

FOMA M1000
SDK

Users Guide

Version : 1.1

Date : 01-Aug-2005

Copyright © 1998 - 2005 Motorola, Inc. All rights reserved.
This copyright statement does not imply publication of this document.

 Copyright © 1998 - 2005 Motorola, Inc. i

Revision History

Revision # Date Description
0.1 15-Nov-2004 Initial draft based on A1000 SDK User

Guide.
0.2 20-Jan-2005 Removal of Windows NT support
0.3 23-Jan-2005 Update information on using logical

drives for emulator performance.
0.4 28-Jan-2005 Using “devices.exe” command from UIQ

SDK and FOMA M1000 emulator information
added.

0.5 11-Feb-2005 Updated J2ME documentation
0.6 11-Mar-2005 Updated J2ME documentation and Removed

WinNT RAS support.
0.7 28-Mar-2005 Updated J2ME signed MIDlets path.

Updated HAL data.
0.8 01-Jun-2005 Addition of J2ME classfiles location.

Update of GDBStub section due to lack
of serial cable.
Updated HAL data.

1.0 01-Jul-2005 Disclaimer added in Introduction.
Updated HAL data.

1.1 01-Aug-2005 Added Motorola USB GDBstub details.
Update of Redirector section due to
lack of serial cable.
Removed references to Motorola Gaming
API.
Removed reference to JSR 135.
Removed references to MOMAP1510 ABI
Updated HAL data.

 Copyright © 1998 - 2005 Motorola, Inc. 1

Contents

1. Introduction ... 4
1.1 Purpose ... 4
1.2 Disclaimer .. 4
1.3 Target Audience ... 4
1.4 Uninstallation .. 4

2. Development Environment Configuration 5
2.1 Overview .. 5
2.2 FOMA M1000 SDK w/o Symbian 7.0 SDK for UIQ 5
2.3 FOMA M1000 SDK with Symbian 7.0 SDK for UIQ 5
2.3.1 device.exe Kit Management ... 5
2.3.2 Unique FOMA M1000 Tools ... 7

2.4 Native Build Targets .. 7
2.5 J2ME Development .. 7

3. Motorola APIs .. 9
3.1 Overview .. 9
3.2 FOMA M1000 C++ Modifications to UIQ 9
3.3 C++/EPOC APIs ... 9
3.3.1 Audio ... 9
3.3.2 Camera Capture .. 9
3.3.3 Power Server ... 10
3.3.4 Video Playback ... 10

4. FOMA M1000 Key Mappings ... 11
4.1 Overview ... 11
4.2 Restrictions ... 11
4.3 Available Keys ... 11

5. Miscellaneous ... 12
5.1 Handset IMEI ... 12
5.2 RTimers and FOMA M1000 ... 12

6. GDB On-Device Debugging for EPOC .. 13
6.1 Overview ... 13
6.2 Restrictions ... 13
6.3 Running GDBstub.exe on the FOMA M1000 14

7. Redirector On-Device Debugging for Java 15
7.1 Overview ... 15
7.2 Restrictions ... 15
7.3 Starting Redirector on the FOMA M1000 15

8. Winsock ... 16
8.1 Overview ... 16
8.2 Restrictions ... 16
8.3 Usage .. 16
8.3.1 Status ... 16
8.3.2 Enable ... 16
8.3.3 Disable .. 16

9. Digitally Signed Applications ... 17
9.1 Overview ... 17
9.2 Restrictions ... 17
9.3 SIS PKG Files .. 17
9.3.1 Product/Platform Version Compatibility 17
9.3.2 Condition Block Usage .. 18

9.4 J2ME Signing Procedure ... 18
10. Emulator Application Install .. 19

 Copyright © 1998 - 2005 Motorola, Inc. 2

10.1 Overview.. 19
10.2 C++/EPOC.. 19
10.2.1 WINS UDEB Build Target ... 19
10.2.2 Copying Files Into WINS UDEB Directory 19
10.2.3 Using Emulator App Installer ... 19

10.3 J2ME MIDlets.. 19
10.4 Simulating External Flash... 20
10.5 Language Considerations... 20

Appendix A - Remote Access Service PC Setup.................................... 21
Overview .. 21
Restrictions .. 21
Windows 2000 Setup .. 22
Starting RAS Service ... 24
Troubleshooting .. 24

Appendix B - HALData Attributes.. 26
Appendix C - Example GDB session on PC... 28

 Copyright © 1998 - 2005 Motorola, Inc. 3

1. Introduction

1.1 Purpose
The purpose of this document is to provide a users guide for the FOMA M1000
SDK. Topics on setting up the development environment and issues with using
the emulator are covered in this document.

1.2 Disclaimer
This SDK is intended to create applications for the FOMA M1000. Neither
DoCoMo nor Motorola will be held responsible for problems caused by
applications created for non-M1000 terminals.

If applications or any other products created by a developer using the FOMA
M1000 SDK cause difficulties or problems to users of such applications or
products or to third parties, the developer may be held legally responsible.
Developers are to take sufficient care to avoid that possibility.

Some applications may be deleted by the security scan application installed
in the FOMA M1000 depending on its content.

1.3 Target Audience
This document is intended to be utilized by application developers of the
FOMA M1000.

Familiarity with Symbian OS 7.0, UIQ 2.0 or 2.1, and Java 2 Micro Edition is
assumed and recommended.

