

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. i

FOMA M1000
Power Management API

Specification

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604

Version :01.00

Date : 03-04-2005

Copyright © 1998 - 2005 Motorola, Inc. All rights reserved
This copyright statement does not imply publication of this document

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 1

Revision History

Template Information :

Document Control Number : IL93-STD-01-0224
Version : 01.00
Date : 03-Nov-2001

Revision History:

Revision # Date Description
01.00 03-04-2005 Creation of document for outside FOMA

M1000 developers

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 2

Contents

1. Introduction ... 5
1.1 Purpose ... 5
1.2 Target Audience ... 5
1.3 Abbreviations, Acronyms and Definitions 5
1.4 Problem Reporting Instructions .. 5

2. Overview ... 6
2.1 Goals and Objectives .. 6

3. API Information .. 7
3.1 Starting the Power Server ... 7
3.1.1 powerserverexe.exe .. 7
3.1.2 StartPowerServer() .. 7

3.2 Connection to the Power Server .. 7
3.2.1 RMPowerServer::Connect() .. 7
3.2.2 RMPowerServer::Close() .. 7

3.3 System Activity/Condition Information 7
3.3.1 Condition Types ... 8
3.3.2 RMPowerServer::InformConditionStart() 9
3.3.3 RMPowerServer::InformConditionStop() 9
3.3.4 RMPowerServer::InformConditionPause() 9
3.3.5 RMPowerServer::InformConditionResume() 9
3.3.6 User Activity/Inactivity .. 9
3.3.6.1 EMActivity... 10
3.3.6.2 EMInactivityDisplayFrontlight...................................... 10
3.3.6.3 EMInactivityFrontlight... 10
3.3.6.4 EMInactivityDisplay.. 10
3.3.6.5 EMResetInactivity.. 10
3.3.6.6 EMActivityTouchScreen.. 10
3.3.6.7 EMActivityGameA.. 10
3.3.6.8 EMActivityGameB.. 11
3.3.6.9 EMActivityShortcut... 11
3.3.6.10 EMActivityHutch... 11
3.3.6.11 EMActivityEnd... 11
3.3.6.12 EMActivitySend.. 11
3.3.6.13 EMActivityUp.. 11
3.3.6.14 EMActivityDown.. 11
3.3.6.15 EMActivityLeft.. 11
3.3.6.16 EMActivityRight... 11
3.3.6.17 EMActivityCenter.. 11
3.3.6.18 EMActivitySpeaker... 11
3.3.6.19 EMActivityVolUp... 12
3.3.6.20 EMActivityVolDn... 12
3.3.6.21 EMActivityVR.. 12
3.3.6.22 EMActivityDevLock... 12

3.3.7 RMPowerServer::InformInactivity() 12
3.4 Power Events ... 12
3.4.1 Power Events ... 12
3.4.1.1 EMPowerEventPowerOn.. 13
3.4.1.2 EMPowerEventPowerOff... 13
3.4.1.3 EMPowerEventRfOn... 13
3.4.1.4 EMPowerEventRfOff.. 13
3.4.1.5 EMPowerEventBpReset.. 13

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 3

3.4.1.6 EMPowerEventPowerCut... 13
3.4.1.7 EMPowerEventLinkSuspend.. 13
3.4.1.8 EMPowerEventLinkAvailable.. 14
3.4.1.9 EMPowerEventPowerOnComplete.. 14
3.4.1.10 EMPowerEventUuudPowerOff.. 14
3.4.1.11 EMPowerEventWakeUp.. 14
3.4.1.12 EMPowerEventLinkResume.. 14
3.4.1.13 EMPowerEventBpSuspended... 14
3.4.1.14 EMPowerEventRtcOn... 14
3.4.1.15 EMPowerEventUuudPowerOffSilent.................................... 14
3.4.1.16 EMPowerEventChargeOnly.. 14
3.4.1.17 EMPowerEventSleep... 15
3.4.1.18 EMPowerEventApReset... 15

3.4.2 RMPowerServer::NotifyOnPowerEvent() 16
3.4.3 RMPowerServer::CancelNotifyOnPowerEvent() 16
3.4.4 Power Event Wrapper API .. 16
3.4.4.1 MMPowerEventObserver::HandleNotificationEvent...................... 16
3.4.4.2 Power Event Processing Modes....................................... 16
3.4.4.3 CMPowerEvent::NewL()... 18
3.4.4.4 CMPowerEvent::NotifyOnPowerEvent()................................. 18
3.4.4.5 CMPowerEvent::CancelNotifyOnPowerEvent()........................... 18
3.4.4.6 CMPowerEvent::SetPowerEventProcessingMode()........................ 18
3.4.4.7 CMPowerEvent::PowerEventProcessingComplete()....................... 19

3.5 RF State ... 19
3.5.1 RF States .. 19
3.5.2 RMPowerServer::RequestSetRFState() 20
3.5.3 RMPowerServer::GetRFState() .. 20

3.6 Link State ... 20
3.6.1 Link States .. 20
3.6.1.1 EMLinkStateDisconnected.. 20
3.6.1.2 EMLinkStateConnected... 20
3.6.1.3 EMLinkStateSuspended... 20

