

Technical Manual

Version 1.0

Motorola C975

J2ME™ Developer Guide

Table of Contents

TABLE OF CONTENTS ... 2

1 INTRODUCTION .. 6
PURPOSE .. 6
AUDIENCE .. 6
DISCLAIMER .. 6
REFERENCES .. 7
REVISION HISTORY .. 7
DEFINITIONS, ABBREVIATIONS, ACRONYMS ... 8
DOCUMENT OVERVIEW .. 8

2 J2ME INTRODUCTION... 10
THE JAVA 2 PLATFORM, MICRO EDITION (J2ME).. 10
THE MOTOROLA J2ME PLATFORM ... 11
RESOURCES AND API’S AVAILABLE.. 11

3 DEVELOPING AND PACKAGING J2ME APPLICATIONS ... 12
GUIDE TO DEVELOPMENT IN J2ME.. 12

4 DOWNLOADING APPLICATIONS .. 14
METHOD OF DOWNLOADING ... 14

5 APPLICATION MANAGEMENT... 15
DOWNLOADING A JAR WITHOUT A JAD ... 15
INSTALLATION AND DELETION STATUS REPORTS.. 15
DRM CONTENT PROTECTION IN JAVA .. 16

6 SHARED JAD URLS ... 17
INTRODUCTION .. 17
Tell-A-Friend Option .. 17

7 JAD ATTRIBUTES.. 18
JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS .. 18

8 MIDLET STORAGE IN REMOVABLE MEMORY .. 21
INTRODUCTION .. 21
Installing downloaded applications into removable memory......................... 21
Listing and Launch J2ME Applications from removable memory.................... 22

9 ITAP.. 24
INTELLIGENT KEYPAD TEXT ENTRY API.. 24

10 NETWORK APIS .. 25
NETWORK CONNECTIONS... 25
USER PERMISSION .. 27
INDICATING A CONNECTION TO THE USER.. 27
HTTPS CONNECTION .. 28
DNS IP .. 29
PUSH REGISTRY .. 30
MECHANISMS FOR PUSH... 30
PUSH REGISTRY DECLARATION... 30
DELIVERY OF A PUSH MESSAGE ... 38
DELETING AN APPLICATION REGISTERED FOR PUSH .. 39
SECURITY FOR PUSH REGISTRY ... 39
NETWORK ACCESS .. 39

11 INTERFACE COMMCONNECTION.. 41
COMMCONNECTION .. 41
ACCESSING .. 41
PARAMETERS .. 41
BNF FORMAT FOR CONNECTOR.OPEN () STRING.. 42
COMM SECURITY .. 43
PORT NAMING CONVENTION .. 44
METHOD SUMMARY .. 44

12 JSR120 – WIRELESS MESSAGING API ... 45
WIRELESS MESSAGING API (WMA).. 45
SMS CLIENT MODE AND SERVER MODE CONNECTION .. 45
SMS PORT NUMBERS ... 46
SMS STORING AND DELETING RECEIVED MESSAGES .. 47
SMS MESSAGE TYPES ... 47
SMS MESSAGE STRUCTURE ... 47
SMS NOTIFICATION ... 47
APP INBOX CLEAN-UP.. 53

13 JSR 135 – MOBILE MEDIA API... 54
JSR 135 MOBILE MEDIA API ... 54
TONECONTROL .. 56
VOLUMECONTROL .. 56
STOPTIMECONTROL .. 56
MANAGER CLASS .. 57
AUDIO MEDIA .. 57
MOBILE MEDIA FEATURE SETS .. 59
Supported Multimedia File Types .. 62

14 JSR 139 – CLDC 1.1.. 66
JSR 139.. 66

15 JSR 184 – 3D API... 71
OVERVIEW .. 71
MOBILE 3D API .. 71
Mobile 3D API File Format Support ... 72
Mobile 3D Graphics – M3G API ... 72

16 PHONEBOOK ACCESS API ... 80
PHONEBOOK ACCESS API ... 80
PHONEBOOK ACCESS API PERMISSIONS .. 81

17 TELEPHONY API.. 90
DIALER CLASS .. 90
CLASS DIALEREVENT .. 90
CLASS DIALER .. 92
getDefaultDialer.. 93
setDialerListener ... 93
startCall .. 93
startCall .. 94
sendExtNo .. 94
endCall ... 95

INTERFACE DIALERLISTENER... 95
SAMPLE DIALERLISTENER IMPLEMENTATION ... 95
notifyDialerEvent ... 97

CLASS HIERARCHY .. 97
INTERFACE HIERARCHY... 97

18 JSR 185 - JTWI ... 98
OVERVIEW .. 98
CLDC RELATED CONTENT FOR JTWI... 99
MIDP 2.0 SPECIFIC INFORMATION FOR JTWI .. 100
WIRELESS MESSAGING API 1.1 (JSR 120) SPECIFIC CONTENT FOR JTWI 101
MOBILE MEDIA API 1.1 (JSR 135) SPECIFIC CONTENT FOR JTWI.. 102
MIDP 2.0 SECURITY SPECIFIC CONTENT FOR JTWI .. 102

19 MIDP 2.0 SECURITY MODEL .. 103
UNTRUSTED MIDLET SUITES.. 104
UNTRUSTED DOMAIN .. 104
TRUSTED MIDLET SUITES ... 105
PERMISSION TYPES CONCERNING THE HANDSET .. 105
USER PERMISSION INTERACTION MODE ... 105
IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY... 106
TRUSTED 3RD PARTY DOMAIN.. 106
SECURITY POLICY FOR PROTECTION DOMAINS.. 107
DISPLAYING OF PERMISSIONS TO THE USER .. 110
TRUSTED MIDLET SUITES USING X.509 PKI ... 110
SIGNING A MIDLET SUITE.. 111
SIGNER OF MIDLET SUITES.. 111
MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES.. 111
CREATING THE SIGNING CERTIFICATE ... 112
INSERTING CERTIFICATES INTO JAD .. 112
CREATING THE RSA SHA-1 SIGNATURE OF THE JAR .. 112
AUTHENTICATING A MIDLET SUITE .. 113
VERIFYING THE SIGNER CERTIFICATE ... 113
VERIFYING THE MIDLET SUITE JAR ... 114
CARRIER SPECIFIC SECURITY MODEL ... 115
BOUND CERTIFICATES... 115

APPENDIX A: KEY MAPPING ... 117

KEY MAPPING FOR THE MOTOROLA C975.. 117
APPENDIX B: MEMORY MANAGEMENT CALCULATION .. 119
AVAILABLE MEMORY .. 119
MEMORY CALCULATION FOR MIDLETS .. 119

APPENDIX C: FAQ .. 120
ONLINE FAQ ... 120

APPENDIX F: SPEC SHEET ... 121
MOTOROLA C975 SPEC SHEET... 121

1
Introduction

Purpose
This document describes the application program interfaces used to develop Motorola
compliant Java™ 2 Platform, Micro Edition (J2ME™) applications for the Motorola C975.