1.4 Uninstallation
Special note: Cancellation of the uninstall is not supported for this SDK.
Once the uninstall process is started, it cannot be cancelled. However, new
files created or files that are not part of the FOMA M1000 SDK install will
not be deleted.

 Copyright © 1998 - 2005 Motorola, Inc. 4

2. Development Environment Configuration

2.1 Overview
The FOMA M1000 SDK can be used as a standalone environment or in conjunction
with the Symbian 7.0 SDK for UIQ 2.0 or 2.1. The SDK is easier to use as a
standalone environment, but this section will allow developers to use the
Symbian 7.0 SDK for UIQ framework to work with the FOMA M1000 SDK.

2.2 FOMA M1000 SDK w/o Symbian 7.0 SDK for UIQ
If you do not have the Symbian 7.0 SDK for UIQ installed, then the FOMA
M1000 SDK will require the following:

• ActiveState Perl
• Java Runtime Environment

Because the built-in applications use the same file paths as on the
hardware, it is required to map the FOMA M1000 SDK environment to a logical
drive for proper operation of the emulator. This is accomplished by using
the “subst.exe” command.

subst Q: C:\Symbian\M1000SDK

Developers familiar with Symbian programming prior to Symbian 7.0 will
recognize the use of the “subst.exe” command to keep multiple SDK
installations separate. Since this logical drive disappears after rebooting
the PC, you may wish to run the “subst.exe” command at Windows startup to
ensure the logical drive is always ready when your PC boots up.

With the above environment, the following environment variables will need to
be added:

EPOCROOT=\
PATH=\epoc32\gcc\bin;\epoc32\tools;%PATH%

With the above PATH and EPOCROOT environment settings, it will be necessary
for all of the Symbian SDKs to be mapped to a logical drive with the
\epoc32\ directory for the SDK located in the root of the drive.

2.3 FOMA M1000 SDK with Symbian 7.0 SDK for UIQ

2.3.1 device.exe Kit Management

If the Symbian 7.0 SDK for UIQ has been installed, managing separate SDKs is
handled differently. While it is still required to run the FOMA M1000 SDK

 Copyright © 1998 - 2005 Motorola, Inc. 5

emulator in a logical drive through the use of the “subst.exe” command, the
“devices.exe” command from the Symbian 7.0 SDK for UIQ automatically
establishes the EPOCROOT and PATH settings.

With installation of the Symbian 7.0 SDK for UIQ, the path

c:\program files\common files\symbian\tools

has been added to the PATH of the PC. This directory contains several “stub”
files which point to the \epoc32\tools and \epoc32\gcc\bin directories of
the active “kit”. This scheme replaces the setting of the PATH and EPOCROOT
environment variables described in the prior section.

The SDK kit assignment is handled by the “devices.exe” command. After
installing the Symbian 7.0 SDK for UIQ, you may already have one or two UIQ
SDK “kits” installed. To create an FOMA M1000 SDK kit, run the following
from the command line after setting the FOMA M1000 SDK to a logical drive:

devices –add q:\ q:\ @M1000:com.motorola

assuming q:\ is the logical drive for the FOMA M1000 SDK.

Now that there is an FOMA M1000 SDK kit, the “stub” utilities in the
c:\program files\common files\symbian\tools directory can point to the FOMA
M1000 SDK \epoc32\tools directory in three ways.

• To always set the FOMA M1000 SDK as the default device environment,
run the following from the command-line:

devices –setdefault @M1000:com.motorola

• To set the FOMA M1000 SDK as the device environment for a MS-DOS
window, run the following from the command-line:

set EPOCDEVICE=M1000:com.motorola

• To only set the FOMA M1000 SDK as the device environment for a
specific command, add the @device-id as a command argument. For
example:

bldmake bldfiles @M1000:com.motorola

It is important to stress that the use of devices.exe will not correct WINS
emulator issues with file paths. Setting C:\Symbian\M1000SDK as a separate
logical drive corrects those issues.

 Copyright © 1998 - 2005 Motorola, Inc. 6

For more details on devices.exe, refer to the UIQ SDK documentation.

2.3.2 Unique FOMA M1000 Tools

As noted above, the Symbian 7.0 SDK adds the PC directory--C:\Program
Files\Common Files\Symbian\Tools--to the PC’s PATH environment variable.

The use of devices.exe from the UIQ SDK points the application stub files in
the C:\Program Files\Common Files\Symbian\Tools directory to the
\epoc32\tools directory assigned in the devices.exe syntax.

Although the Symbian 7.0 SDK for UIQ includes stub files for most GCC and
generic Symbian tools, it lacks two tools that are unique to the FOMA M1000
SDK which need to be added to the C:\Program Files\Common
Files\Symbian\Tools directory:

• signmidlet – for digital signing of J2ME MIDlets
• wsp – for Winsock operation

To ensure that these two tools are available for a FOMA M1000 SDK kit, copy
the contents of C:\Symbian\M1000SDK\epoc32\stub\tools into the C:\Program
Files\Common Files\Symbian\Tools directory.

2.4 Native Build Targets
Although the FOMA M1000 SDK supports two Application Binary Interfaces
(ABIs)—ARMI and THUMB, most application developers should build for THUMB
for device releases. ARMI libraries are included due to dependencies on some
Motorola THUMB components.