3.6.2 Link Failure Cause Codes ... 21
3.6.3 RMPowerServer::GetLinkState() .. 21
3.6.4 RMPowerServer::RequestLinkResume() 21
3.6.5 RMPowerServer::InformLinkFailure() 21

3.7 Resets ... 22
3.7.1 RMPowerServer::RequestSystemReset() 22
3.7.2 RMPowerServer::RequestSystemShutdown() 22
3.7.3 RMPowerServer::RequestMasterClear() 22
3.7.4 RMPowerServer::RequestMasterReset() 22

3.8 Device Management .. 22
3.8.1 Bluetooth .. 23
3.8.1.1 RMPowerServer::BluetoothEnable()................................... 23
3.8.1.2 RMPowerServer:: BluetoothDisable()................................. 23
3.8.1.3 RMPowerServer:: BluetoothReset()................................... 23
3.8.1.4 RMPowerServer:: IsBluetoothEnabled()............................... 23
3.8.1.5 RMPowerServer::GetBluetoothDeviceAddress()......................... 23

3.8.2 Baseband ... 23
3.8.2.1 RMPowerServer::GetBasebandUid().................................... 24

3.8.3 AP DSP ... 24
3.8.3.1 RMPowerServer::RequestDspClock()................................... 24

3.8.4 GPS .. 24
3.8.5 Camera ... 24
3.8.5.1 RMPowerServer::CameraEnable()...................................... 25
3.8.5.2 RMPowerServer:: CameraDisable().................................... 25

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 4

3.8.5.3 RMPowerServer:: CameraReset()...................................... 25
3.8.5.4 RMPowerServer:: IsCameraEnabled().................................. 25

3.8.6 Keypad Backlight ... 25
3.8.6.1 RMPowerServer::KeypadBacklightEnable()............................. 25
3.8.6.2 RMPowerServer::KeypadBacklightDisable()............................ 25
3.8.6.3 RMPowerServer::SetKeypadBacklightTime()............................ 26

3.8.7 USB Client/Function .. 26
3.8.8 RTC .. 26
3.8.9 IR ... 26

3.9 Power Management Sample Code ... 27

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 5

1. Introduction

1.1 Purpose
This document describes the Power Management API’s provided in the FOMA
M1000 products. Please refer to the reference documentation for
details related to the architecture and design.

1.2 Target Audience
This document is intended for FOMA M1000 software developers that
require the use of the Power Management interfaces.

1.3 Abbreviations, Acronyms and Definitions
See reference Error! Reference source not found..

AP application processor
API application program interface
BP baseband processor
BT Bluetooth
DLC dynamic link channel
DSR virtual signal used to indicate a MUX channel should be closed.
IPC interprocessor communications
MUX 27.010 multiplexor between AP and BP
PCAP Platform Control Audio Power IC
PM power management
PS Power Server
RTC Real-Time Clock
SW software
UID Baseband Unique ID
USB Universal Serial Bus
UUUD User Up, User Down (a Motorola server)
WLAN Wireless, Local Area Network

1.4 Problem Reporting Instructions
Please send problems to http://www.motocoders.com.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 6

2. Overview

2.1 Goals and Objectives
This document describes the Power Management APIs provided by the Power
Server.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 7

3. API Information
This section will detail API’s that Power Server provides.

3.1 Starting the Power Server

3.1.1 powerserverexe.exe

The Power Server executable name that is required to start the server.

3.1.2 StartPowerServer()

This global function starts the Power Server process.

Input : void
Output: void
Usage : StartPowerServer();

3.2 Connection to the Power Server

3.2.1 RMPowerServer::Connect()

Connect to the Power Server. This will start the server if it isn’t
already.

Input : void
Output: TInt
Usage : TInt ret = iPowerServer.Connect();

3.2.2 RMPowerServer::Close()

Disconnect from the Power Server. The Power Server is not a transient
server, so it will remain active even with no clients connected.

Input : void
Output: void
Usage : iPowerServer.Close();

3.3 System Activity/Condition Information
Clients to Power Management need to call these API’s to inform it of
the various system activities taking place. The Power Server uses this
information as input to make state transition decisions.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 8

3.3.1 Condition Types

The following lists the system conditions (TMConditionType) defined in
mpowerserver_clientapi.h that the Power Management system needs to be
aware of.

