characters. Ports will be named consistently among the
implementations of this class according to a proposed convention. VM implementations
will follow the following convention:

• Port names contain a text abbreviation indicating port capabilities followed by a
sequential number for the port. The following device name types will be used:

o COM# - COM is for RS-232 ports and # is a number assigned to the
port

o IR# - IR is for IrDA IRCOMM ports and # is a number assigned to the
port

The naming scheme allows API users to determine the type of port to use. For example, if
an application “beams” a piece of data, the application will look for IR# ports for opening
the connection.

Method Summary
The tables below describe the CommConnection method summary for MIDP 2.0.

Method Summary

int getBaudRate()

Gets the baudrate for the serial port connection

int setBaudRate (int baudrate)

Sets the baudrate for the serial port connection

68

17
Platform Request API

Platform Request API
The Platform Request API MIDlet package defines MIDP applications and the interactions
between the application and the environment in which the application runs.

Refer to the table below for Platform Request API feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited classes for the MIDlet class Supported

platformRequest() method in javax.microedition.midlet Supported

Will not support the “text/vnd.sun.j2me.app-descriptor” mime type in
the URL for the platformRequest() support

Supported

Will not support the “application/java-archive” mime type in the URL for
the platformRequest() method

Supported

Launching native apps with URLs Supported

URL compatible launch of the WAP Browser Supported

URL compatible launch of the phone dialer Supported

Will not require the MIDlet to exit in order to launch an application from
the platformRequest() method

Supported

Will pause the MIDlet when executing the platformRequest() method. Supported

Will resume the MIDlet after the user exits the application launched by
the platform Request() method.

Supported, resumes to Java
Service Menu

All constructors and inherited methods for the
MIDletStateChangeException in javax.microedition.midlet

Supported

17
Platform Request API

69

MIDlet Request of a URL that Interacts with Browser
When a MIDlet suite requests a URL, the browser will come to the foreground and
connect to that URL. The user will then have access to the browser and control over any
downloads or network connections. The initiating MIDlet suite will continue running in the
background, if it cannot (upon exiting the requesting MIDlet suite) the handset will bring
the browser to the foreground with the specified URL.
If the URL specified refers to a MIDlet suite, JAD, or JAR, the request will be treated as a
request to install the named package. The user will be able to control the download and
installation process, including cancellation. Please note normal Java installation process
should be used.
Refer to the JAD Attributes chapter for more details.

MIDlet Request of a URL that Initiates a Voice Call
If the requested URL takes the form tel: <number>, the handset will use this request
to initiate a voice call as specified in RFC2806. If the MIDlet will be exited to handle the
URL request, the handset will only handle the last request made. If the MIDlet suite
continues to run in the background when the URL request is being made, all other
requests will be handled in a timely manner.
The user will be asked to acknowledge each request before any actions are taken by the
handset, and upon completion of the platform request, the Java Service Menu will be
displayed to the user.

70

18
JSR 135 Mobile Media API

JSR 135 Mobile Media API
The JSR 135 Mobile Media APIs feature sets are defined for five different types of media.
The media defined is as follows:

• Tone Sequence

• Sampled Audio

• MIDI
When a player is created for a particular type, it will follow the guidelines and control types
listed in the sections outlined below.

The following is a code sample to show implementation of the JSR 135 Mobile Media API:

JSR 135
Player player;

// Create a media player, associate it with a stream
containing media data
try
{
 player =
Manager.createPlayer(getClass().getResourceAsStream("MP3.mp3
"), "audio/mp3");
}
catch (Exception e)
{
 System.out.println("FAILED: exception for createPlayer:
" + e.toString());
}

// Obtain the information required to acquire the media
resources
try

18
JSR 135 Mobile Media API

71

{
 player.realize();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for realize: " +
e.toString());
}

// Acquire exclusive resources, fill buffers with media data
try
{
 player.prefetch();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for prefetch: " +
e.toString());
}

// Start the media playback
try
{
 player.start();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for start: " +
e.toString());
}

// Pause the media playback
try
{
 player.stop();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for stop: " +
e.toString());
}

// Release the resources

 player.close();

72

ToneControl
ToneControl is the interface to enable playback of a user-defined monotonic tone
sequence. The JSR 135 Mobile Media API will implement public interface ToneControl.
A tone sequence is specified as a list of non-tone duration pairs and user-defined
sequence blocks and is packaged as an array of bytes. The setSequence() method
is used to input the sequence to the ToneControl.
The following is the available method for ToneControl:
-setSequence (byte[] sequence): Sets the tone sequence

VolumeControl
VolumeControl is an interface for manipulating the audio volume of a Player. The JSR 135
Mobile Media API will implement public interface VolumeControl.
The following describes the different volume settings found within VolumeControl:

• Volume Settings - allows the output volume to be specified using an integer
value that varies between 0 and 100. Depending on the application, this will need
to be mapped to the volume level on the phone (0-7).

• Specifying Volume in the Level Scale - specifies volume in a linear scale. It
ranges from 0 – 100 where 0 represents silence and 100 represents the highest
volume available.

• Mute – setting mute on or off does not change the volume level returned by the
getLevel. If mute is on, no audio signal is produced by the Player. If mute is off,
an audio signal is produced and the volume is restored.

The following is a list of available methods with regards to VoumeControl:
-getLevel: Get the current volume setting.
-isMuted: Get the mute state of the signal associated with this VolumeControl.
-setLevel (int level): Set the volume using a linear point scale with values
between 0 and 100.
-setMute (Boolean mute): Mute or unmute the Player associated with this
VolumeControl.