2.5 J2ME Development
The FOMA M1000 device supports the following Java 2 Micro Edition APIs:

JSR 118 - MIDP 2.0
JSR 120 – Wireless Messaging API
JSR 82 – Java APIs for Bluetooth
JSR 185 – Java Technology for the Wireless Industry (JTWI)

These are all documented in the FOMA M1000 J2ME Developer Guide located at
http://www.motocoders.com.

All classfiles used by the FOMA M1000 virtual machine are located in the
C:\Symbian\M1000SDK\j2me\classfiles.zip archive. These include standard Sun
Java APIs and also custom Motorola APIs.

The FOMA M1000 SDK does not contain tools or compilers for J2ME development.
Motorola recommends the following development environment for J2ME

 Copyright © 1998 - 2005 Motorola, Inc. 7

http://www.motocoders.com/

development (all are available as a free download from Sun or from
Motorola).

• Application Development: J2SE SDK v1.4.2
(http://java.sun.com/j2se/1.4.2/download.html)

• Application Development: J2ME Wireless Toolkit 2.2
(http://java.sun.com/products/j2mewtoolkit/index.html)

• Device emulation: FOMA M1000 SDK (http://www.motocoders.com)

• Device loading and testing: Motorola Desktop Suite
(http://www.motocoders.com)

Sample code and technical papers for J2ME and MIDP 2.0 can be found at
various locations on the internet.

The DemoVaders MIDlet located at Symbian’s Developer Network
(http://www.symbian.com/developer/techlib/papers/java_MIDP.asp) is a good
demonstration of MIDP 2.0 (look for the section "Game development across the
MIDP versions”).

Another useful sample MIDlet is the PlayAudio MIDlet located at
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/jav
a/p_playaudiomidp2.0.jsp but please note that the iMelody format used in the
MIDlet is not supported by the FOMA M1000.

 Copyright © 1998 - 2005 Motorola, Inc. 8

http://java.sun.com/j2se/1.4.2/download.html
http://java.sun.com/products/j2mewtoolkit/index.html
http://www.motocoders.com/
http://www.motocoders.com/
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_playaudiomidp2.0.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_playaudiomidp2.0.jsp

3. Motorola APIs

3.1 Overview
This section briefly describes the various Motorola APIs supported in the
FOMA M1000 handset supported by the SDK.

For Symbian 7.0 and UIQ 2.0 and 2.1 APIs and usage, please consult the
Symbian 7.0 SDK for UIQ 2.0 or 2.1 documentation.

3.2 FOMA M1000 C++ Modifications to UIQ
Motorola has made some changes to a number of UIQ classes. The modifications
are a result of bug fixes, function enhancements, or simply a different
version of the UIQ component.

Documentation pointing out the changes from FOMA M1000 modifications to the
UIQ implementation is described in the following SDK HTML:

 C:\Symbian\M1000SDK\docs\UIQModified\index.html

3.3 C++/EPOC APIs
Documentation of the contents and usage of the following APIs are located in
the SDK directory: c:\Symbian\M1000SDK\docs.

3.3.1 Audio

In addition to the Media Server audio interfaces from the UIQ SDK, the FOMA
M1000 handset uses a Motorola Audio API for enhanced sound generation and
audio playback. Note that audio playback is not supported on the WINS
emulator so testing of applications using the Audio API must be performed on
the FOMA M1000 device.

3.3.2 Camera Capture

The FOMA M1000 handset uses Camera Directed Navigation Links (DNLs) to allow
developers to take image snapshots with the device’s built-in digital
camera. The WINS emulator does not support the Camera Capture API, so
applications using it will need to be tested on the target hardware.

 Copyright © 1998 - 2005 Motorola, Inc. 9

 Copyright © 1998 - 2005 Motorola, Inc. 10

3.3.3 Power Server

The FOMA M1000 handset uses the Power Server API for managing power-based
conditions and events. The WINS emulator does not support the Video Playback
API, so applications using video will need to be tested on the handset.

3.3.4 Video Playback

The FOMA M1000 handset uses the Video Playback API for playback of MPEG-4
video content. The WINS emulator does not support the Video Playback API, so
applications using video will need to be tested on the handset.

4. FOMA M1000 Key Mappings

4.1 Overview
In addition to the touchscreen, the FOMA M1000 device has 15 separate
hardware buttons. The FOMA M1000 buttons are assigned to specific scancodes
and keycodes which are detailed here.

For details on the usage of scancodes and keycodes please consult the UIQ
SDK documentation.

4.2 Restrictions
Most device buttons are assigned to specific applications and are
unavailable for use by developers. The following keys are “consumed” by
other applications:

• Send – consumed by Phone application
• End – consumed by Phone application
• Browser/Shortcut – launches Browser app or Shortcut app (if held down)
• Speakerphone – toggles speakerphone functionality
• Volume Up/Down – consumed by audio drivers and by Camera application for

zoom
• Voice Tag – consumed by Contacts application
• Camera – consumed by Camera application

4.3 Available Keys
The buttons that are accessible for developer use are as follows:

• Up – Scancode: EStdKeyDevice4, Keycode: EQuartzKeyFourWayUp
• Down - Scancode: EStdKeyDevice5, Keycode: EQuartzKeyFourWayDown
• Left - Scancode: EStdKeyDevice6, Keycode: EQuartzKeyFourWayLeft
• Right - Scancode: EStdKeyDevice7, Keycode: EQuartzKeyFourWayRight
• Select - Scancode: EStdKeyDevice8, Keycode: EQuartzKeyConfirm
• Game A - Scancode: EStdKeyApplicationA
• Game B - Scancode: EStdKeyApplicationB

The scancodes and keycodes above can be referenced in the e32keys.h and
QuartzKeys.h header files.