enum TMConditionType
{

EMConditionTypeCallVoice,
EMConditionTypeCallCsDataInternal,
EMConditionTypeCallPacketDataInternal,
EMConditionTypeCallCsDataExternal,
EMConditionTypeCallPacketDataExternal,
EMConditionTypeCallVideo,
EMConditionTypeAudioPlayback,
EMConditionTypeVideoPlayback,
EMConditionTypeAccessorySerial,
EMConditionTypeAccessoryUsb,
EMConditionTypeAccessoryIrEnabled,
EMConditionTypeAccessoryIrConnection,
EMConditionTypeAccessoryBluetooth,
EMConditionTypeBluetoothHeadsetProfile,
EMConditionTypeBluetoothSerialProfile,
EMConditionTypeBatteryPower,
EMConditionTypeExternalPower,
EMConditionTypeLowBatteryWarning,
EMConditionTypeLowBatteryThreshold,
EMConditionTypeConvenienceTimerExpired,
EMConditionTypeChargeTimerExpired,
EMConditionTypeSync,
EMConditionTypeDataLogging,
EMConditionTypeIPC,
EMConditionTypeACM1,
EMConditionTypeACM2,
EMConditionTypeDLOGDSP,
EMConditionTypeDLOGMCU,
EMConditionTypeBT,
EMConditionTypeCarKitPresent,
EMConditionTypeIgnition,
EMConditionTypeAudioPlayerPlayback,
EMConditionTypeMidrateCharge,
EMConditionTypeWebMediaPlayback,
EMConditionTypeRingVoice,
EMConditionTypeRingVideo,
EMConditionTypeSMSTerminate,
EMConditionTypeCBTerminate,
EMConditionTypePIN1Request,
EMConditionTypeAccessoryDumb,
EMConditionTypeAccessoryHeadset,
EMConditionTypeAccessoryUnsupported,
EMConditionTypeAccessoryMmc,
EMConditionTypeNetworkService,
EMConditionTypeBacklightOn,
EMConditionTypeEmail,
EMConditionTypeWLAN

};

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 9

3.3.2 RMPowerServer::InformConditionStart()

Inform the Power Server that a defined condition has started. The
caller is required to inform the Power Server when the condition has
stopped/ended.

Input : const TMConditionType aCondition
Output: void
Usage : iPowerServer.InformConditionStart (EMConditionTypeCallVoice);

3.3.3 RMPowerServer::InformConditionStop()

Inform the Power Server that a defined condition has stopped/ended.
This also calls InformConditionPause() on the specific condition to
clear the client’s conditions completely.

Input : const TMConditionType aCondition
Output: void
Usage : iPowerServer.InformConditionStop (EMConditionTypeCallVoice);

3.3.4 RMPowerServer::InformConditionPause()

Inform the Power Server that a condition has paused. The caller may
use this instead of stop because certain resources may still be in use
even though the condition is not actively running. An example of this
might be the MP3 player. Pausing may require that certain resources
are still loaded on the DSP.

Input : const TMConditionType aCondition
Output: void
Usage : iPowerServer.InformConditionPause (EMConditionTypeAudioPlayback);

3.3.5 RMPowerServer::InformConditionResume()

Inform the Power Server that a condition that was paused has now
resumed.

Input : const TMConditionType aCondition
Output: void
Usage : iPowerServer.InformConditionResume (EMConditionTypeAudioPlayback);

3.3.6 User Activity/Inactivity

The following lists the activity/inactivity types (TMInactivity)
defined in mpowerserver_clientapi.h by Power Management. These are
used to inform the Power Server of the various levels of user activity
and inactivity.

enum TMInactivityType
{
EMActivity,
EMInactivityDisplayFrontlight,
EMInactivityFrontlight,
EMInactivityDisplay,
EMResetInactivity,

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 10

EMActivityTouchScreen,
EMActivityGameA,
EMActivityGameB,
EMActivityShortcut,
EMActivityHutch,
EMActivityEnd,
EMActivitySend,
EMActivityUp,
EMActivityDown,
EMActivityLeft,
EMActivityRight,
EMActivityCenter,
EMActivitySpeaker,
EMActivityVolUp,
EMActivityVolDn,
EMActivityVR,
EMActivityDevLock,
};

3.3.6.1 EMActivity
Power Server is informed of this type anytime there is user interaction
with the device via the keypad or the touchscreen.

3.3.6.2 EMInactivityDisplayFrontlight
Power Server is informed of this type when there hasn’t been user
interaction with the device via the keypad or the touchscreen for the
Frontlight and Display Inactivity time set in the Control Panel. Note
that this is the equivalent of EMInactivityDisplay type since the
Display timeout is always equal to or greater than the Frontlight
timeout.

3.3.6.3 EMInactivityFrontlight
Power Server is informed of this type when there hasn’t been user
interaction with the device via the keypad or the touchscreen for the
Frontlight Inactivity time set in the Control Panel.

3.3.6.4 EMInactivityDisplay
Power Server is informed of this type when there hasn’t been user
interaction with the device via the keypad or the touchscreen for the
Display Inactivity time set in the Control Panel.

3.3.6.5 EMResetInactivity
Power Server is informed of this type when the current inactivity time
should be reset. This prolongs the time before a standby transition by
a minimum of the current display inactivity timeout.