StopTimeControl
StopTimeControl allows a specific preset sleep timer for a player. The JSR 135 Mobile
Media API will implement public interface StopTimeControl.
The following is a list of available methods with regards to StopTimeControl:
-getStopTime: Gets the last value successfully by setStopTime.

18
JSR 135 Mobile Media API

73

-setStopTime (long stopTime): Sets the media time at which you want the
Player to stop.

Manager Class
Manager Class is the access point for obtaining system dependant resources such as
players for multimedia processing. A Player is an object used to control and render media
that is specific to the content type of the data. Manager provides access to an
implementation specific mechanism for constructing Players. For convenience, Manager
also provides a simplified method to generate simple tones. Primarily, the Multimedia API
will provide a way to check available/supported content types.

Audio Media
The following multimedia file formats are supported:

File Type CODEC

WAV PCM

WAV ADPCM

SP MIDI General MIDI

MIDI Type 1 General MIDI

iMelody IMelody

CTG CTG

MP3 MPEG-1 layer III

AMR AMR

BAS General MIDI

The following is a list of audio MIME types supported:

Category Description MIME Type

iMelody audio/imelody x-imelody imy x-imy

MIDI audio/midi x-midi mid x-mid sp-midi

WAV audio/wav x-wav

MP3 audio/mp3 x-mp3 mpeg3 x-mpeg3 mpeg x-
mpeg

Audio

AMR/MP4 audio/amr x-amr mp4 x-mp4

74

Refer to the table below for multimedia feature/class support for JSR 135:

Feature/Class Implementation

Media package found Supported

Media control package Supported

Media Protocol package Streaming not supported

Control interface in javax.microedition.media Supported

All methods for the Controllable interface in
javax.microedition.media.control

Supported

All fields, methods, and inherited methods for the Player interface in
javax.microedition.media

Supported

All fields and methods for the PlayerListener interface in
javax.microedition.media

Supported

PlayerListener OEM event types for the PlayerListener interface Standard types only

All fields, methods, and inherited methods for the Manager Class in
javax.microedition.media

Supported

TONE_DEVICE_LOCATOR support in the Manager class of
javax.microedition.media

Supported

TONE_DEVICE_LOCATOR content type will be audio/x-tone-seq Supported

TONE_DEVICE_LOCATOR media locator will be device://tone Supported

All constructors and inherited methods in
javax.microedition.medi.MediaException

Supported

All fields and methods in the StopTimeControl interface in
javax.microedition.media.control

Supported

All fields and methods in the ToneControl interface in
javax.microedition.media.control

Supported

All methods in the VolumeControl interface in
javax.microedition.media.control

Supported

Max volume of a MIDlet will not exceed the maximum speaker setting
on the handset

Supported

Multiple SourceStreams for a DataSource 2

Note: Motorola provides the ability to play MIDI and WAV files simultaneously, but the
MIDI track must be started first. The WAV file should have the following format:
PCM 8,000 Khz; 8 Bit; Mono

19
JSR 120 – Wireless Messaging API

75

19
JSR 120 – Wireless Messaging

API

Wireless Messaging API (WMA)
Motorola has implemented certain features that are defined in the Wireless Messaging
API (WMA) 1.0. The complete specification document is defined in JSR 120.
The JSR 120 specification states that developers can be provided access to send (MO –
mobile originated) and receive (MT – mobile terminated) SMS (Short Message Service)
on the target device.
A simple example of the WMA is the ability of two J2ME applications using SMS to
communicate game moves running on the handsets. This can take the form of chess
moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features.

 Creating an SMS
 Sending an SMS
 Receiving an SMS
 Viewing an SMS
 Deleting an SMS

SMS Client Mode and Server Mode Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),
which is defined in the CLDC specification 1.0. The use of the “Connection” framework, in
Motorola's case is “MessageConnection”.

76

The MessageConnection can be opened in either server or client mode. A server
connection is opened by providing a URL that specifies an identifier (port number) for an
application on the local device for incoming messages.

(MessageConnection)Connector.open("sms://:6000");

Messages received with this identifier will then be delivered to the application by this
connection. A server mode connection can be used for both sending and receiving
messages. A client mode connection is opened by providing a URL which points to
another device. A client mode connection can only be used for sending messages.

(MessageConnection)Connector.open("sms://+441234567890
:6000");

SMS Port Numbers
When a port number is present in the address, the TP-User-Data of the SMS will contain
a User-Data-Header with the application port addressing scheme information element.
When the recipient address does not contain a port number, the TP-User-Data will not
contain the application port addressing header. The J2ME MIDlet cannot receive this kind
of message, but the SMS will be handled in the usual manner for a standard SMS to the
device.

When a message identifying a port number is sent from a server type
MessageConnection, the originating port number in the message is set to the port
number of the MessageConnection. This allows the recipient to send a response to
the message that will be received by this MessageConnection.

However, when a client type MessageConnection is used for sending a message
with a port number, the originating port number is set to an implementation specific value
and any possible messages received to this port number are not delivered to the
MessageConnection. Please refer to the section A.4.0 and A.6.0 of the JSR 120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the first
MIDlet to request this identifier it will be allocated. If other applications apply for the same
identifier then an IOException will be thrown when an attempt to open
MessageConnection is made. If a system application is using this identifier, the
MIDlet will not be allocated the identifier. The port numbers allowed for this request are
restricted to SMS messages. In addition, a MIDlet is not allowed to send messages to
certain restricted ports a SecurityException will be thrown if this is attempted.

JSR 120 Section A.6.0 Restricted Ports:
2805, 2923, 2948, 2949, 5502, 5503, 5508, 5511, 5512, 9200, 9201, 9203, 9207, 49996,
49999.

If you intend to use SMSC numbers then please review A.3.0 in the JSR 120
specification. The use of an SMSC would be used if the MIDlet had to determine what
recipient number to use.