Note: The FOMA M1000 joystick is an 8-way switch. When a diagonal direction
is pushed, the joystick hardware actually generates two separate keycodes
rather than an individual unique keycode. The emulator currently cannot
emulate this hardware behavior.

 Copyright © 1998 - 2005 Motorola, Inc. 11

5. Miscellaneous

5.1 Handset IMEI
Some developers wish to use the handset’s IMEI number as a unique
identifier.

The FOMA M1000 SDK supports the reading of the device IMEI value through
Symbian’s PLP interfaces.

Located in the PLPVARIANT.H header file, the function:

 void GetMachineIdL(TPlpVariantMachineId &aId)

 will return the device IMEI number in the aId variable.

5.2 RTimers and FOMA M1000
Although RTimers are described in the UIQ documentation, usage of the
RTimers in the FOMA M1000 handset requires additional consideration.

The power management for the FOMA M1000 handset is particularly aggressive
when it comes to saving handset battery life. Therefore, RTimer events on
the FOMA M1000 behave differently than described in the UIQ documentation in
the following ways:

• RTimer::At() events will not trigger if the FOMA M1000 is off.
• RTimer::After() handlers are vulnerable to the handset entering “low-

power mode” shortly after the timer event.

If an application requires the FOMA M1000 to stay in “run mode” to perform
activities after a timer event (e.g. scheduled pull application for
content), usage of the Power Server API is needed.

By using the InformConditionTypeStart(EMConditionTypeEmail) function in the
Power Server API, the application can manually force the handset into “run
mode” until running InformConditionTypeStop(EMConditionTypeEmail).

Note: Incorrect usage of the InformConditionTypeStart() and
InformConditionTypeStop() can dramatically reduce the battery life of the
FOMA M1000 handset. Developers must avoid circumstances where the FOMA M1000
is forced into “run mode” but is not returned to “low-power mode” after
normal operations or error handling.

 Copyright © 1998 - 2005 Motorola, Inc. 12

6. GDB On-Device Debugging for EPOC

6.1 Overview
The FOMA M1000 device supports on-device debugging of C++/EPOC applications
with the help of the GNU Debugger (GDB). GDB runs on a host computer that is
connected to the device via USB or serial interface. A “stub” program
running on the device provides the debugging services to GDB.

For details on setting up your project for GDB please consult the UIQ SDK
documentation.

For general usage and documentation on the GNU Debugger, please consult the
GDB website at http://www.gnu.org/software/gdb/gdb.html.

Refer to 10.5Appendix C - Example GDB session on PC for an example of using
GDB with the BasicApp sample application from the UIQ 2.1 SDK.

6.2 Restrictions
The GDBstub.exe, GDBseal.dll, and GDBseng.dll files on the FOMA M1000 ROM
(the Z: drive) only support on-device debugging over the serial port and
will not work with the USB cable. For debugging with the USB port, the
installable version of GDB provided in the SDK directory \epoc32\tools must
be used.

Since GDB on the PC is limited to COM ports 1 through 4, the virtual COM
port assigned by Windows when plugging in the USB cable needs to fall in
that range. If Windows has assigned a virtual COM port outside of COM ports
1 through 4, then it will be necessary to free up Modem devices (via Start-
>Settings->Control Panel->Phone and Modem options).

Since GDB requires a free COM port, Windows PCs with Symbian Connect/Desktop
Suite installed will need to disable the COM port in mRouter to avoid
blocking GDB from using the port.

Manually running GDBstub.exe on the FOMA M1000 requires access to the file
system. Therefore, a file manager like QFileman is required to manually run
the stub.

After quitting installable version of GDBstub (entering the “q” character
twice using the virtual keyboard), if the developer wishes to use the FOMA
M1000 as a modem, it will be necessary to unplug and reattach the USB cable.

 Copyright © 1998 - 2005 Motorola, Inc. 13

http://www.gnu.org/software/gdb/gdb.html

 Copyright © 1998 - 2005 Motorola, Inc. 14

6.3 Running GDBstub.exe on the FOMA M1000
Developers wishing to use a USB cable for on-device debugging must follow
the below steps to run the GDB stub program.

Precondition: Install the GDBstub_thumb.sis application located in the SDK
directory c:\Symbian\M1000SDK\epoc32\tools\ in the FOMA M1000 internal
drive (C: drive).

1. Ensure the virtual COM Port assigned to the USB port is free and unused
by Desktop Suite or mRouter (unchecked).

2. Launch File Manager (qfileman) on the device.

3. Goto C:\System\Programs directory on the device.

4. Click on gdbstub.exe from the device File Manager.

5. Run GDB on the PC to monitor the virtual COM port (see Appendix C for
an example session).

An example project—DebugBasicApp—has been made available in the directory:

C:\Symbian\M1000SDK\docs\examples

The File Manager (qfileman) can be downloaded from Symbian’s developer
website:

http://www.symbian.com/developer/downloads/tools.html

http://www.symbian.com/developer/downloads/tools.html

7. Redirector On-Device Debugging for Java

7.1 Overview
The FOMA M1000 device supports on-device debugging of J2ME applications with
the help of the Redirector application. Redirector takes over all three of
Java's standard I/O streams—System.out, System.in, and System.err—and
provides you with the means to redirect these streams to a console window.
In addition it also allows you to redirect output to a log file. Usage of
the serial port output is not supported.