3.3.6.6 EMActivityTouchScreen
Power Server is informed of this type when a touch screen event occurs.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.7 EMActivityGameA
Power Server is informed of this type when the Game A key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 11

3.3.6.8 EMActivityGameB
Power Server is informed of this type when the Game B key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.9 EMActivityShortcut
Power Server is informed of this type when the Shortcut key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.10 EMActivityHutch
Power Server is informed of this type when the Hutch key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.11 EMActivityEnd
Power Server is informed of this type when the End key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.12 EMActivitySend
Power Server is informed of this type when the Send key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.13 EMActivityUp
Power Server is informed of this type when the Up key is pressed. This
prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.14 EMActivityDown
Power Server is informed of this type when the Down key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.15 EMActivityLeft
Power Server is informed of this type when the Left key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.16 EMActivityRight
Power Server is informed of this type when the Right key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.17 EMActivityCenter
Power Server is informed of this type when the Center key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.18 EMActivitySpeaker
Power Server is informed of this type when the Speaker key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 12

3.3.6.19 EMActivityVolUp
Power Server is informed of this type when the VolUp key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.20 EMActivityVolDn
Power Server is informed of this type when the VolDn key is pressed.
This prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.21 EMActivityVR
Power Server is informed of this type when the VR key is pressed. This
prolongs the time before a standby transition by a minimum of the
current display and front light inactivity timeout.

3.3.6.22 EMActivityDevLock
Power Server is informed of this type when the Device Lock key is
pressed. This prolongs the time before a standby transition by a
minimum of the current display and front light inactivity timeout.

3.3.7 RMPowerServer::InformInactivity()

Interface to inform Power Server of changes to the user activity level.
The return type of ETrue indicates that the EMActivity type should be
disgarded.

Input : const TMInactivityType& aInactivityType
Output: TBool
Usage : iPowerServer.InformInactivity (EMActivity);

3.4 Power Events
The following is used to allow clients to be informed of various power
events in the system by requesting notification. Note that when
clients register for notification of events, they will receive ALL
events. It is up to the client to determine which events they wish to
take action on.

3.4.1 Power Events

The following lists the Power Events (TMPowerEvent) defined in
mpowerserver_clientapi.h.

enum TMPowerEvent
{
EMPowerEventPowerOn,
EMPowerEventPowerOff,
EMPowerEventRfOn,
EMPowerEventRfOff,
EMPowerEventBpReset,
EMPowerEventPowerCut,
EMPowerEventLinkSuspend,
EMPowerEventLinkAvailable,
EMPowerEventPowerOnComplete,

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 13

EMPowerEventUuudPowerOff,
EMPowerEventWakeUp,
EMPowerEventLinkResume,
EMPowerEventBpSuspended,
EMPowerEventRtcOn,
EMPowerEventUuudPowerOffSilent,
EMPowerEventChargeOnly,
EMPowerEventSleep,
EMPowerEventApReset
};

typedef TPckgBuf<TMPowerEvent> TMPowerEventPckgBuf;

3.4.1.1 EMPowerEventPowerOn
Power Server sends this event when the phone has completed loading
required servers and apps on cold boot. At this point, power
management has established a connection and set the state of the
Baseband processor. The system may either be in Active or Airplane
mode at this point. This may be determined by calling the GetRfState
API (refer to 3.5.3). User interaction will begin at the control of the
UUUD server and app, which manages things such as the splash screen and
password prompts.

3.4.1.2 EMPowerEventPowerOff
Power Server sends this event when the phone is going to transition to
User Off Mode. This event implies that the BP is being shut off and
the USB Link between the boards will be disconnected (27.010 MUX not
available).

3.4.1.3 EMPowerEventRfOn
Power Server sends this event when the RF state of the phone is changed
to RF On.

3.4.1.4 EMPowerEventRfOff
Power Server sends this event when the RF state of the phone is changed
to RF Off. This implies that RF services are not available.

3.4.1.5 EMPowerEventBpReset
Power Server sends this event when the BP has experienced a reset, due
to a panic, a failure or from the AP resetting it.

3.4.1.6 EMPowerEventPowerCut
Power Server sends this event when the phone has experienced a power
cut. This event will be sent after the phone has recovered from the
power cut (the BP has been restored).

3.4.1.7 EMPowerEventLinkSuspend
Power Server sends this event when it has decided to suspend the USB
link to the Baseband. If a client requires the link to write data to
the Baseband, the client may call the RequestLinkResume() method on the
PowerServer.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 14

3.4.1.8 EMPowerEventLinkAvailable
Power Server sends this event when the 27.010 MUX has been successfully
started and is available for clients to open a channel. Clients must
not open a channel until this event has been sent. Clients must query
the state of the link via the GetLinkState() method after subscribing
for the event the first time to ensure that event was not sent prior to
subscription for the event notification.

3.4.1.9 EMPowerEventPowerOnComplete
Power Server sends this event when clients (specifically the UUUD
server) notify Power Server that the EMPowerEventPowerOn event has been
completely processed.

3.4.1.10 EMPowerEventUuudPowerOff
Power Server sends this event when it first detects a power off
condition. This event is meant only for the UUUD Server to handle some
initial Application level shutdown.

3.4.1.11 EMPowerEventWakeUp
Power Server sends this event when the Power Mode of the system
transitions out of a standby mode. It can be used by entities like the
status bar to know when to refresh UI level display items, for example.

3.4.1.12 EMPowerEventLinkResume
Power Server sends this event when it has successfully resumed the USB
link to the Baseband. This event may be the result of a client calling
the RequestLinkResume() method on the PowerServer or by the Baseband
requesting a remote wakeup because it has a message to send to the AP.