19
JSR 120 – Wireless Messaging API

77

SMS Storing and Deleting Received Messages
When SMS messages are received by the MIDlet, they are removed from the SIM card
memory where they were stored. The storage location (inbox) for the SMS messages has
a capacity of up to thirty messages. If any messages are older than five days then this will
be removed, from the inbox by way of a FIFO stack.

SMS Message Types
The types of messages that can be sent are TEXT or BINARY, the method of encoding
the messages are defined in GSM 03.38 standard (Part 4 SMS Data Coding Scheme).
Refer to section A.5.0 of JSR 120 for more information.

SMS Message Structure
The message structure of SMS will comply with GSM 03.40 v7.4.0 Digital cellular
telecommunications system (Phase 2+); Technical realization of the Short Message
Service (SMS) ETSI 2000.

Motorola’s implementation uses the concatenation feature specified in sections 9.2.3.24.1
and 9.2.3.24.8 of the GSM 03.40 standard for messages that the Java application sends
that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages
and passes the fully reassembled message to the application via the API. The
implementation will support at least three SMS messages to be received and
concatenated together. Also, for sending, support for a minimum of three messages is
supported. Motorola advises that developers should not send messages that will take up
more than three SMS protocol messages unless the recipient’s device is known to support
more.

SMS Notification
Examples of SMS interaction with a MIDlet would be the following:

 A MIDlet will handle an incoming SMS message if the MIDlet is registered to
receive messages on the port (identifier) and is running.

78

 When a MIDlet is paused and is registered to receive messages on the port
number of the incoming message, then the user will be queried to launch the
MIDlet.

 If the MIDlet is not running and the Java Virtual Machine is not initialized, then a
Push Registry will be used to initialize the Virtual Machine and launch the J2ME
MIDlet. This only applies to trusted, signed MIDlets.

 If a message is received and the untrusted unsigned application and the KVM
are not running then the message will be discarded.

 There is a SMS Access setting in the Java Settings menu option on the handset
that allows the user to specify when and how often to ask for authorization.
Before the connection is made from the MIDlet, the options available are:

o Always ask for user authorization
o Ask once per application
o Never Ask

The following is a list of Messaging features/classes supported in the device.

Feature/Class Implementation

JSR-120 API. Specifically, APIs defined in the
javax.wireless.messaging package will be implemented with regards to
the GSM SMS Adaptor

Supported

Removal of SMS messages Supported

Terminated SMS removal – any user prompts handled by MIDlet Supported

Originated SMS removal – any user prompts handled by MIDlet Supported

All fields, methods, and inherited methods for the Connector Class in
the javax.microedition.io package

Supported

All methods for the BinaryMessage interface in the
javax.wireless.messaging package

Supported

All methods for the Message interface in the javax.wireless.messaging
package

Supported

All fields, methods, and inherited methods for the MessageConnection
interface in the javax.wireless.messaging package

Supported

Number of MessageConnection instances in the
javax.wireless.messaging package

32 maximum

Number of MessageConnection instances in the
javax.wireless.messaging package

16

All methods for the MessageListener interface in the
javax.wireless.messaging package

Supported

All methods and inherited methods for the TextMessage interface in
the javax.wireless.messaging package

Supported

19
JSR 120 – Wireless Messaging API

79

16 bit reference number in concatenated messages Supported

Number of concatenated messages. 30 messages in inbox, each can
be concatenated from 3 parts.
No limitation on outbox
(immediately transmitted)

Allow MIDlets to obtain the SMSC address with the
wireless.messaging.sms.smsc system property

Supported

The following are code samples to show implementation of the JSR 120 Wireless
Messaging API:
Creation of client connection and for calling of method ‘numberOfSegments’ for
Binary message:
BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

 /* Create connection for client mode */
 connClient = (MessageConnection) Connector.open("sms://"
+ outAddr);

 /* Create BinaryMessage for client mode */
 binMsg =
(BinaryMessage)connClient.newMessage(MessageConnection.BINAR
Y_MESSAGE);

 /* Create BINARY of 'size' bytes for BinaryMsg */
 public byte[] createBinary(int size) {
 int nextByte = 0;
byte[] newBin = new byte[size];

 for (int i = 0; i < size; i++) {
 nextByte = (rand.nextInt());
 newBin[i] = (byte)nextByte;
 if ((size > 4) && (i == size / 2)) {
 newBin[i-1] = 0x1b;
 newBin[i] = 0x7f;
 }
 }
 return newBin;
 }

byte[] newBin = createBinary(msgLength);
 binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

80

Creation of server connection:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274:9532")
;

Creation of client connection without port number:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection:
MessageConnection messageConnection.close();

Creation of SMS message:
Message textMessage =
messageConnection.newMessage(MessageConnection.TEXT_MESSAGE)
;

Setting of payload text for text message:

 ((TextMessage)message).setPayloadText("Text Message");
Getting of payload text of received text message:
receivedText =
((TextMessage)receivedMessage).getPayloadText();
Getting of payload data of received binary message:
BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number:
message.setAddress("sms://+18473297274:9532");

Setting of address without port number:
message.setAddress("sms://+18473297274");

Sending of message:
messageConnection.send(message);

Receiving of message:

19
JSR 120 – Wireless Messaging API

81

Message receivedMessage = messageConnection.receive();

Getting of address:
String address = ((TextMessage)message).getAddress();

Getting of SMS service center address via calling of System.getProperty():
String addrSMSC =
System.getProperty("wireless.messaging.sms.smsc");

Getting of timestamp for the message:
Message message;
System.out.println("Timestamp: " +
message.getTimestamp().getTime());