Two versions of the Redirector are provided for developers. One is for the
WINS target environment and is already bundled on the WINS emulator. The
other is built for the THUMB target environment and can be installed on FOMA
M1000 hardware. The Redirect_thumb.SIS application is located in the
C:\Symbian\M1000SDK\epoc32\tools directory.

For general information on the Redirector tool please consult the UIQ SDK
documentation.

7.2 Restrictions
Developers cannot use Redirector to output standard I/O over the serial
port.

Note: Installing the redirect_thumb.sis will result in an incompatible
warning. This can be ignored for the FOMA M1000 because the tool did not use
UIQ 2.0 or FOMA M1000 IDs for product/platform version compatibility during
packaging (see 9.3.1 Product/Platform Version Compatibility).

7.3 Starting Redirector on the FOMA M1000
Running Redirector with Java applications for console or file output on the
FOMA M1000 is described in the UIQ SDK documentation.

 Copyright © 1998 - 2005 Motorola, Inc. 15

8. Winsock

8.1 Overview
To aid developers in testing internet-aware applications, the FOMA M1000 SDK
emulator provides a mechanism for accessing the socket connection of the
development PC using a Winsock connection.

8.2 Restrictions
The Winsock implementation for the WINS emulator does not support proxies
used by the development PC’s network connection.

The Winsock implementation also disables Windows RAS operations when
enabled.

8.3 Usage
The Winsock tool is located in the \epoc32\tools directory of the FOMA M1000
SDK.

8.3.1 Status

To check whether the Winsock component is enabled or disabled for the WINS
emulator, run the following command:

wsp s

Note: the emulator has the Winsock implementation enabled by default.

8.3.2 Enable

To enable the Winsock implementation for the WINS emulator, run the
following command:

wsp e

8.3.3 Disable

To disable the Winsock implementation for the WINS emulator, run the
following command:

wsp d

 Copyright © 1998 - 2005 Motorola, Inc. 16

9. Digitally Signed Applications

9.1 Overview
The FOMA M1000 supports digitally signed applications, including J2ME
MIDlets. This section outlines issues with signing applications—EPOC or
J2ME—with digital certificates.

For details on digitally signing a SIS file, see the UIQ SDK documentation.

9.2 Restrictions
Only J2ME MIDlets signed with a RSA-based key are supported in the FOMA
M1000 secure installer. J2ME MIDlets signed with a key not based on RSA will
be treated as an unsigned MIDlet.

9.3 SIS PKG Files

9.3.1 Product/Platform Version Compatibility

The FOMA M1000 supports the product/platform version compatibility feature
for SIS file packages. The UID should identify the earliest possible
platform version or product to maximize the number of phones the package can
be installed on.

As a UIQ 2.0 device, the FOMA M1000 supports the UIQ 2.0 Platform ID. Newer
versions of the FOMA M1000 may also support the Motorola A920 Platform ID.
The FOMA M1000 does not have the UIQ 2.1 platform ID.

For generic UIQ 2.0 applications, it is recommended to use the UIQ 2.0 ID by
inserting the following line into the PKG file:

(0x101F617B), 2, 0, 0, {"UIQ20ProductID"}

For FOMA M1000 applications where unique Motorola APIs are used, it is
recommended to use the Motorola M1000 Platform ID by inserting the following
line into the PKG file:

(0x10207EA2), 1, 0, 0, {"MotorolaM1000ProductID"}

If your PKG file supports more than one language, the dependency string will
need to be defined multiple times. For example, for a PKG file with support
for three languages, the following line should be used:

 Copyright © 1998 - 2005 Motorola, Inc. 17

(0x101F617B), 2, 0, 0, {"UIQ20ProductID", "UIQ20ProductID",
"UIQ20ProductID"}

9.3.2 Condition Block Usage

The UIQ SDK documentation on PKG file format details the use of condition
blocks for controlling the installer based on device attributes in the
\epoc32\include\hal_data.h file.

Refer to Appendix B - HALData Attributes for the HALData attribute settings
for the FOMA M1000.

9.4 J2ME Signing Procedure
The procedure for digitally signing and installing a J2ME MIDlet is as
follows:

1. Identify the location of the MIDlet JAR and JAD files.

2. Identify the location of the secure key and certificate on the PC hard
drive.

3. Run the “signmidlet” tool in the C:\Symbian\M1000SDK\epoc32 with the
following syntax:

signmidlet.exe -k <.key file> -s <.cer file> -d <.jad file> <.jar file>

where <.key file> is the path and filename of the private key file,
<.cer file> is the path and filename of the public key certificate
file, <.jad file> is the path and filename of the J2ME JAD file, and
<.jar file> is the path and filename of the J2ME JAR file.

Note that digital keys and certificates are not provided by Motorola.

 Copyright © 1998 - 2005 Motorola, Inc. 18

10. Emulator Application Install

10.1 Overview
For development testing, applications can be installed on the FOMA M1000 SDK
emulator in a number of different ways. This section outlines the different
options available to the developer.