Audience
This document is intended for developers involved with the development of J2ME
applications for the Motorola C975.

Disclaimer
Motorola reserves the right to make changes without notice to any products or services
described herein. “Typical” parameters, which may be provided in Motorola Data sheets
and/or specifications can and do vary in different applications and actual performance
may vary. Customer’s technical experts will validate all “Typicals” for each customer
application.
Motorola makes no warranty with regard to the products or services contained herein.
Implied warranties, including without limitation, the implied warranties of merchantability
and fitness for a particular purpose, are given only if specifically required by applicable
law. Otherwise, they are specifically excluded.
No warranty is made as to coverage, availability, or grade of service provided by the
products or services, whether through a service provider or otherwise.
No warranty is made that the software will meet your requirements or will work in
combination with any hardware or applications software products provided by third
parties, that the operation of the software products will be uninterrupted or error free, or
that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for
any damages resulting form use of a product or service described herein, or for any
indirect, incidental, special or consequential damages of any kind, or loss of revenue or
profits, loss of business, loss of information or data, or other financial loss arising out of or
in connection with the ability or inability to use the Products, to the full extent these
damages may be disclaimed by law.
Some states and other jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, or limitation on the length of an implied warranty, so the above
limitations or exclusions may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights, which
vary from jurisdiction to jurisdiction.
Motorola products or services are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may
occur.
Should the buyer purchase or use Motorola products or services for any such unintended
or unauthorized application, buyer shall release, indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacture of the product or service.

References
Reference Link

MIDP 2.0 http://java.sun.com/products/midp/

JSR 118 http://www.jcp.org

JSR 120 http://www.jcp.org

JSR 135 http://www.jcp.org

Sun J2ME http://java.sun.com/j2me/

SAR http://www.wapforum.org

Revision History
Version Date Name Reason

00.01 July 08, 2004 C.E.S.A.R. Initial Draft

00.02 August 30, 2004 C.E.S.A.R. Updates after Motorola’s
review

00.03 September 08,
2004

C.E.S.A.R. Updates after review

Definitions, Abbreviations, Acronyms
Acronym Description

AMS Application Management Software

API Application Program Interface

CLDC Connected, Limited Device Configuration

DRM Digital Rights Management

IDE Integrated Development Environments

JAD Java Application Descriptor

JAM Java Application Manager

JAR Java Archive

J2ME Java 2 Micro Edition

JSR 120 Java Specification Request 120 defines a set of optional APIs that provides
standard access to wireless communication resources.

MIDP Mobile Information Device Profile

MMA Multimedia API

MMS Multimedia Messaging Service

OTA Over The Air

SAR Segmentation & Reassembly

SDK Software Development Kit

WMA Wireless Messaging API

Document Overview
This developer’s guide is organized into the following chapters and appendixes:
Chapter 1 – Introduction: this chapter has general information about this document,
including purpose, scope, references, and definitions.

Chapter 2 – J2ME Introduction: this chapter describes the J2ME platform and the
available resources on the Motorola C975.
Chapter 3 – Developing and Packaging J2ME Applications: this chapter describes
some details about J2ME, development tools, specifications and some general concepts.
Chapter 4 – Downloading Applications: this chapter describes the method for
downloading applications on devices and some details about available options for
Motorola C975.
Chapter 5 – Application Management: this chapter describes the application
management scheme for the Motorola C975, including DRM Content Protection in Java.
Chapter 6 – Shared JAD URLs: this chapter describes briefly a new feature that allows
users to share their downloaded J2ME application URLs with others.
Chapter 7 – JAD Attributes: this chapter describes what attributes are supported.
Chapter 8 – MIDlet Storage in Removable Memory: this chapter describes how to
install, list and launch downloaded applications on removable memory.
Chapter 9 – iTAP: this chapter describes iTAP support.
Chapter 10 – Network API: this chapter describes the Java Networking API and network
access.
Chapter 11 – CommConnection Interface: this chapter describes the CommConnection
API.
Chapter 12 – JSR 120 – Wireless Messaging API: this chapter describes JSR 120
implementation.
Chapter 13 – JSR 135 – Mobile Media API: this chapter describes image types and
supported formats.
Chapter 14 – JSR 139 – CLDC 1.1: this chapter describes briefly some characteristics of
CLDC 1.1 and presents additional classes, fields, and methods supported for CLDC 1.1.
Chapter 15 – JSR 184 – 3D API: this chapter describes JSR 184.
Chapter 16 – Phonebook Access API: this chapter describes the Phonebook Access
API.
Chapter 17 – Telephony API – this chapter describes the Telephony API.
Chapter 18 – JSR 185 – JTWI – this chapter describes JTWI functionality.
Chapter 19 – MIDP 2.0 Security Model: this chapter describes the MIDP 2.0 default
security model.
Appendix A – Key Mapping: this appendix describes the key mapping for the Motorola
C975, including the key name, key code and game action of all Motorola keys.
Appendix B – Memory Management Calculation: this appendix describes the memory
management calculations.
Appendix C – FAQ: this appendix provides a link to the dynamic online FAQ.
Appendix F – Spec Sheet: this appendix provides spec sheets for the Motorola C975
handset.