Creation of client connection, creation of binary message, setting of payload for
binary message and calling of method ‘numberOfSegments(Message)’ for Binary
message:
BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

 /* Create connection for client mode */
 connClient = (MessageConnection) Connector.open("sms://"
+ outAddr);

 /* Create BinaryMessage for client mode */
 binMsg =
(BinaryMessage)connClient.newMessage(MessageConnection.BINAR
Y_MESSAGE);

 /* Create BINARY of 'size' bytes for BinaryMsg */
 public byte[] createBinary(int size) {
 int nextByte = 0;
byte[] newBin = new byte[size];

 for (int i = 0; i < size; i++) {
 nextByte = (rand.nextInt());
 newBin[i] = (byte)nextByte;
 if ((size > 4) && (i == size / 2)) {
 newBin[i-1] = 0x1b;
 newBin[i] = 0x7f;
 }
 }
 return newBin;
 }

byte[] newBin = createBinary(msgLength);

82

 binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Setting of MessageListener and receiving of notifications about incoming
messages:

public class JSR120Sample1 extends MIDlet implements
CommandListener {
…
JSR120Sample1Listener listener = new
JSR120Sample1Listener();
…
// open connection
messageConnection =
(MessageConnection)Connector.open("sms://:9532");
…
// create message to send
…
listener.run();
…
// set payload for the message to send
…
// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");
…
// send message (via invocation of ‘send’ method)
…
// set address for the message to receive
receivedMessage.setAddress("sms://:9532");
…
// receive message (via invocation of ‘receive’ method)
…

class JSR120Sample1Listener implements MessageListener,
Runnable {
private int messages = 0;

public void notifyIncomingMessage(MessageConnection
connection) {
System.out.println("Notification about incoming message
arrived");
 messages++;
}

public void run() {
 try {
 messageConnection.setMessageListener(listener);
 } catch (IOException e) {
 result = FAIL;

19
JSR 120 – Wireless Messaging API

83

System.out.println("FAILED: exception while setting
listener: " + e.toString());
 }
}
}

84

20
Get URL from Flex API

Flexible URL for Download Functionality
The API allows carriers to specify the URL for content download. The URL will be flexed
using OTA provisioning. The URL will follow the guidelines below:

• All URLs used will follow the guidelines outlined in RFC 1738: Uniform Resource
Locatots (URL). Refer to http://www.w3.org/addressing/rfc1738.txt for more
information.

• URLs are limited to 128 characters.
This API allows Java applications to read the URL stored at the predefined location flex
table.

Get URL From Flex
The Java application will be able to acces the flexed URL by System.getProperty
method. The key for accessing the URL is “com.mot.carrier.URL”. The method
System.getProperty will return to null if no URL is flexed.

Security Policy
Only trusted applications will be granted permission to access this property.

21
MIDP 2.0 Security Model

85

21
MIDP 2.0 Security Model

The following sections describe the MIDP 2.0 Default Security Model for the Motorola V80
handset. The chapter discusses the following topics:

• Untrusted MIDlet suites and domains

• Trusted MIDlet suites and domains

• Permissions

• Certificates
For a detailed MIDP 2.0 Security process diagram, refer to the Motocoder website
(http://www.motocoder.com).

Refer to the table below for the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the javax.microedition.pki
package

Supported

All fields, constructors, methods, and inherited methods for the
CertificateException class in the javax.microedition.pki package

Supported

MIDlet-Certificate attribute in the JAD Supported

A MIDlet suite will be authenticated as stated in Trusted MIDletSuites
using X.509 of MIDP 2.0 minus all root certificates processes and
references

Supported

Verification of SHA-1 signatures with a MD5 message digest algorithm Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 attribute Supported

All methods for the Certificate interface in the javax.microedition.pki
package

Supported

All fields, constructors, methods, and inherited methods for the
CertificateException class in the javax.microedition.pki package

Supported

Will preload two self authorizing Certificates Supported

All constructors, methods, and inherited methods for the
MIDletStateChangeException class in the javax.microedition.midlet

Supported

86

package

All constructors and inherited methods for the
MIDletStateChangeException class in the javax.microedition.midlet
package

Supported

Please note the domain configuration is selected upon agreement with the operator.

Untrusted MIDlet Suites
A MIDlet suite is untrusted when the origin or integrity of the JAR file cannot be trusted by
the device.
The following are conditions of untrusted MIDlet suites:

• If errors occur in the process of verifying if a MIDlet suite is trusted, then the
MIDlet suite will be rejected.

• Untrusted MIDlet suites will execute in the untrusted domain where access to
protected APIs or functions is not allowed or allowed with explicit confirmation
from the user.

Untrusted Domain
Any MIDlet suites that are unsigned will belong to the untrusted domain. Untrusted
domains handsets will allow, without explicit confirmation, untrusted MIDlet suites access
to the following APIs:

• javax.microedition.rms – RMS APIs

• javax.microedition.midlet – MIDlet Lifecycle APIs

• javax.microedition.lcdui – User Interface APIs

• javax.microedition.lcdui.game – Gaming APIs

• javax.microedition.media – Multimedia APIs for sound playback

• javax.microedition.media.control – Multimedia APIs for
sound playback

The untrusted domain will allow, with explicit user confirmation, untrusted MIDlet suites
access to the following protected APIs or functions:

• javax.microedition.io.HttpConnection – HTTP protocol

• javax.microedition.io.HttpsConnection – HTTPS protocol

21
MIDP 2.0 Security Model

87

Trusted MIDlet Suites
Trusted MIDlet suites are MIDlet suites in which the integrity of the JAR file can be
authenticated and trusted by the device, and bound to a protection domain. The Motorola
V80 will use x.509PKI for signing and verifying trusted MIDlet suites.
Security for trusted MIDlet suites will utilize protection domains. Protection domains define
permissions that will be granted to the MIDlet suite in that particular domain. A MIDlet
suite will belong to one protection domain and its defined permissible actions. For
implementation on the Motorola V80, the following protection domains should exist:

• Manufacturer – permissions will be marked as “Allowed” (Full Access).
Downloaded and authenticated manufacturer MIDlet suites will perform
consistently with MIDlet suites pre-installed by the manufacturer.