10.2 C++/EPOC

10.2.1 WINS UDEB Build Target

By building on a WINS UDEB build target, the developer automatically inserts
compiled applications into the SDK emulator environment. The next time the
emulator is run, the App Launcher will automatically find the application
and display it in the main menu.

10.2.2 Copying Files Into WINS UDEB Directory

If the developer has compiled files, manually copying the compiled files
into PC directory

\epoc32\release\wins\udeb\z\system\apps\<app name>\

will “install” the application into the emulator.

Like building in the WINS UDEB build target, the App Launcher will
automatically find the app and display it in the main menu.

10.2.3 Using Emulator App Installer

If the developer wishes to test the integrity of a packaged SIS file, copy
the SIS file into \epoc32\wins\c\ and run the App Installer from the App
Launcher->Launcher->Install on the WINS emulator.

Note that using the App Installer to uninstall the app is also possible with
this implementation.

10.3 J2ME MIDlets
Unlike C++/EPOC applications, J2ME MIDlets cannot be copied into the
emulator directories directly. Therefore, to install J2ME MIDlets, use the
same steps outlined in 10.2.3 Using Emulator App Installer.

 Copyright © 1998 - 2005 Motorola, Inc. 19

 Copyright © 1998 - 2005 Motorola, Inc. 20

10.4 Simulating External Flash
As described in the UIQ 2.1 SDK documentation, adding the line

_EPOC_DRIVE_D <absolute path>

to the epoc.ini file in the \epoc32\data directory will simulate the
external flash card at the location defined in the <absolute path>.

Note that the name of the drive that will appear in the Application
Installer on the emulator will be the volume name of the drive in the path
which may be the same volume name as the C:\ drive.

10.5 Language Considerations
Because of the FOMA M1000 target market in Japan, the FOMA M1000 WINS
emulator supports both Japanese and English.

Because of licensing issues, the Advanced Wnn Japanese conversion system by
Omron Software is not supported on the emulator. Instead, a partial
implementation is used providing some of the look-and-feel of the actual
system on the handset and allowing developers to enter Japanese characters
into device memory.

Prompts for Motorola applications can be switched from English or Japanese.
To change the language setting on the emulator, run the device Control
Panel. On the General tab is a Language Selection option. After changing the
language option, the emulator must be closed and restarted for the language
change to take effect.

Appendix A - Remote Access Service PC Setup

Overview

Windows 2000 comes with internet access software which can be setup to use a
PPP connection between the WINS emulator and the Remote Access Service (RAS)
server.

The UIQ SDK documentation details how to configure the SDK emulator to use
RAS. This section details the steps on setting up the RAS service on a
Windows 2000 PC.

Restrictions

RAS will not work with Winsock support enabled.

Note that the FOMA M1000 emulator uses the PC COM1 port. The following steps
assume you are using the PC’s COM2 port for the RAS server. If you are using
a PC with only one COM port, you cannot use the same machine as both the
emulator and the RAS server.

 Copyright © 1998 - 2005 Motorola, Inc. 21

Windows 2000 Setup

1. From the Start menu, choose Programs, Administrative Tools, and select
Computer Management.
As an alternative, you can select Settings, Control Panel, and
Administrative Tools from the Start menu and then select Computer
Management.

2. In the left–hand panel of the Computer Management dialog box, expand
“Local Users” and “Groups”, and then select “Users”. Right-click in the
panel and select “Add New User” to create a new account. Create account
with an account name of “RasUser” and a password of “pass”. This
corresponds to a preexisting internet account in the FOMA M1000
emulator called “NT RAS”.

 Copyright © 1998 - 2005 Motorola, Inc. 22

3. Double-click on the “RasUser” account to check the settings. Under
“General”, the boxes labeled “User cannot change password” and
“Password never expires” boxes should be checked, and the box labeled
“Account is disabled” should be unchecked. Under “Member Of”, the
account should be a member of “Guests”. Click “OK” to save the
settings.

4. From the Start menu, choose Settings, Control Panel, and select Phone
and Modem Options. Click on the “Modems” tab. If “Communications cable
between two computers” is installed on COM1, then remove that modem. If
“Communications cable between two computers” is installed on a COM2,
then skip to step 6.

5. Click “Add…” to open the modem wizard. In the next page, check the box
labeled “Don’t detect my modem” and then click “Next”. In the following
page, click on “Communications cable between two computers”, and then
click “Next”. In the following page, select the serial port that you
want to use for RAS connections. Now, click “Next” followed by “Finish”
to close the wizard.

6. Right-click on “Communications cable between two computers”, and then
select “Properties”. Select a COM2 as the serial port. Set the maximum
port speed to 115200 baud, and then click “OK” twice to save the new
settings.

7. From the Start menu, choose Settings, Network and Dial-up Connections,
and select Make New Connection to start the Network Connection Wizard.
In the first page of the wizard, click “Next”. In the second page,
select “Accept incoming connections”, and then click “Next”. In the
third page, select “Communications cable between two computers”, and
then click “Next”. In the fourth page, De-select “Do not allow virtual
private connections”, and then click “Next”. In the fifth page, make
sure that the box labeled “guest” is checked, and then click “Next”.

 Copyright © 1998 - 2005 Motorola, Inc. 23

8. In the next page, select “Internet Protocol (TCP/ IP)”. Double-click on
“TCP/IP” and make sure that “specify TCP/IP address” checked. Then
enter a range of IP addresses that will be used by the RAS server and
the devices connecting the server. (e.g. 10.0.0.1 to 10.0.0.2 will
assign 10.0.0.1 to the server and 10.0.0.2 will get assigned to one
device when Ras is started, Use this server address in “hosts” file)
Then, click “OK”, click “Next”, and then click “Finish” to exit the
wizard.