2
J2ME Introduction

The Motorola C975 includes the Java™ 2 Platform, Micro Edition, also known as the
J2ME platform. The J2ME platform enables developers to easily create a variety of Java
applications ranging from business applications to games. Prior to its inclusion, services
or applications residing on small consumer devices like cell phones could not be
upgraded or added to without significant effort. By implementing the J2ME platform on
devices like the Motorola C975, service providers, as well as customers, can easily add
and remove applications allowing for quick and easy personalization of each device. This
chapter of the guide presents a quick overview of the J2ME environment and the tools
that can be used to develop applications for the Motorola C975.

The Java 2 Platform, Micro Edition (J2ME)
The J2ME platform is a new, very small application environment. It is a framework for the
deployment and use of Java technology in small devices such as cell phones and pagers.
It includes a set of APIs and a virtual machine that is designed in a modular fashion
allowing for scalability among a wide range of devices.
The J2ME architecture contains three layers consisting of the Java Virtual Machine, a
Configuration Layer, and a Profile Layer. The Virtual Machine (VM) supports the
Configuration Layer by providing an interface to the host operating system. Above the VM
is the Configuration Layer, which can be thought of as the lowest common denominator of
the Java Platform available across devices of the same “horizontal market.” Built upon this
Configuration Layer is the Profile Layer, typically encompassing the presentation layer of
the Java Platform.

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

The Configuration Layer used in the Motorola C975 is the Connected Limited Device
Configuration 1.0 (CLDC 1.0) and the Profile Layer used is the Mobile Information Device
Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide common APIs for I/O,
simple math functionality, UI, and more.
For more information on J2ME, see the Sun™ J2ME documentation
(http://java.sun.com/j2me/).

The Motorola J2ME Platform
Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to
implement and support. By adding to the standard APIs, manufacturers can allow
developers to access and take advantage of the unique functionality of their handsets.
The Motorola C975 contains OEM APIs for extended functionality ranging from enhanced
UI to advanced data security. While the Motorola C975 can run any application written in
standard MIDP, it can also run applications that take advantage of the unique functionality
provided by these APIs. These OEM APIs are described in this guide.

Resources and API’s Available
MIDP 2.0 will provide support to the following functional areas on the Motorola C975:

MIDP 2.0
• Application Management Software
• Digital Rights Management for MIDlets
• Alpha Blending for Image
• File Image Support (.JPEG / .JFIF, .JPEG / .EXIF, .GIF[87a, 89a], BMP, WBMP,

EMS BMP)
• Networking Interface
• Gaming Interface
• Sounds
• Timers
• User Interface
• Multimedia

Additional Functionality
• Wireless Messaging API (JSR 120)
• Mobile Media API (JSR 135)
• MIDlet storage in removable memory
• Increase RAM for Java Apps
• CLDC Next Generation (JSR 139)
• Phone Book

3
Developing and Packaging

J2ME Applications

Guide to Development in J2ME
Introduction
In this chapter, previous experience in J2ME development is required for the reader. This
chapter will also provide some information about Connected, Limited Device Configuration
(CLDC) and Mobile Information Device Profile (MIDP).
More information and materials can be found on websites maintained by Motorola, Sun
Microsystems and others. Consult the following URLs for this information and materials:

• http://www.motocoder.com

• http://www.java.sun.com/j2me

• http://www.corej2me.com

The following line briefly describes some details about J2ME and some general concepts.
A MIDlet is an abstract class that is subclassed to form the basis of an application. It is the
heart of a MIDP application and allows the device to start, pause and destroy an
application.
The MIDlet will consist of two core specifications, namely Connected, Limited Device
Configuration (CLDC), where the specification can be located at the http://www.jcp.org/
website, and Mobile Information Device Profile (MIDP), located at same address. Both
specifications can be found in Java Specification Requests.
The specifications mentioned are:

• MIDP 1.0 (JSR 37)

• MIDP 2.0 (JSR 118)

• CLDC 1.0.4 (JSR 30)

• CLDC 1.1 (139)

There are key points to consider for an initial development, they are: processing power,
memory size, screen capabilities and wireless networking characteristics. They are very
important for the development of a MIDlet.
These characteristics are applied to devices specifics. For example, considering
networking conditions for an application, it would only apply for networked applications
such as email clients, among others.
About tools, there is an array of tools available to assist in the development. The
Companies’ Software Development Kits (SDK), such as Sun, that can run inside of an
Integrated Development Environments (IDEs) can be found free or purchased. These kits
present several options to facilitate the development of an application.
In addition to the IDEs and Sun SDK for development, Motorola offers access to their own
SDK that contains Motorola device emulators. From here, a MIDlet can be built and then
deployed onto an emulated target handset. This will enable debugging and validation of
the MIDlet before deployment to a real, physical handset. The latest Motorola SDK can be
downloaded from the MOTOCODER website.

 4
Downloading Applications

Method of Downloading

The load of applications (MIDlets) in Motorola devices that consist of the transmission of
an application from PC to device can be carried through the direct cable USB, via CE Bus.
The direct cable approach can be performed using a tool available from MOTOCODER
called MIDway. The version available of writing is 2.8, which supports USB cable
download.
It is important to note that the MIDway tool will only work with a device that has been
enabled to support direct cable Java download. This feature is not available by purchasing
a device through a standard consumer outlet.
The easiest method of confirming support for this is by looking at the “Java Tool” menu on
the phone in question and seeing if a “Java app loader” option is available on that menu. If
it is not, then contact MOTOCODER support for advice on how to receive an enabled
handset.
For more information about MIDway tool can be obtained through the MOTOCODER
website (http://www.motocoder.com).

5
Application Management

The following sections describe the application management scheme for the Motorola
C975. This chapter will discuss the following:

• Downloading a JAR without a JAD

• Installation and Deletion Status Reports

• DRM Content Protection in Java

Downloading a JAR without a JAD
In Motorola’s MIDP 2.0 implementation, a JAR file can be downloaded without a JAD. In
this case, the user clicks on a link for a JAR file, the file is downloaded, and a confirmation
will be obtained before the installation begins. The information presented is obtained from
the JAR manifest instead of the JAD.