• Operator – permissions will be marked as “Allowed” (Full Access). Downloaded
and authenticated operator MIDlet suites will perform consistently with other
MIDlet suites installed by the operator.

• 3rd Party – permissions will be marked as “User”. User interaction is required for
permission to be granted. MIDlets do not need to be aware of the security policy
except for security exceptions that will occur when accessing APIs.

• Untrusted – all MIDlet suites that are unsigned will belong to this domain.
Permissions within the above domains will authorize access to the protected APIs or
functions. These domains will consist of a set of “Allowed” and “User” permissions that will
be granted to the MIDlet suite.

Permission Types concerning the Handset
A protection domain will consist of a set of permissions. Each permission will be “Allowed”
or “User”, not both. The following is the description of these sets of permissions as they
relate to the handset:

• “Allowed” (Full Access) permissions are any permissions that explicitly allow
access to a given protected API or function from a protected domain. Allowed
permissions will not require any user interaction.

• “User” permissions are any permissions that require a prompt to be given to the
user and explicit user confirmation in order to allow the MIDlet suite access to the
protected API or function.

User Permission Interaction Mode
User permission for the Motorola V80 handset is designed to allow the user the ability to
either deny or grant access to the protected API or function using the following interaction
modes (bolded term(s) is prompt displayed to the user):

88

• blanket – grants access to the protected API or function every time it is required
by the MIDlet suite until the MIDlet suite is uninstalled or the permission is
changed by the user. (Never Ask)

• session – grants access to the protected API or function every time it is required
by the MIDlet suite until the MIDlet suite is terminated. This mode will prompt the
user on or before the final invocation of the protected API or function. (Ask
Once Per App)

• oneshot – will prompt the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

• No – will not allow the MIDlet suite access to the requested API or function that is
protected. (No Access)

The prompt No, Ask Later will be displayed during runtime dialogs and will enable the
user to not allow the protected function to be accessed this instance, but to ask the user
again the next time the protected function is called.
User permission interaction modes will be determined by the security policy and device
implementation. User permission will have a default interaction mode and a set of other
available interaction modes. The user should be presented with a choice of available
interaction modes, including the ability to deny access to the protected API or function.
The user will make their decision based on the user-friendly description of the requested
permissions provided for them.
The Permissions menu allows the user to configure permission settings for each MIDlet
when the VM is not running. This menu is synchronized with available run-time options.

Implementation based on Recommended Security
Policy

The required trust model, the supported domain, and their corresponding structure will be
contained in the default security policy for Motorola’s implementation for MIDP 2.0.
Permissions will be defined for MIDlets relating to their domain. User permission types, as
well as user prompts and notifications, will also be defined.

Trusted 3rd Party Domain
A trusted third party protection domain root certificate is used to verify third party MIDlet
suites. These root certificates will be mapped to a location on the handset that cannot be
modified by the user. The storage of trusted third party protection domain root certificates
and operator protection domain root certificates in the handset is limited to 12 certificates.
If a certificate is not available on the handset, the third party protection domain root
certificates will be disabled. The user will have the ability to disable root certificates
through the browser menu and will be prompted to warn them of the consequences of

21
MIDP 2.0 Security Model

89

disabling root certificates. These third party root certificates will not be used to verify
downloaded MIDlet suites.
The user will be able to enable any disabled trusted third party protection domain root
certificates. If disabled, the third party domain will no longer be associated with this
certificate. Permissions for trusted third party domain will be “User” permissions;
specifically user interaction is required in order for permissions to be granted.
The following table shows the specific wording to be used in the first line of the above
prompt:

Protected Functionality Top Line of Prompt Right Softkey
Data Network Use data network? OK

Messaging Use messaging? OK

App Auto-Start Launch <MIDlet names>? OK

Connectivity Options Make a local connection? OK

User Data Read Capability Read phonebook data? OK

User Data Write Capability Modify phonebook data? OK

App Data Sharing Share data between apps? OK

The radio button messages will appear as follows and mapped to the permission types as
shown in the table below:

MIDP 2.0 Permission Types Runtime Dialogs UI Permission Prompts
Oneshot Yes, Always Ask Always Ask

Session Yes, Ask Once Ask Once per App

Blanket Yes, Always Grant Access Never Ask

no access No, Never Grant Access No, Access

The above runtime dialog prompts will not be displayed when the protected function is set
to “Allowed” (or full access), or if that permission type is an option for that protected
function according to the security policy table flexed in the handset.

Security Policy for Protection Domains
The following table lists the security policy by function groups for each domain. Under
each domain are the settings allowed for that function within the given domain, while the
bolded setting is the default setting. The Function Group is what will be displayed to the

90

user when access is requested and when modifying the permissions in the menu. The
default setting is the setting that is effective at the time the MIDlet suite is first invoked and
remains in effect until the user changes it.
Permissions can be implicitly granted or not granted to a MIDlet based on the
configuration of the domain the MIDlet is bound to. Specific permissions cannot be
defined for this closed class. A MIDlet has either been developed or not been developed
to utilize this capability. The other settings are options the user is able to change from the
default setting.