Starting RAS Service

To start the RAS service, at the command line prompt, enter the following:

NET START "REMOTE ACCESS CONNECTION MANAGER"
NET START "REMOTE ACCESS SERVER"
NET START "SIMPLE TCP/IP SERVICES"
NET START EVENTLOG
START RASMON

It would be best to save these commands in a suitable batch file.

RAS should now be running and should be listening to COM2. Enter the command
‘NET START ’; this should indicate that RAS is running.

When you connect a computer to your PC’s COM2 port, the RASMON program
should display a ‘CD’ light when you make a connection. You can choose
options in the RASMON program which will display data-transmitted/received
activity indicators.

Troubleshooting

• Check that RAS is running by typing NET START at the command line prompt.

• Run the RASMON program to monitor activity on the port.

• Check the following points in the Modems icon in the Control Panel.

 Copyright © 1998 - 2005 Motorola, Inc. 24

1. Click the Connection tab

2. Click Connection

• Data bits: 8

• Parity: None

• Stop bits: 1

3. Click Advanced
In case you use PCMCIA ADAPTER:

• Check Use flow control

• Check Hardware (RTS/CTS)

4. Un-Check Use flow control

 Copyright © 1998 - 2005 Motorola, Inc. 25

Appendix B - HALData Attributes

This information is provided to the developer for condition block usage in
PKG files. The \epoc32\include\hal_data.h header file may need to be
consulted to identify the appropriate enum or value.

Note however, several of these values set in the FOMA M1000 software may be
incorrect. For example, ECPUABI = armi even though Motorola recommends
developers use native build target for FOMA M1000 applications is THUMB.

The following are values for the FOMA M1000 (as of the build in the SDK).

EManufacturer = Motorola
EManufacturerHardwareRev = 0x3
EManufacturerSoftwareRev = 0x001
EManufacturerSoftwareBuild = 0x97f40
EModel = 0x1020423F
EMachineUid = ParagonEuropean
EDeviceFamily = quartz
EDeviceFamilyRev = 0x001
ECPU = arm
ECPUArch = 0x400
ECPUABI = armi
ECPUSpeed = 172032
ESystemStartupReason = cold
ESystemException = 0
ESystemTickPeriod = 15625
EMemoryRAM = 4
EMemoryRAMFree = 4
EMemoryROM = 12
EMemoryPageSize = 0x1000
EPowerGood = 1
EPowerBatteryStatus = good
EPowerBackup = 1
EPowerBackupStatus = good
EPowerExternal = 1
EKeyboard = full
EKeyboardDeviceKeys = 0
EKeyboardAppKeys = 0
EKeyboardClick = 1
EKeyboardClickState = 1
EKeyboardClickVolume = 0
EKeyboardClickVolumeMax = 1
EPen = 1
EPenX = 208
EPenY = 320
EPenDisplayOn = 0
EPenClick = 1
EPenClickState = 1
EPenClickVolume = 0
EPenClickVolumeMax = 1

 Copyright © 1998 - 2005 Motorola, Inc. 26

EMouse = 0
ECaseSwitch = 0
ELEDs = 0
EIntegratedPhone = 0
ESystemDrive = 0x2
EDisplayXPixels = 0
EDisplayYPixels = 0
EDisplayXTwips = 0
EDisplayYTwips = 0
EDisplayColors = 65536
EDisplayState = 1
EDisplayContrast = 0
EDisplayContrastMax = 0
EBacklight = 0
EBacklightState = 0
EDisplayIsMono = 0
EDisplayIsPalettized = 0
EDisplayBitsPerPixel = 0
EDisplayNumModes = 0
EDisplayMemoryAddress = 0
EDisplayOffsetToFirstPixel = 0
EDisplayOffsetBetweenLines = 0
EDisplayPaletteEntry = 0
EDisplayIsPixelOrderRGB = 0
EDisplayIsPixelOrderLandscape = 0
EDisplayMode = 0
EDisplayBrightness = 0
EDisplayBrightnessMax = 0
EDebugPort = 0
ELocaleLoaded = 0
ELanguageIndex = 1
EEnableTouchScreen = 0
EDisableTouchScreen = 0
EDigitiserSwitchOn = 0
EDigitiserSwitchOff = 0

 Copyright © 1998 - 2005 Motorola, Inc. 27

Appendix C - Example GDB session on PC

Motorola has provided a debug BasicApp example in the SDK directory:

C:\Symbian\M1000SDK\docs\examples\

Build parameters have been modified from the UIQ 2.1 SDK example to
demonstrate the changes needed to support GDB on-device debugging. In the
BasicApp project, the gdb.ini presumes the SDK environment has been subst’ed
to a logical drive of Q: and that Microsoft Windows has assigned a virtual
COM 4 port for the USB connection.

The following steps show how GDB can be used to debug the BasicApp example.

Note: It is recommended to use gdb -nw as a command (instead of gdb) because the
GUI front-end Insight used by the graphical gdb is considered unreliable.