Installation and Deletion Status Reports

The status (success or failure) of an installation, upgrade, or deletion of a MIDlet suite will
be sent to the server according to the JSR 118 specification. If the status report cannot be
sent, the MIDlet suite will still be enabled and the user will be allowed to use it. In some
instances, if the status report cannot be sent, the MIDlet will be deleted by operator’s
request. Upon successful deletion, the handset will send the status code 912 to the
MIDlet-Delete-Notify URL. If this notification fails, the MIDlet suite will still be deleted. If
this notification cannot be sent due to lack of network connectivity, the notification will be
sent at the next available network connection.
The following table presents the codes that are supported:

Code Description
900 Success
901 Insufficient Memory
902 User Cancelled
903 Loss Of Service

904 JAR Size Mismatch
905 Attribute Mismatch
906 Invalid Descriptor
907 Invalid JAR
908 Incompatible Configuration or Profile
909 Application Authentication Failure
910 Application Authorization Failure
911 Push Registration Failure
912 Deletion Notification

DRM Content Protection in Java
Digital Rights Management (DRM) is a method to prevent MIDlets from distributing DRM
content using any packet data network connection. In others words, DRM is a method of
protecting content from illegal distribution by embedding the content into an encrypted
package, along with rules dictating its use.
If the user has a set of keys and a valid license, then they are used for a specific file. A
DRM application is required to decrypt the content for playback. This method will be
transparent for the user, if he has a valid license.
The invalid license might happen because elapsed number of times the content to be
executed/played, or elapsed validity for the license, or the content received through
separate delivery.
For more information about this method, see at http://www.openmobilealliance.org.

6
Shared JAD URLs

Introduction

Actually, users are able to download J2ME applications. The first step is to download the
JAD file and, after a confirmation, the site is launched to download the application. If they
want to forward the JAD link to someone else, it’s impossible.

The Share JAD URLs is a feature that resolves the prior problem, it allows users to share
their downloaded J2ME application URLs with others. When J2ME applications are
downloaded, the browser shall provide the Java Application Manager (JAM) with the JAD
URL address. When J2ME applications are downloaded via PC or MMS, a new JAD
attribute shall specify the JAD URL address.

Tell-A-Friend Option

When entering the J2ME application context-sensitive menu, a Tell-A-Friend option will be
provided. Upon selecting this option, the standard SMS messaging form will appear. The
link to the URL where the application JAD file can be found and its name will be pre-
populated into the message body. This allows the user to send messages to friends,
telling them where to download the application.

Upon receipt of a Tell-A-Friend message, a Motorola handset user should be able to use
the browser’s GOTO functionality. Selecting GOTO will cause the download of JAD to
occur. The remaining download steps will occur as normal.

7
JAD Attributes

JAD / Manifest Attribute Implementations

The JAR manifest defines attributes to be used by the application management software
(AMS) to identify and install the MIDlet suite. These attributes may or may not be found in
the application descriptor.
The application descriptor is used, in conjunction with the JAR manifest, by the application
management software to manage the MIDlet. The application descriptor is also used for
the following:

• By the MIDlet for configuration specific attributes
• Allows the application management software on the handset to verify the MIDlet

is suited to the handset before loading the JAR file
• Allows configuration-specific attributes (parameters) to be supplied to the

MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application
Descriptor attributes as outlined in the JSR-118. The table below lists all MIDlet attributes,
descriptions, and its location in the JAD and/or JAR manifest that are supported in the
Motorola implementation. Please note that the MIDlet will not install if the MIDlet-Data-
Size is greater than 512k.

Attribute Name Attribute Description JAR Manifest JAD
MIDlet-Name The name of the MIDlet suite that

identifies the MIDlets to the user
Yes Yes

MIDlet-Version The version number of the MIDlet suite Yes Yes

MIDlet-Vendor The organization that provides the
MIDlet suite.

Yes Yes

MIDlet-Icon The case-sensitive absolute name of a
PNG file within the JAR used to
represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet suite. No No

MIDlet-Info-URL A URL for information further
describing the MIDlet suite.

Yes No

MIDlet-<n> The name, icon, and class of the nth
MIDlet in the JAR file.
Name is used to identify this MIDlet to
the user. Icon is as stated above.
Class is the name of the class
extending the
javax.microedition.midl
et.MIDletclass.

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MIDlet-Jar-URL The URL from which the JAR file can
be loaded.

 Yes

MIDlet-Jar-Size The number of bytes in the JAR file. Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the MIDlet.

Yes Yes

MicroEdition-Profile The J2ME profiles required. If any of
the profiles are not implemented the
installation will fail.

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MicroEdition-
Configuration

The J2ME Configuration required, i.e.
CLDC 1.0

Yes, or no if
included in the
JAD.

Yes, or no if
included in the
JAR Manifest.

MIDlet-Permissions Zero or more permissions that are
critical to the function of the MIDlet
suite.

Yes Yes

MIDlet-Permissions-Opt Zero or more permissions that are non-
critical to the function of the MIDlet
suite.

Yes Yes

MIDlet-Push-<n> Register a MIDlet to handle inbound
connections

Yes Yes

MIDlet-Install-Notify The URL to which a POST request is
sent to report installation status of the
MIDlet suite.

Yes Yes

MIDlet-Delete-Notify The URL to which a POST request is
sent to report deletion of the MIDlet
suite.

Yes Yes

MIDlet-Delete-Confirm A text message to be provided to the
user when prompted to confirm
deletion of the MIDlet suite.

Yes Yes

FlipInsensitive MIDlets with this Motorola specific
attribute will enable the MIDlet to run
with the flip closed.

Yes Yes

Background MIDlets with this Motorola specific
attribute will continue to run when not
in focus.

Yes Yes

8
MIDlet Storage in Removable

Memory

Introduction
Motorola J2ME enabled devices with removable memory like SD/MMC cards will be able
to store, install and access J2ME applications from removable memory. This feature has
some functionality that allows the user to install J2ME Applications on removable memory
or phone memory once the application gets downloaded. The user also can to list and
launch J2ME Applications stored on removable memory.
Other feature included is a mechanism to DRM protects J2ME Applications installed in
secondary memory.

Installing downloaded applications into removable memory

A J2ME application may get downloaded via direct cable (USB). The installation
procedure for downloaded applications onto phone/removable memory follows the below
steps and rules:

• Initially, the user has a DOWNLOAD option that allows to choice between
installing the application on removable memory or phone. The phone option
should be the default option.