3.4.1.13 EMPowerEventBpSuspended
Power Server sends this event when it receives notification from the
Baseband that it has entered SUSPEND mode. This event indicates that
services that were available may no longer be available due to the mode
change.

3.4.1.14 EMPowerEventRtcOn
Power Server sends this event when it wakes from User Off mode due to
an RTC alarm. Additionally, this event may be used to indicate a
silent startup, the matching startup event to
EMPowerEventUuudPowerOffSilent, silent shutdown event.

3.4.1.15 EMPowerEventUuudPowerOffSilent
Power Server sends this event when it first detects a power off
condition. This event is meant only for the UUUD Server to handle some
initial Application level shutdown. This event will be sent instead of
EMPowerEventUuudPowerOff if the shutdown animation and audio playback
should be skipped to silently shut off the device. This event would be
used in cases of a panic shutdown/restart or other cases where the
obvious user feedback of the shutdown would like to be avoided.

3.4.1.16 EMPowerEventChargeOnly
Power Server sends this event when it transitions the system to Charge
Only Mode. In this mode, the user is unable to fully interact with the
device other than to observe the current charging status.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 15

3.4.1.17 EMPowerEventSleep
Power Server sends this event when it is transitioning to Data/MP3
Standby mode. This indicates that the display is off and any periodic
updates to the display should be avoided (e.g., signal strength). If
possible, the Baseband should be told to prevent sending asynchronous
messages that would simply result in updates to the display.

3.4.1.18 EMPowerEventApReset
Power Server sends this event when the AP has experienced a reset, due
to a panic. This is sent in place of the EMPowerEventPowerOn event.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 16

3.4.2 RMPowerServer::NotifyOnPowerEvent()

This utility allows clients to register for notification of system
power events. The various power events are detailed above.

Input : TRequestStatus& aReqStat, TMPowerEventPckgBuf& aPowerEventPckg
Output: void
Usage : iServer.NotifyOnPowerEvent(iStatus, iPowerEvent);

A wrapper API exists for this function called CMPowerEvent. Please
refer to the following section for more details.

3.4.3 RMPowerServer::CancelNotifyOnPowerEvent()

This utility allows clients to cancel registration for notification of
system power events.

Input : TRequestStatus& aReqStat, TMPowerEventPckgBuf& aPowerEventPckg
Output: void
Usage : iServer.CancelNotifyOnPowerEvent();

A wrapper API exists for this function called CMPowerEvent. Please
refer to the following section for more details.

3.4.4 Power Event Wrapper API

The following classes are part of a “convenience” wrapper for the Power
Event API’s. It implements an Active Object and provides a simple mix-
in observer class (MMPowerEventObserver) that gets called on power
events. It also handles making a connection to the PowerServer
(creating a session) and registering for subsequent power events
(required as part of the NotifyOnPowerEvent API).

3.4.4.1 MMPowerEventObserver::HandleNotificationEvent

CMPowerEvent makes this callback whenever a Power Event occurs. The
parameter contains the event that occurred. The client does NOT need
to call the NotifyOnPowerEvent method to get the next event; this is
done automatically.

Input : TMPowerEvent aPowerEvent
Output: void
Usage : HandlerNotificationEvent(thePowerEvent);

3.4.4.2 Power Event Processing Modes

The following lists the Power Event Processing Modes
(TMPowerEventProcessMode) defined in mpowerevent.h.

enum TMPowerEventProcessMode
{
EProcessModeNone,
EProcessModeAuto,
EProcessModeManual
};

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 17

3.4.4.2.1 EProcessModeNone
Power Server will not wait for the client to process the event. This
is the default behavior of the class.

3.4.4.2.2 EProcessModeAuto
Power Server will wait for the client to process the event. The server
is notified of event process completion automatically after the
HandleNotificationEvent callback is done.

3.4.4.2.3 EProcessModeManual
Power Server will wait for the client to process the event. The server
is notified of event process completion as a result of the client
calling PowerEventProcessingComplete. Clients are required to
acknowledge every event, even those they are not interested in.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 18

3.4.4.3 CMPowerEvent::NewL()

The CMPowerEvent class is a convenience class that provides some
additional functionality on top of the RMPowerServer API’s. This
utility allows clients to register for notification of system power
events without needing to explicitly connect to the Power Server. The
utility also automatically re-registers for power event notification.

Input : void
Output: CMPowerEvent*
Usage : CMPowerEvent* myPowerEvent = CMPowerEvent::NewL();

Note that this utility uses an observer callback to handle the power
event received from the Power Server. The observer is the mix-in class
MMPowerEventObserver. A pure virtual function HandleNotificationEvent
is called on the observer. Please refer to cmpowerevent.h and
mpowerserver_clientapi.h file or the API summary documentation for full
details.

3.4.4.4 CMPowerEvent::NotifyOnPowerEvent()

The CMPowerEvent class is a convenience class that provides some
additional functionality on top of the RMPowerServer API’s. This
utility allows clients to register for notification of system power
events without needing to explicitly connect to the Power Server. The
utility also automatically re-registers for power event notification.