Function Group Trusted Third Party Untrusted Manufacturer Operator
Data Network Ask Once Per App,

Always Ask, Never
Ask, No Access

Always Ask, Ask
Once Per App, No
Access

Full Access Full Access

Messaging Always Ask, No
Access

Always Ask, No
Access

Full Access Full Access

App Auto-Start Ask Once Per App,
Always Ask, Never
Ask, No Access

Ask Once Per App,
Always Ask, No
Access

Full Access Full Access

Connectivity
Options

Ask Once Per App,
Always Ask, Never
Ask, No Access

Ask Once Per App,
Always Ask, Never
Ask, No Access

Full Access Full Access

User Data
Read
Capability

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

User Data
Write
Capability

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Multimedia
Recording

Ask Once Per App,
Always Ask, Never
Ask, No Access

No Access Full Access Full Access

The table below shows individual permissions assigned to the function groups shown in
the table above.

MIDP 2.0 Specific Functions

Permission Protocol Function
Group

javax.microedition.io.Connector.http http Data
Network

javax.microedition.io.Connector.https https Data
Network

21
MIDP 2.0 Security Model

91

javax.microedition.io.Connector.datagra
m

datagram Data
Network

javax.microedition.io.Connector.datagra
mreceiver

datagram server (w/o host) Data
Network

javax.microedition.io.Connector.socket socket Data
Network

javax.microedition.io.Connector.servers
ocket

server socket (w/ o host) Data
Network

javax.microedition.io.Connector.ssl ssl Data
Network

javax.microedition.io.Connector.comm comm Connectivit
y Options

javax.microedition.io.PushRegistry All App Auto-
Start

Phonebook API
com.motorola.phonebook.readaccess PhoneBookRecord.findRecordByName()

PhoneBookRecord.findRecordByTelNo()
PhoneBookRecord.findRecordByEmail()
PhoneBookRecord.getNumberRecordsByName()
PhoneBookRecord.getRecord()
PhoneBookRecord.toVFormat()
PhoneBookRecord.getCategoryName()
PhoneBookRecord.getMailingListMembers()
RecentCallDialed.getRecord()
RecentCallReceived.getRecord()

User Data
Read
Capability

com.motorola.phonebook.writeaccess PhoneBookRecord.add()
PhoneBookRecord.update()
PhoneBookRecord.delete()
PhoneBookRecord.deleteAll()
PhoneBookRecord.setPrimary()
PhoneBookRecord.resetPrimary()
PhoneBookRecord.fromVFormat()
PhoneBookRecord.addCategory()
PhoneBookRecord.deleteCategory()
PhoneBookRecord.setCategoryView()
PhoneBookRecord.createMailingList()

User Data
Write
Capability

92

PhoneBookRecord.addMailingListMember()
PhoneBookRecord.deleteMailingListMember()
RecentCallDialed.add()
RecentCallDialed.delete()
RecentCallDialed.deleteAll()

Wireless Messaging API - JSR 120

javax.wireless.messaging.sms.send Messaging

javax.wireless.messaging.sms.receive Messaging

javax.microedition.io.Connector.sms Messaging

javax.wireless.messaging.cbs.receive Messaging

Multimedia Recording

javax.microedition.media.RecordControl
.startRecord

RecordControl.startRecord () Multimedia
Recording

Each phone call or messaging action will present the user with the destination phone
number before the user approves the action. The handset will ensure that I/O access from
the Mobile Media API follows the same security requirements as the Generic Connection
Framework.

Displaying of Permissions to the User
Permissions will be divided into function groups and two high-level categories, with the
function groups being displayed to the user. These two categories are Network/Cost
related and User/Privacy related.
The Network/Cost related category will include net access, messaging, application auto
invocation, and local connectivity function groups.
The user/privacy related category will include multimedia recording, read user data
access, and the write user data access function groups. These function groups will be
displayed in the settings of the MIDlet suite.
Only 3rd party and untrusted permissions can be modified or accessed by the user.
Operator and manufacturer permissions will be displayed for each MIDlet suite, but
cannot be modified by the user.

21
MIDP 2.0 Security Model

93

Trusted MIDlet Suites Using x.509 PKI
Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset will be able to
verify the signer of the MIDlet suite and bind it to a protection domain which will allow the
MIDlet suite access to the protected API or function. Once the MIDlet suite is bound to a
protection domain, it will use the permission defined in the protection domain to grant the
MIDlet suite access to the defined protected APIs or functions.
The MIDlet suite is protected by signing the JAR file. The signature and certificates are
added to the application descriptor (JAD) as attributes and will be used by the handset to
verify the signature. Authentication is complete when the handset uses the root certificate
(found on the handset) to bind the MIDlet suite to a protection domain (found on the
handset).

Signing a MIDlet Suite
The default security model involves the MIDlet suite, the signer, and public key
certificates. A set of root certificates are used to verify certificates generated by the signer.
Specially designed certificates for code signing can be obtained from the manufacturer,
operator, or certificate authority. Only root certificates stored on the handset will be
supported by the Motorola V80 handset.

Signer of MIDlet Suites
The signer of a MIDlet suite can be the developer or an outside party that is responsible
for distributing, supporting, or the billing of the MIDlet suite. The signer will have a public
key infrastructure and the certificate will be validated to one of the protection domain root
certificates on the handset. The public key is used to verify the signature of JAR on the
MIDlet suite, while the public key is provided as a x.509 certificate included in the
application descriptor (JAD).