• There will be a separate directory within removable memory for J2ME
Applications. All J2ME Applications stored on removable memory and
information associated with them shall reside in this directory.

• An installed application on one device cannot be run on another device by
swapping memory card. Separate installation is required for each device.

• Memory full condition handling while installing will be same for phone and
removable memory.

• It is to provide push registry support for applications residing on removable
memory. If this feature is not implemented, application that declare push registry
usage in JAD file will not be allowed to be installed on removable memory.

Listing and Launch J2ME Applications from removable memory

By default, the JAM will list all installed applications on phone. The following rules will
guide the user through of the available options:

• There will be a “Switch Storage Device” option under Games & Apps

(MyJavaApps) menu allowing user to switch between storage devices
(phone/removable memory) while listing applications. If user selects removable
memory option, all installed applications on removable memory will get listed.

• Delete All Apps option under Java Settings menu will be effective for current
storage device specified as above only. If phone is current storage device, only
J2ME applications installed in phone will be deleted. The delete confirmation
notice shall be modified to provide the current storage device information to the
user. Delete all operation should only uninstall the application installed on
removable memory. Original JAD and JAR files will not be deleted.

• Last menu item in the applications listing from removable memory shall be
named [Install New]. If user selects this item, all application files (including
already installed applications) from the J2ME directory in removable memory
shall be listed. Both JAD and JAR files shall be listed. JAD and JAR file names
will be preceded with a distinct icon to distinguish each type of file.

• User can select either JAD or JAR file if both are available. If user selects JAR
file, implementation will search for JAD file with the same name in the same
directory. If a JAD file is found and it refers to the selected JAR file, it shall be
used. Otherwise JAR only installation shall be followed.

• Corresponding JAD and JAR files will be available in removable memory for
installable applications requiring JAD file. JAD file should refer to the local JAR
file only. Downloading of JAR files over the network for new application
installation shall not be supported for this release.

• All externally loaded application JAD and JAR files will be kept in the J2ME
directory in removable memory for JAM to list these as new applications for
installation.

• Context sensitive menu of new applications should have “Delete” option to delete
the application files. This operation should delete both JAD and JAR files (if
present) permanently from removable memory.

• JAM will refresh application listing from removable device each time listing is
required after a power cycle. This is to ensure that applications removed/added
externally can be reflected upon each invocation.

• AMS will do an extra preverification step before launching applications from
removable memory. This is to ensure that applications are not corrupted
(externally or otherwise). If application is corrupted, a prompt shall be displayed
after the user selects application to be launched.

• Delete, Details, Permissions options should be available under Games & Apps
Menu for J2ME Applications installed on removable memory. Delete operation

should only uninstall the application installed on removable memory. Original
JAD and JAR files will not be deleted from removable memory.

• AMS should support same application being installed on phone and removable
memory. However duplicate applications will not be permitted on same storage
device.

• If push registration is not supported for applications stored on removable
memory, an IOException shall be returned if a J2ME application residing on
removable memory tries to use
javax.microedition.io.PushRegistry.registerConnection() method. The handling of
this exception is left to the application.

9
iTAP

Intelligent Keypad Text Entry API

When users are using features such as SMS (short message service), or “Text
Messaging”, they can opt for a predictive text entry method from the handset. The J2ME
environment has the ability to use SMS in its API listing. The use of a predictive entry
method is a compelling feature to the MIDlet.
This API will enable a developer to access iTAP, Numeric, Symbol and Browse text entry
methods. With previous J2ME products, the only method available was the standard use
of TAP.
Predictive text entry allows a user to simply type in the letters of a word using only one
key press per letter, as apposed to the TAP method that can require as many as four or
more key presses. The use of the iTAP method can greatly decrease text-entry time. Its
use extends beyond SMS text messaging, but into other functions such as phonebook
entries.
The following J2ME text input components will support iTAP.

• javax.microedition.lcdui.TextBox
The TextBox class is a Screen that allows the user to edit and enter text.

• javax.microedition.lcdui.TextField
A TextField is an editable text component that will be placed into a Form. It is given a
piece of text that is used as the initial value.

Refer to the table below for iTAP feature/class support for MIDP 2.0:

Feature/Class
Predictive text capability will be offered when the constraint is set to ANY

User will be able to change the text input method during the input process when the constraint is set to
ANY (if predictive text is available)

Multi-tap input will be offered when the constraint on the text input is set to EMAILADDR, PASSWORD, or
URL

10
Network APIs

Network Connections
The Motorola implementation of Networking APIs will support several network
connections. The network connections necessary for Motorola implementation are the
following:

• CommConnection for serial interface
• HTTP connection
• HTTPS connection
• Push registry
• SSL (secure socket)
• Datagram (UDP)

Refer to the table below for Network API feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, methods, and inherited methods for the Connector class in
the javax.microedition.io package

Supported

Mode parameter for the open () method in the Connector class the
javax.microedition.io package

READ, WRITE, READ_WRITE

The timeouts parameter for the open () method in the Connector class
of the javax.microedition.io package

Supported

HttpConnection interface in the javax.microedition.io package Supported

HttpsConnection interface in the javax.microedition.io package Supported

SecureConnection interface in the javax.microedition.io package Supported

SecurityInfo interface in the javax.microedition.io package Supported

UDPDDatagramConnection interface in the javax.microedition.io
package

Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

CommConnection interface in the javax.microedition.io package Supported

Dynamic DNS allocation through DHCP Supported

HttpConnection interface in the javax.microedition.io.package. Supported

HttpsConnection interface in the javaxmicroedition.io.package Supported

SecureConnection interface in the javax.microedition.io.package Supported

SecurityInfo Interface in the javax.microedition.io.package Supported

UDPDatagramConnection interface in the
javax.microedition.io.package

Supported

The following is a code sample to show implementation of Socket Connection:
Socket Connection
import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

….

 try {
 //open the connection and io streams
 sc =
(SocketConnection)Connector.open("socket://www.myserver.com
:8080", Connector.READ_WRITE, true);
 is = sc[i].openInputStream();
 os = sc[i].openOutputStream();

 } catch (Exception ex) {
 closeAllStreams();
 System.out.println("Open Failed: " +
ex.getMessage());
 }
 }
 if (os != null && is != null)
 {
 try
 {
 os.write(someString.getBytes()); //write
some data to server

 int bytes_read = 0;
 int offset = 0;
 int bytes_left = BUFFER_SIZE;

 //read data from server until done
 do
 {
 bytes_read = is.read(buffer, offset,
bytes_left);

 if (bytes_read > 0)

 {
 offset += bytes_read;
 bytes_left -= bytes_read;
 }
 }
 while (bytes_read > 0);

 } catch (Exception ex) {
 System.out.println("IO failed: "+
ex.getMessage());
 }
 finally {
 closeAllStreams(i); //clean up
 }
 }

User Permission
The user of the handset will explicitly grant permission to add additional network
connections.