Q:\BasicApp>gdb -nw
GNU gdb 4.17-psion-98r2
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This version of GDB has been modified by Symbian Ltd. to add EPOC support.
Type "show epoc-version" to see the EPOC-specific version number.
This GDB was configured as "--host=i686-pc-cygwin32 --target=arm-epoc-pe".
Breakp
(gdb)

oint 1 at 0x10001010: file .\\Basicapp.cpp, line 13.

(gdb) run
Starting program:
Breakpoint 1 at 0xff700010: file .\\Basicapp.cpp, line 13.
warning: Application started but no document specified.
The application may panic at some point if it is document based
and if there is no existing default document.

Note: GDB is case sensitive to file names. Use info sources to find out what it
has “decided” that the file name is. Also note .\\

Breakpoint 1, NewApplication () at .\\Basicapp.cpp:13
13 return new CQBasicApp;
Current language: auto; currently c++
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0xff700010 in NewApplication(void)
 at .\\Basicapp.cpp:13
 breakpoint already hit 1 ti
(gdb) break .\\Cqbasicappui.cpp:27

me

Breakpoint 2 at 0xff700fc0: file .\\Cqbasicappui.cpp, line 27.

 Copyright © 1998 - 2005 Motorola, Inc. 28

(gdb) break .\\Cqbasicappui.cpp:99

 Copyright © 1998 - 2005 Motorola, Inc. 29

Breakpoint 3 at 0xff701
(gdb) info breakpoints

29c: file .\\Cqbasicappui.cpp, line 99.

Num Type Disp Enb Address What
1 breakpoint keep y 0xff700010 in NewApplication(void)
 at .\\Basicapp.cpp:13
 breakpoint already hit 1 time
2 breakpoint keep y 0xff700fc0 in CQBasicAppUi::ConstructL(void)
 at .\\Cqbasicappui.cpp:27
3 breakpoint keep y 0xff70129c in CQBasicAppUi::HandleCommandL(int)

(gdb) continue

 at .\\Cqbasicappui.cpp:99

Continuing.

Breakpoint 2, CQBasicAppUi::ConstructL (this=0x4089c8)
 at .\\Cqbasicappui.cpp:27
27
(gdb) next

 CQikAppUi::ConstructL();

30 iCategoryModel = QikCategoryUtils::ConstructCategoriesLC(R_BAPP_
DEFAULT_CAT
(gdb) next

EGORIES);

31 CleanupStack::Pop(); // iCategoryModel
(gdb) print iCategoryModel
$1 = (CQikCategoryModel *) 0x408f54
(gdb) cont
Continuing.

Note: User input on BasicApp on the device will cause the breakpoint to be hit
again.

Breakpoint 3, CQBasicAppUi::HandleCommandL (this=0x4089c8, aCommand=1)
 at .\\Cqbasicappui.cpp:104
104 SwitchViewL(KUidQBasicAppGraphicsListView,*iGrap
hicsListView);
(gdb) list
99 {
100 // Handle graphics view button, and details view's go ba
ck button
101 case EReturnToListView:
102 case ESwitchToGraphicsView:
103 {
104 SwitchViewL(KUidQBasicAppGraphicsListView,*iGrap
hicsListView);
105 break;
106 }
107 // Handle text view button
108 case ESwitchToTextView:
(gdb) next
105 break;
(gdb) cont
Continuing.

Note: User input on BasicApp on the device will cause the breakpoint to be hit
again.

Breakpoint 3, CQBasicAppUi::HandleCommandL (this=0x4089c8, aCommand=1)

 at .\\Cqbasicappui.cpp:104
104 SwitchViewL(KUidQBasicAppGraphicsListView,*iGrap
hicsListView);
(gdb) kill
Kill t
(gdb)

he program being debugged? (y or n) y

 Copyright © 1998 - 2005 Motorola, Inc. 30

	Introduction
	Purpose
	Disclaimer
	Target Audience
	Uninstallation

	Development Environment Configuration
	Overview
	FOMA M1000 SDK w/o Symbian 7.0 SDK for UIQ
	FOMA M1000 SDK with Symbian 7.0 SDK for UIQ
	device.exe Kit Management
	Unique FOMA M1000 Tools

	Native Build Targets
	J2ME Development

	Motorola APIs
	Overview
	FOMA M1000 C++ Modifications to UIQ
	C++/EPOC APIs
	Audio
	Camera Capture
	Power Server
	Video Playback

	FOMA M1000 Key Mappings
	Overview
	Restrictions
	Available Keys

	Miscellaneous
	Handset IMEI
	RTimers and FOMA M1000

	GDB On-Device Debugging for EPOC
	Overview
	Restrictions
	Running GDBstub.exe on the FOMA M1000

	Redirector On-Device Debugging for Java
	Overview
	Restrictions
	Starting Redirector on the FOMA M1000

	Winsock
	Overview
	Restrictions
	Usage
	Status
	Enable
	Disable

	Digitally Signed Applications
	Overview
	Restrictions
	SIS PKG Files
	Product/Platform Version Compatibility
	Condition Block Usage

	J2ME Signing Procedure

	Emulator Application Install
	Overview
	C++/EPOC
	WINS UDEB Build Target
	Copying Files Into WINS UDEB Directory
	Using Emulator App Installer

	J2ME MIDlets
	Simulating External Flash
	Language Considerations

	Remote Access Service PC Setup
	Overview
	Restrictions
	Windows 2000 Setup
	Starting RAS Service
	Troubleshooting

	HALData Attributes
	Example GDB session on PC