Input : MMPowerEventObserver& aObserver
Output: void
Usage : iPowerEvent.NotifyOnPowerEvent(this);

Note that this utility uses an observer callback to handle the power
event received from the Power Server. The observer is the mix-in class
MMPowerEventObserver. A pure virtual function HandleNotificationEvent
is called on the observer. Please refer to cmpowerevent.h and
mpowerserver_clientapi.h file or the API summary documentation for full
details.

3.4.4.5 CMPowerEvent::CancelNotifyOnPowerEvent()

The CMPowerEvent class is a convenience class that provides some
additional functionality on top of the RMPowerServer API’s. This
method allows clients to cancel registration for notification of system
power events without needing to explicitly connect to the Power Server.

Input : MMPowerEventObserver& aObserver
Output: void
Usage : iPowerEvent.CancelNotifyOnPowerEvent(this);

The observer is the mix-in class MMPowerEventObserver. A pure virtual
function HandleNotificationEvent is called on the observer. Please
refer to cmpowerevent.h and mpowerserver_clientapi.h file or the API
summary documentation for full details.

3.4.4.6 CMPowerEvent::SetPowerEventProcessingMode()

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 19

The CMPowerEvent class is a convenience class that provides some
additional functionality on top of the RMPowerServer API’s. This
method allows clients to set the system power event processing mode.

Input : MMPowerEventObserver& aObserver
Output: void
Usage : iPowerEvent.CancelNotifyOnPowerEvent(this);

The observer is the mix-in class MMPowerEventObserver. A pure virtual
function HandleNotificationEvent is called on the observer. Please
refer to cmpowerevent.h and mpowerserver_clientapi.h file or the API
summary documentation for full details.

3.4.4.7 CMPowerEvent::PowerEventProcessingComplete()

The CMPowerEvent class is a convenience class that provides some
additional functionality on top of the RMPowerServer API’s. This
method allows clients to notify the Power Server that the last power
event received has been processed. This allows the Power Server to
continue on to the next state. Note that this method shall only be
called when the ProcessingMode has been set to EMProcessModeManual.

Input : MMPowerEventObserver& aObserver
Output: void
Usage : iPowerEvent.CancelNotifyOnPowerEvent(this);

The observer is the mix-in class MMPowerEventObserver. A pure virtual
function HandleNotificationEvent is called on the observer. Please
refer to cmpowerevent.h and mpowerserver_clientapi.h file or the API
summary documentation for full details.

Note that it is the client’s responsibility to call this method for
EVERY power event received when the mode is EMProcessModeManual.
Failure to do so could corrupt the Power Server’s state.

3.5 RF State
The following is used to allow clients to query and change the RF state
of the machine.

3.5.1 RF States

The following lists the RF States (TMRfState) as defined in
mpowerserver_clientapi.h for use with RF APIs.

enum TMRfState
{
EMRfStateRfOff,
EMRfStateRfOn,
};

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 20

3.5.2 RMPowerServer::RequestSetRFState()

Request that the Power Server set the RF state of system. State can be
EMRfStateRfOff or EMRfStateRfOn.

Input : const TMRfState aRfState
Output: void
Usage : iPowerServer.RequestSetRFState (EMRfStateRfOn);

3.5.3 RMPowerServer::GetRFState()

Get the RF State of the system. State can be EMRfStateRfOff or
EMRfStateRfOn.

Input : void
Output: TMRfState& aRfState
Usage : iPowerServer.GetRfState (theRfState);

3.6 Link State
The following is used to allow clients to query and possibly change the
state of the IPC Link to the Baseband.

3.6.1 Link States

The following lists the Link States (TMLinkState) defined in
mpowerserver_clientapi.h by Power Management.

enum TMLinkState
{
EMLinkStateDisconnected,
EMLinkStateConnected,
EMLinkStateSuspended
};

3.6.1.1 EMLinkStateDisconnected
Power Server returns this state when the link is not connected.
Therefore, the mux is unavailable for use by the clients. Power Server
has either not yet started the link or has had to restart the link and
it is not yet available.

3.6.1.2 EMLinkStateConnected
Power Server returns this state when the link has been successfully
started. MUX clients may open their channels on the link.

3.6.1.3 EMLinkStateSuspended
Power Server reports this state if it has decided to suspend the USB
link to the Baseband. If a client requires the link to write data to
the Baseband, the client may call the RequestLinkResume() method on the
PowerServer.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 21

3.6.2 Link Failure Cause Codes

The following lists the Link Failure/Problem codes (TMLinkProblem)
defined in mpowerserver_clientapi.h by Power Management. The code
helps identify the problem that was detected. This may be used to
determine a course of action.

enum TMLinkProblem
{
EMLinkProblemNone,
EMLinkProblemUnknown,
EMLinkProblemNoResponse,
EMLinkProblemErrors
};

3.6.3 RMPowerServer::GetLinkState()

This utility allows clients to query the current state of the link.
Clients should call this method prior to attempting to open a channel
on the MUX. After first registering for Power Events from the Power
Server, clients should also call this method in case the link became
available prior to the clients having been started (this will almost
certainly be the case during cold boot).