Indicating a Connection to the User
When the java implementation makes any of the additional network connections, it will
indicate to the user that the handset is actively interacting with the network. To indicate
this connection, the network icon will appear on the handset’s status bar as shown below.

Conversely, when the network connection is no longer used the network icon will be
removed from the status bar.
If the handset supports applications that run when the flip is closed, the network icon on
the external display will be activated when the application is in an active network

connection with the flip closed. Please note that this indication is done by the
implementation.

HTTPS Connection
Motorola implementation supports a HTTPS connection on the Motorola C975 handset.
Additional protocols that will be supported are the following:

• TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt
• SSL protocol version 3.0 as defined in

http://home.netscape.com/eng/ssl3/draft302.txt
• The following is a code sample to show implementation of HTTPS:

HTTPS
import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;
…

 try {
 hc[i] =
(HttpConnection)Connector.open(“https://” + url[i] + "/");

 } catch (Exception ex) {
 hc[i] = null;
 System.out.println("Open Failed: " +
ex.getMessage());
 }

 if (hc[i] != null)
 {
 try {
 is[i] = hc[i].openInputStream();

 byteCounts[i] = 0;
 readLengths[i] = hc[i].getLength();

 System.out.println("readLengths = " +
readLengths[i]);

 if (readLengths[i] == -1)
 {
 readLengths[i] = BUFFER_SIZE;
 }

 int bytes_read = 0;
 int offset = 0;
 int bytes_left = (int)readLengths[i];

 do
 {
 bytes_read = is[i].read(buffer, offset,
bytes_left);
 offset += bytes_read;
 bytes_left -= bytes_read;
 byteCounts[i] += bytes_read;
 }
 while (bytes_read > 0);

 System.out.println("byte read = " +
byteCounts[i]);

 } catch (Exception ex) {
 System.out.println("Downloading Failed: "+
ex.getMessage());
 numPassed = 0;
 }
 finally {
 try {
 is[i].close();
 is[i] = null;
 } catch (Exception ex) {}
 }
 }
 /**
 * close http connection
 */
 if (hc[i] != null)
 {
 try {
 hc[i].close();
 } catch (Exception ex) { }
 hc[i] = null;
 }

DNS IP
The DNS IP will be flexed on or off (per operator requirement) under Java Settings as
read only or as user-editable. In some instances, it will be flexed with an operator-
specified IP address.

Push Registry
The push registry mechanism allows an application to register for notification events that
are meant for the application. The push registry maintains a list of inbound connections.

Mechanisms for Push
Motorola implementation for push requires the support of certain mechanisms. The
mechanisms that will be supported for push are the following:

• SMS push: an SMS with a port number associated with an application used to
deliver the push notification

•
The formats for registering any of the above mechanisms will follow those detailed in JSR
118 specification.

Push Registry Declaration
The application descriptor file will include information about static connections that are
needed by the MIDlet suite. If all static push declarations in the application descriptor
cannot be fulfilled during the installation, the MIDlet suite will not be installed. The user will
be notified of any push registration conflicts despite the mechanism. This notification will
accurately reflect the error that has occurred.
Push registration can fail as a result of an Invalid Descriptor. Syntax errors in the push
attributes can cause a declaration error resulting in the MIDlet suite installation being
cancelled. A declaration referencing a MIDlet class not listed in the MIDlet-<n> attributes
of the same application descriptor will also result in an error and cancellation of the MIDlet
installation.
Two types of registration mechanisms will be supported. The registration mechanisms to
be supported are the following:

• Registration during installation through the JAD file entry using a fixed port
number

• Dynamically register using an assigned port number
•

If the port number is not available on the handset, an installation failure notification will be
displayed to the user while the error code 911 push is sent to the server. This error will
cease the download of the application.
Applications that wish to register with a fixed port number will use the JAD file to identify
the push parameters. The fixed port implementation will process the MIDlet-Push-n
parameter through the JAD file.

The following is a code sample to show implementation of Push Registry:

Push Registry Declaration

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;

public class PushTest_1 extends MIDlet implements
CommandListener{

 public Display display;

 public static Form regForm;
 public static Form unregForm;
 public static Form mainForm;
 public static Form messageForm;

 public static Command exitCommand;
 public static Command backCommand;
 public static Command unregCommand;
 public static Command regCommand;

 public static TextField regConnection;
 public static TextField regFilter;
 public static ChoiceGroup registeredConnsCG;
 public static String[] registeredConns;

 public static Command mc;
 public static Displayable ms;

 public PushTest_1(){
 regConnection = new TextField("Connection
port:", "1000", 32, TextField.PHONENUMBER);
 regFilter = new TextField("Filter:", "*", 32,
TextField.ANY);

 display = Display.getDisplay(this);

 regForm = new Form("Register");
 unregForm = new Form("Unregister");
 mainForm = new Form("PushTest_1");
 messageForm = new Form("PushTest_1");

 exitCommand = new Command("Exit", Command.EXIT,
0);
 backCommand = new Command("Back", Command.BACK,
0);
 unregCommand = new Command("Unreg",
Command.ITEM, 1);
 regCommand = new Command("Reg", Command.ITEM,
1);

 mainForm.append("Press \"Reg\" softkey to
register a new connection.\n" +
 "Press \"Unreg\" softkey to
unregister a connection.");
 mainForm.addCommand(exitCommand);
 mainForm.addCommand(unregCommand);
 mainForm.addCommand(regCommand);

 mainForm.setCommandListener(this);

 regForm.append(regConnection);
 regForm.append(regFilter);
 regForm.addCommand(regCommand);
 regForm.addCommand(backCommand);
 regForm.setCommandListener(this);

 unregForm.addCommand(backCommand);
 unregForm.addCommand(unregCommand);
 unregForm.setCommandListener(this);

 messageForm.addCommand(backCommand);
 messageForm.setCommandListener(this);