MIDlet Attributes Used in Signing MIDlet Suites
Attributes defined within the manifest of the JAR are protected by the signature. Attributes
defined within the JAD are not protected or secured. Attributes that appear in the manifest
(JAR file) will not be overridden by a different value in the JAD for all trusted MIDlets. If a
MIDlet suite is to be trusted, the value in the JAD will equal the value of the corresponding
attribute in the manifest (JAR file), if not, the MIDlet suite will not be installed.
The attributes MIDlet-Permissions (-OPT) are ignored for unsigned MIDlet suites. The
untrusted domain policy is consistently applied to the untrusted applications. It is legal for
these attributes to exist only in JAD, only in the manifest, or in both locations. If these
attributes are in both the JAD and the manifest, they will be identical. If the permissions

94

requested in the HAD are different than those requested in the manifest, the installation
must be rejected.
Methods:

1. MIDlet.getAppProperty will return the attribute value from the manifest (JAR) if
one id defined. If an attribute value is not defined, the attribute value will return
from the application descriptor (JAD) if present.

Creating the Signing Certificate
The signer of the certificate will be made aware of the authorization policy for the handset
and contact the appropriate certificate authority. The signer can then send its
distinguished name (DN) and public key in the form of a certificate request to the
certificate authority used by the handset. The CA will create a x.509 (version 3) certificate
and return to the signer. If multiple CAs are used, all signer certificates in the JAD will
have the same public key.

Inserting Certificates into JAD
When inserting a certificate into a JAD, the certificate path includes the signer certificate
and any necessary certificates while omitting the root certificate. Root certificates will be
found on the device only.
Each certificate is encoded using base 64 without line breaks, and inserted into the
application descriptor as outlined below per MIDP 2.0.
MIDlet-Certificate-<n>-<m>: <base64 encoding of a
certificate>

Note the following:
<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater than
the previous number for additional certification paths. This defines the sequence in which
the certificates are tested to see if the corresponding root certificate is on the device.
<m>:= a number equal to 1 for the signer’s certificate in a certification path or 1 greater
than the previous number for any subsequent intermediate certificates.

Creating the RSA SHA-1 signature of the JAR
The signature of the JAR is created with the signer’s private key according to the EMSA-
PKCS1 –v1_5 encoding method of PKCS #1 version 2.0 standard from RFC 2437. The
signature is base64 encoded and formatted as a single MIDlet-Jar-RSA-SHA1 attribute
without line breaks and inserted into the JAD.
It will be noted that the signer of the MIDlet suite is responsible to its protection domain
root certificate owner for protecting the domain’s APIs and protected functions; therefore,

21
MIDP 2.0 Security Model

95

the signer will check the MIDlet suite before signing it. Protection domain root certificate
owners can delegate signing MIDlet suites to a third party and in some instances, the
author of the MIDlet.

Authenticating a MIDlet Suite
When a MIDlet suite is downloaded, the handset will check the JAD attribute MIDlet-Jar-
RSA-SHA1. If this attribute is present, the JAR will be authenticated by verifying the
signer certificates and JAR signature as described. MIDlet suites with application
descriptors that do not have the attributes previously stated will be installed and invoked
as untrusted. For additional information, refer to the MIDP 2.0 specification.

Verifying the Signer Certificate
The signer certificate will be found in the application descriptor of the MIDlet suite. The
process for verifying a Signer Certificate is outlined in the steps below:

1. Get the certification path for the signer certificate from the JAD attributes MIDlet-
Certificate-1<m>, where <m> starts a 1 and is incremented by 1 until there is no
attribute with this name. The value of each attribute is abase64 encoded
certificate that will need to be decoded and parsed.

2. Validate the certification path using the basic validation process as described in
RFC2459 using the protection domains as the source of the protection domain
root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that contains the
protection domain root certificate that validated the first chain from signer to root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> with <n> being greater than 1 are present

and full certification path could not be established after verifying MIDlet-
Certificate-<1>-<m> certificates, then repeat step 1 through 3 for the value <n>
greater by 1 than the previous value.

The following table describes actions performed upon completion of signer certificate
verification:

Result Action
Attempted to validate <n> paths. No public keys of the
issuer for the certificate can be found, or none of the
certificate paths can be validated.

Authentication fails, JAR installation is not
allowed.

More than one full certification path is established and
validated.

Implementation proceeds with the signature
verification using the first successfully verified
certificate path for authentication and

96

authorization.

Only one certification path established and validated. Implementation proceeds with the signature
verification.

Verifying the MIDlet Suite JAR
The following are the steps taken to verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature, and refer

to RFC 2437 for more detail.
4. Use the signer’s public key, signature, and SHA-1 digest of JAR to verify the

signature. If the signature verification fails, reject the JAD and MIDlet suite. The
MIDlet suite will not be installed or allow MIDlets from the MIDlet suite to be
invoked as shown in the following table.

5. Once the certificate, signature, and JAR have been verified, the MIDlet suite is
known to be trusted and will be installed (authentication process will be
performed during installation).

The following is a summary of MIDlet suite verification including dialog prompts:

Initial State Verification Result

JAD not present, JAR downloaded

Authentication cannot be performed, will install JAR. MIDlet suite is
treated as untrusted. The following error prompt will be shown,
“Application installed, but may have limited functionality.”

JAD present but is JAR is
unsigned

Authentication can not be performed, will install JAR. MIDlet suite is
treated as untrusted. The following error prompt will be shown,
“Application installed, but may have limited functionality.”

JAR signed but no root certificate
present in the keystore to validate
the certificate chain

Authentication can not be performed. JAR installation will not be
allowed. The following error prompt will be shown, “Root certificate
missing. Application not installed.”

JAR signed, a certificate on the
path is expired

Authentication can not be completed. JAR installation will not be
allowed. The following error prompt will be shown, “Expired
Certificate. Application not installed.”

JAR signed, a certificate rejected
for reasons other than expiration

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Authentication Error. Application not
installed.”