Input : TMLinkState& aLinkState
Output: void
Usage : iServer.GetLinkState(iLinkState);

3.6.4 RMPowerServer::RequestLinkResume()

This utility allows clients to request Power Management to resume a
suspended link. Clients should call this method prior to attempting to
use the mux after being told that the link is suspended via a Power
Event or after getting a LinkSuspended state back from GetLinkState().
Note: The suspend feature will not be implemented until a much later
release of Power Management.

Input : void
Output: void
Usage : iServer.RequestLinkResume();

3.6.5 RMPowerServer::InformLinkFailure()

This method is an input to the Power Manager to indicate that there is
a potential problem on the link. Users that have a DLC to the BP would
call this if they detect a potential problem on their respective link.
Clients should attempt to identify a Link Failure Cause and supply the
API with the name of the channel being used. Power Server will ping
its own peer on the Baseband to attempt to reproduce the problem. If PM
detects a problem, the link may be restarted.

If restarting the link does not solve the problem, a Baseband reset
will be initiated. Clients can be notified of the Baseband reset via
other Power Server API’s.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 22

Input : const TMLinkProblem& aCause, const TDesC& aCsyMuxPort
Output: void
Usage : iServer.InformLinkFailure();

3.7 Resets
The following provides a mechanism to allow clients to request various
system resets.

3.7.1 RMPowerServer::RequestSystemReset()

Request Power Management to reset the system. Following this call, the
machine will undergo a full cold boot by transitioning from Off Mode to
the last User Mode (Active or Airplane).

Input : void
Output: void
Usage : iServer.RequestSystemReset();

3.7.2 RMPowerServer::RequestSystemShutdown()

Request Power Management to shutdown the system. This causes a
transition to the User Off Mode. Subsequent power up will be
considered a warm boot and the system will transition to the last User
Mode (Active or Airplane).

Input : void
Output: void
Usage : iServer.RequestSystemShutdown();

3.7.3 RMPowerServer::RequestMasterClear()

Request Power Management to initiate a master clear operation. This
results in a system reset. Subsequent power up will be considered a
cold boot.

Input : void
Output: void
Usage : iServer.RequestMasterClear();

3.7.4 RMPowerServer::RequestMasterReset()

Request Power Management to initiate a master reset operation. This
results in a system reset. Subsequent power up will be considered a
cold boot.

Input : void
Output: void
Usage : iServer.RequestMasterReset();

3.8 Device Management
The following provides a mechanism to allow clients to control power to
various system devices.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 23

3.8.1 Bluetooth

Power Management interfaces to control Bluetooth hardware.

3.8.1.1 RMPowerServer::BluetoothEnable()

Enable Bluetooth hardware power regulator.

Input : void
Output: void
Usage : iServer.BluetoothEnable ();

3.8.1.2 RMPowerServer:: BluetoothDisable()

Disable Bluetooth hardware power regulator.

Input : void
Output: void
Usage : iServer.BluetoothDisable ();

3.8.1.3 RMPowerServer:: BluetoothReset()

Reset the BT hardware.

Input : void
Output: void
Usage : iServer.BluetoothReset ();

3.8.1.4 RMPowerServer:: IsBluetoothEnabled()

Query the current state of the Bluetooth hardware power regulator.
ETrue = BT regulator enabled, EFalse = BT regulator disabled.

Input : void
Output: TBool
Usage : btEnabled = iServer.IsBluetoothEnabled();

3.8.1.5 RMPowerServer::GetBluetoothDeviceAddress()

This method is used to request the unique Bluetooth device address from
the Baseband processor. The Bluetooth Device Address consists of 6
bytes of data. The call may return an error if the Power Server is
unable to talk to the Baseband in order to retrieve the address or
KErrNone if successful.

Input : void
Output: TInt err, TDes8& aUid
Usage : err = iServer.GetBluetoothDeviceAddress (theAddress);

3.8.2 Baseband

Power Management interfaces to query information about the baseband.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 24

3.8.2.1 RMPowerServer::GetBasebandUid()

A mechanism to request the unique ID from the Baseband processor. The
Baseband ID consists of 8 bytes of data. The call may return an error
if the Power Server is unable to talk to the Baseband in order to
retrieve the ID or KErrNone if successful.

Input : void
Output: TInt err, TDes8& aUid
Usage : err = iServer.GetBasebandUid (theUid);

3.8.3 AP DSP

Power Management interfaces to aid in the management of the AP’s DSP.

3.8.3.1 RMPowerServer::RequestDspClock()

Request that Power Server ensure that the DSP can support the requested
speed in order to successfully complete operations. Power Server will
attempt to move to a state that would satisfy the requirement passed
in. This should be called when the DSP requirements change in both
directions (require more speed or less speed). Power Server may decide
to move the system to a lower power mode and run the DSP at a slower
clock speed if the requirements allow it and the current ongoing
activities allow. If the DSP is not required and could be idled, the
speed should be set to 0.