 }
 public void pauseApp(){}

 protected void startApp() {
 display.setCurrent(mainForm);
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void showMessage(String s) {
 if(messageForm.size() != 0)
messageForm.delete(0);
 messageForm.append(s);
 display.setCurrent(messageForm);
 }

 public void commandAction(Command c, Displayable s) {

 if((c == unregCommand) && (s == mainForm)){
 mc = c;
 ms = s;
 new runThread().start();
 }

 if((c == regCommand) && (s == mainForm)){
 display.setCurrent(regForm);
 }

 if((c == regCommand) && (s == regForm)){
 mc = c;
 ms = s;
 new runThread().start();
 }

 if((c == unregCommand) && (s == unregForm)){
 mc = c;
 ms = s;

 new runThread().start();
 }

 if((c == backCommand) && (s == unregForm)){
 display.setCurrent(mainForm);
 }
 if((c == backCommand) && (s == regForm)){
 display.setCurrent(mainForm);
 }

 if((c == backCommand) && (s == messageForm)){
 display.setCurrent(mainForm);
 }

 if((c == exitCommand) && (s == mainForm)){
 destroyApp(false);
 }

 }

 public class runThread extends Thread{
 public void run(){
 if((mc == unregCommand) && (ms ==
mainForm)){
 try{
 registeredConns =
PushRegistry.listConnections(false);
 if(unregForm.size() > 0)
unregForm.delete(0);
 registeredConnsCG = new
ChoiceGroup("Connections", ChoiceGroup.MULTIPLE,
registeredConns, null);
 if(registeredConnsCG.size() > 0)
unregForm.append(registeredConnsCG);
 else unregForm.append("No
registered connections found.");
 display.setCurrent(unregForm);
 } catch (Exception e) {
 showMessage("Unexpected " +
e.toString() + ": " + e.getMessage());
 }

 }

 if((mc == regCommand) && (ms == regForm)){
 try{

PushRegistry.registerConnection("sms://:" +
regConnection.getString(), "Receive",
regFilter.getString());
 showMessage("Connection
successfully registered");
 } catch (Exception e){
 showMessage("Unexpected " +
e.toString() + ": " + e.getMessage());
 }
 }

 if((mc == unregCommand) && (ms ==
unregForm)){
 try{
 if(registeredConnsCG.size() > 0){
 for(int i=0;
i<registeredConnsCG.size(); i++){

if(registeredConnsCG.isSelected(i)){

PushRegistry.unregisterConnection(registeredConnsCG.getStri
ng(i));

registeredConnsCG.delete(i);

if(registeredConnsCG.size() == 0){

unregForm.delete(0);

unregForm.append("No registered connections found.");
 }
 }
 }
 }
 } catch (Exception e) {
 showMessage("Unexpected " +
e.toString() + ": " + e.getMessage());
 }
 }
 }
 }
}

WakeUp.java
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import javax.microedition.rms.*;
import java.util.*;
import javax.microedition.io.*;

public class WakeUp extends MIDlet implements
CommandListener{

 public static Display display;
 public static Form mainForm;
 public static Command exitCommand;
 public static TextField tf;
 public static Command registerCommand;

 public void startApp() {

 display = Display.getDisplay(this);

 mainForm = new Form("WakeUp");

 exitCommand = new Command("Exit", Command.EXIT, 0);
 registerCommand = new Command("Register",
Command.SCREEN, 0);
 tf = new TextField("Delay in seconds", "10", 10,
TextField.NUMERIC);
 mainForm.addCommand(exitCommand);
 mainForm.addCommand(registerCommand);
 mainForm.append(tf);
 mainForm.setCommandListener(this);

 display.setCurrent(mainForm);

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void commandAction(Command c, Displayable s) {
 if((c == exitCommand) && (s == mainForm)){
 destroyApp(false);
 }
 if(c == registerCommand){

 new regThread().start();

 }
 }

 public class regThread extends Thread{

 public void run(){

 try {
 long delay =
Integer.parseInt(tf.getString()) * 1000;

 long curTime = (new Date()).getTime();

 System.out.println(curTime + delay);

 PushRegistry.registerAlarm("WakeUp",
curTime + delay);
 mainForm.append("Alarm registered
successfully");

 } catch (NumberFormatException nfe) {
 mainForm.append("FAILED\nCan not decode
delay " + nfe);
 } catch (ClassNotFoundException cnfe) {
 mainForm.append("FAILED\nregisterAlarm

thrown " + cnfe);
 } catch (ConnectionNotFoundException cnfe) {
 mainForm.append("FAILED\nregisterAlarm
thrown " + cnfe);
 }
 }
 }
}

SMS_send.java
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SMS_send extends MIDlet implements
CommandListener{

 public Display display;

 public static Form messageForm;
 public static Form mainForm;

 public static Command exitCommand;
 public static Command backCommand;
 public static Command sendCommand;

 public static TextField address_tf;
 public static TextField port_tf;
 public static TextField message_text_tf;

 String[] binary_str = {"Send BINARY message"};
 public static ChoiceGroup binary_cg;

 byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 String address;
 String text;

 MessageConnection conn = null;
 TextMessage txt_message = null;
 BinaryMessage bin_message = null;

 public SMS_send(){
 address_tf = new TextField("Address:", "", 32,
TextField.PHONENUMBER);
 port_tf = new TextField("Port:", "1000", 32,
TextField.PHONENUMBER);

 message_text_tf = new TextField("Message
text:", "test message", 160, TextField.ANY);
 binary_cg = new ChoiceGroup(null,
Choice.MULTIPLE, binary_str, null);

 display = Display.getDisplay(this);

 messageForm = new Form("SMS_send");
 mainForm = new Form("SMS_send");

 exitCommand = new Command("Exit", Command.EXIT,
0);
 backCommand = new Command("Back", Command.BACK,
0);
 sendCommand = new Command("Send", Command.ITEM,
1);

 mainForm.append(address_tf);
 mainForm.append(port_tf);
 mainForm.append(message_text_tf);
 mainForm.append(binary_cg);

 mainForm.addCommand(exitCommand);
 mainForm.addCommand(sendCommand);
 mainForm.setCommandListener(this);

 messageForm.addCommand(backCommand);
 messageForm.setCommandListener(this);