21
MIDP 2.0 Security Model

97

JAR signed, certificate path
validated but signature verification
fails

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Authentication Error. Application not
installed.”

Parsing of security attributes in
JAD fails

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Failed Invalid File.”

JAR signed, certificate path
validated, signature verified

JAR will be installed. The following prompt will be shown, “Installed.”

Carrier Specific Security Model
The MIDP 2.0 security model will vary based on carrier requests. Contact the carrier for
specifics.

98

Appendix A:
Key Mapping

Key Mapping for the V80
The table below identifies key names and corresponding Java assignments. All other keys
are not processed by Java.

Key Assignment
0 NUM0
1 NUM1
2 NUM2
3 NUM3
4 NUM4
5 SELECT, followed by NUM5
6 NUM6
7 NUM7
8 NUM8
9 NUM9
STAR (*) ASTERISK
POUND (#) POUND
JOYSTICK LEFT LEFT
JOYSTICK RIGHT RIGHT
JOYSTICK UP UP
JOYSTICK DOWN DOWN
SCROLL UP UP
SCROLL DOWN DOWN
SOFTKEY 1 SOFT1
SOFTKEY 2 SOFT2
MENU SOFT3 (MENU)
SEND SELECT

Also, call placed if pressed on lcdui.TextField or lcdui.TextBox
with PHONENUMBER constraint set.

CENTER SELECT SELECT
END Handled according to Motorola specification:

Appendix A:
Key Mapping

99

Pause/End/Resume/Background menu invoked.

The following table identifies keys that will be assigned to game actions defined in
GameCanvas class of MIDP 2.0.

Action First Set Second Set Third Set Non-simultaneous
keys

Left Nav (LEFT) 4

Right Nav (RIGHT) 6

Up Nav (UP) 2

Down Nav (DOWN) 8

Game_A 0

Game_B 1

Game_C 3

Game_D 5

Game_Fire 9 7 #

100

Appendix B:
Memory Management

Calculation

Available Memory
The available memory on the Motorola V80 handset is the following:

• 4M shared memory for MIDlet storage

• 800 Kb Heap size

• Recommended maximum MIDlet size is 100K

Memory Calculation for MIDlets
The calculation for determining the amount of memory needed to run a MIDlet is
computed by a formula. The details menu for the application show the Kilobytes required
by the application as computed by the formula below:
 (size of the JAD file)
 + (size of the JAR file)
 + (size of the data space used by the MIDlet)
 ==================================
(memory required to run the MIDlet)

Please note that the same memory calculation is applied while performing the memory
check during the download of an application.

Appendix C:
FAQ

101

Appendix C:
FAQ

Online FAQ
The MOTOCODER developer program is online and able to provide access to Frequently
Asked Questions around enabling technologies on Motorola products.
Access to dynamic content based on questions from the Motorola J2ME developer
community is available at the URL listed below.
http://www.motocoder.com

102

Appendix D:
HTTP Range

Graphic Description
The following is a graphic description of HTTP Range:

Appendix E:
Spec Sheet

103

Appendix E:
Spec Sheet

V80 Spec Sheet
Listed below is the spec sheet for the Motorola V80 handset. The spec sheet contains
information regarding the following areas:

• Technical Specifications

• Key Features

• J2ME Information

• Motorola Developer Information

• Tools

• Other Related Information

104

 Motorola V80
Developer Reference Sheet

Band/Frequency GSM 900/1800/1900 GPRS
Region Global
Technology WAP 2.0, J2ME, SMS, EMS,

MMS, AOL/OICQ IM
Connectivity CE Bus
Dimensions 45 X 152.8 X 22.7 (open)

45 X 98.8 X 22.7 (closed)
Weight 105 g
Display Portrait Mode: 176 x 220

Landscape Mode: 220x 176
Operating System Motorola
Chipset i250S1

• Tri- band
• Unique rotating design
• Integrated digital camera (VGA quality) in

unique landscape mode (220x 176)
• Video clip playback (10 sec)
• 5 MB of end user memory
• Situational Lighting (front blade)
• Games (downloadable)
• PIM functionality with Picture Caller ID
• Downloadable themes (ringers, images,

sounds)
• Voice memo
• MIDI speaker
• WAP 2.0
• Bluetooth
• Email clients: POP3, SMTP, IMAP4

CLDC v1.0 and MIDP v2.0 compliant
Maximum MIDlet suite size 100 Kb
Heap size 800 Kb
Maximum record store size 64 K
MIDlet storage available Up to 5 MB
Interface connections HTTP, Socket,

UDP, Serial port
Maximum number of
sockets

4

Supported image formats .PNG, .JPEG
Double buffering Supported
Encoding schemes ISO8859_1,

ISO10646
Input methods Multitap, iTAP
Additional API’s JSR 120, JSR

135, Phonebook
Audio MIDI, WAV, AMR,

MP3

Motorola Developer Information:
Developer Resources at
http://www.motocoder.com/
Tools:
CodeWarrior® Wireless Studio v7.0
J2ME™ SDK version v4.0
Motorola Messaging Suite v1.1

Documentation:
Creating Media for the Motorola V80 Handset

References:
J2ME™ specifications:
http://www.java.sun.com/j2me
MIDP v2.0 specifications:
http://www.java.sun.com/products/midp
CLDC v1.0 specifications:
http://www.java.sun.com/products/cldc
WAP forum: http://www.wap.org
EMS standards: http://www.3GPP.org

Purchase:
Visit the Motocoder Shop at
http://www.motocoder.com/
Accessories: http://www.motorola.com/consumer

Technical Specifications

J2ME™ Information Key Features

Related Information

Appendix E:
Spec Sheet

105

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or
service names are the property of their respective owners. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

© Motorola, Inc. 2002.