Input : void
Output: TBool err, TInt aDspClockSpeedInMhz
Usage : err = iServer.RequestDspClock(120);

3.8.4 GPS

Power Management does not expose any interface for managing GPS.
However, certain actions such as switching modes to Airplane (via
RequestSetRfState(EMRfStateRfOff) will automatically turn off GPS.

3.8.5 Camera

Power Management interfaces to control Camera hardware.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 25

3.8.5.1 RMPowerServer::CameraEnable()

Enable Camera hardware power regulators.

Input : void
Output: void
Usage : iServer.CameraEnable ();

3.8.5.2 RMPowerServer:: CameraDisable()

Disable Camera hardware power regulators.

Input : void
Output: void
Usage : iServer.CameraDisable ();

3.8.5.3 RMPowerServer:: CameraReset()

Reset the Camera hardware.

Input : void
Output: void
Usage : iServer.CameraReset ();

3.8.5.4 RMPowerServer:: IsCameraEnabled()

Query the current state of the Camera hardware power regulators. ETrue
= Camera regulators enabled, EFalse = Camera regulators disabled.

Input : void
Output: TBool
Usage : CameraEnabled = iServer.IsCameraEnabled();

3.8.6 Keypad Backlight

Power Management interfaces to control the Keypad Backlight.

3.8.6.1 RMPowerServer::KeypadBacklightEnable()

Enable the Keypad Backlight Feature

Input : void
Output: void
Usage : iServer.KeypadBacklightEnable ();

3.8.6.2 RMPowerServer::KeypadBacklightDisable()

Disable the Keypad Backlight Feature

Input : void
Output: void
Usage : iServer.KeypadBacklightDisable ();

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

Template : IL93-STD-01-0224 (01.00)
 Copyright © 1998 - 2005 Motorola, Inc. 26

3.8.6.3 RMPowerServer::SetKeypadBacklightTime()

Set the time (in microseconds) for how long the Keypad Backlight is on.

Input : Tint
Output: void
Usage : iServer.SetKeypadBacklightTime (20000000)

This sets the Keypad Backlight time to 20 seconds. The keypad
backlight is turned off when the display turns off.

3.8.7 USB Client/Function

Power Management does not expose any interface for managing the USB
client interface. However, the entity controlling managing USB client
will need to be aware of Power Modes via Power Events because the
supplies powering the interface may be switched off as a result of
power cuts or User Off transitions.

3.8.8 RTC

Power Management does not expose any interface for managing the RTC.
However, Power Management does ensure that the RTC maintains the proper
value and abstracts the use of the PCAP RTC from the normal use of the
AP RTC. The same applies for system alarms.

3.8.9 IR

Power Management does not expose any interface for managing the IR.
However, Power Management does require that it be notified when IR is
in use.

DOCUMENT CONTROL NUMBER : IL93-MISC-05-0604 Version :01.00

 Copyright © 1998 - 2005 Motorola, Inc. 27

3.9 Power Management Sample Code

#include <mpowerserver_clientapi.h>
#include <cmpowerevent.h>
#include <getmuxport.h>

class CExampleClass : public MMPowerEventObserver
{
public:
 void CExampleClass();
 //Derived from MMPowerEventObserver Mixin class (cmpowerevent.h)
 void HandleNotificationEvent(TMPowerEvent aPowerEvent);

private:
 //See cmpowerevent.h
 CMPowerEvent* iPowerEvent;
};

void CExampleClass::CExampleClass()
{
 //Create the Power Event wrapper object
 //This connects to the server automatically
 iPowerEvent = CMPowerEvent::NewL();
 //Add this object as a power event observer
 iPowerEvent->NotifyOnPowerEvent(*this);

 //Connect to the Power Server to query the initial state
 RMPowerServer iServer;
 iServer.Connect();
 TMLinkState theState;
 //Get the current state of the link in case we missed it becoming available
 iServer.GetLinkState(theState);

 //States defined in mpowerserver_clientapi.h
 if (theState != EMLinkStateDisconnected)
 {
 //Link is available, check to see if there is a channel for me
 TInt ret = CMGetMuxPort::GetMuxPortConfigL(KMuxPowerMan, csyPortName);
 if (ret == KErrNone)
 {
 //Open the channel name supplied in csyPortName
 }
 else
 {
 //Either MUX isn't supported or my channel has been selectively disabled
 }
 }
 else
 {
 //Link isn't ready yet, wait for EMPowerEventLinkAvailable
 }
 //Can close connection right now, unless other API's will be used...
 iServer.Close();
}

//Implementation of the pure virtual method defined in MMPowerEventObserver
void CExampleClass::HandleNotificationEvent(TMPowerEvent aPowerEvent)
{
 //Events defined in mpowerserver_clientapi.h
 if (aPowerEvent == EMPowerEventLinkAvailable)
 {
 //Link is available, check to see if there is a channel for me
 TInt ret = CMGetMuxPort::GetMuxPortConfigL(KMuxPowerMan, csyPortName);
 if (ret == KErrNone)
 {
 //Open the channel name supplied in csyPortName
 }
 else
 {
 //Either MUX isn't supported or my channel has been selectively disabled
 }
 }
 //No need to re-register, done automatically by CMPowerEvent
}