 }

 public void pauseApp(){
 }

 protected void startApp() {
 display.setCurrent(mainForm);
 }

 public void destroyApp(boolean unconditional) {
 notifyDestroyed();
 }

 public void showMessage(String s) {
 if(messageForm.size() != 0)
messageForm.delete(0);
 messageForm.append(s);
 display.setCurrent(messageForm);
 }

 public void commandAction(Command c, Displayable s) {
 if((c == backCommand) && (s == messageForm)){
 display.setCurrent(mainForm);
 }
 if((c == exitCommand) && (s == mainForm)){
 destroyApp(false);
 }
 if((c == sendCommand) && (s == mainForm)){
 address = "sms://" +
address_tf.getString();
 if(port_tf.size() != 0) address += ":" +
port_tf.getString();
 text = message_text_tf.getString();

 new send_thread().start();
 }
 }

 public class send_thread extends Thread{
 public void run(){
 try{
 conn = (MessageConnection)
Connector.open(address);
 if(!binary_cg.isSelected(0)){
 txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);
 txt_message.setPayloadText(text);
 conn.send(txt_message);
 } else {
 bin_message = (BinaryMessage)
conn.newMessage(MessageConnection.BINARY_MESSAGE);

bin_message.setPayloadData(binary_data);
 conn.send(bin_message);
 }
 conn.close();
 showMessage("Message sent");
 } catch (Throwable t) {
 showMessage("Unexpected " +
t.toString() + ": " + t.getMessage());
 }
 }
 }
}

Delivery of a Push Message
A push message intended for a MIDlet on the Motorola C975 handset will handle the
following interactions:

• MIDlet running while receiving a push message – if the application receiving the
push message is currently running, the application will consume the push
message without user notification.

• No MIDlet suites running – if no MIDlets are running, the user will be notified of
the incoming push message and will be given the option to run the intended
application as shown below.

• Push registry with Alarm/Wake-up time for application – push registry supports

one outstanding wake-up time per MIDlet in the current suite. An application will
use the TimerTask notification of time-based events while the application is
running.

• Another MIDlet suite is running during an incoming push – if another MIDlet is
running, the user will be presented an option to launch the application that had
registered for the push message. If the user selects the launch, the current
MIDlet is terminated.

• Stacked push messages – it is possible for the handset to receive multiple push
messages at one time while the user is running a MIDlet. The user will be given
the option to allow the MIDlets to end and new MIDlets to begin. The user will be
given the ability to read the messages in a stacked manner (stack of 5
supported), and if not read, the messages should be discarded.

• No applications registered for push – if there are no applications registered to
handle this event, the incoming push message will be ignored.

Deleting an Application Registered for Push
If an application registered in the Push Registry is deleted, the corresponding push entry
will be deleted, making the PORT number available for future Push Registrations.

Security for Push Registry
Push Registry is protected by the security framework. The MIDlet registered for the push
should have the necessary permissions. Details on permissions are outlined in the
Security chapter.

Network Access

Untrusted applications will use the normal HttpConnection and HttpsConnection APIs to
access web and secure web services. There are no restrictions on web server port

numbers through these interfaces. The implementations augment the protocol so that web
servers can identify untrusted applications. The following will be implemented:

• The implementation of HttpConnection and HttpsConnection will include a
separate User-Agent header with the Product-Token “UNTRUSTED/1.0”.User-
Agent headers supplied by the application will not be deleted.

• The implementation of SocketConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to connect
on ports 80 and 8080 (http) and 443 (https).

• The implementation of SecureConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suites attempts to connect
on port 443 (https).

• The implementation of the method DatagramConnection.send will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to send
datagrams to any of the ports 9200-9203 (WAP Gateway).

• The above requirements should be applied regardless of the API used to access
the network. For example, the javax.microedition.io.Connector.open and
javax.microedition.media.Manager.createPlayer methods should throw
java.lang.SecurityException if access is attempted to these port numbers through
a means other than the normal HttpConnection and HttpsConnection APIs.

11
Interface CommConnection

CommConnection
The CommConnection interface defines a logical serial port connection. A logical serial
port connection is a logical connection through which bytes are transferred serially. This
serial port is defined within the underlying operating system and may not correspond to a
physical RS-232 serial port. For example, IrDA IRCOMM ports can be configured as a
logical serial port within the operating system so it can act as a logical serial port.

Accessing
The comm port is accessed using a Generic Connection Framework string with an explicit
port identifier and embedded configuration parameters, each separated with a semi-colon
(;). Only one application may be connected to a particular serial port at a given time. A
java.io.IOException is thrown if an attempt is made to open the serial port with
Connector.open() if the connection is already open.
A URI with the type and parameters is used to open the connection. The scheme, as
defined in RFC 2396, will be the following:

• Comm.: <port identifier> [<optional parameters>]

Parameters
The first parameter will be a port identifier, which is a logical device name. These port
identifiers are device specific and should be used with care.
The valid identifiers for a particular device and OS can be queried through the
System.getproperty() method using the key microedition.commports. A
list of ports, separated by commas, is returned which can be combined with a comm:
prefix as the URL string to open a serial port connection.

Any additional parameters will be separated by a semi-colon (;) without spaces. If a
particular parameter is not applicable to a particular port, the parameter will be ignored.
The port identifier cannot contain a semi-colon (;).
Legal parameters are defined by the definition of the parameters below. Illegal or
unrecognized parameters cause an IllegalArgumentException. If the value of a
parameter is supported by the device, it will be honored. If the value of a parameter is not
supported, a java.io.IOException is thrown. If a baudrate parameter is
requested, it is treated the same way that a setBaudRate method handles baud rates.
For example, if the baudrate requested is not supported, the system will substitute a valid
baudrate which can be discovered using the getBaudRate method.
The table below describes optional parameters.

Parameter Default Description
baudrate platform dependent The speed of the port.
bitsperchar 8 The number bits per character(7 or 8).
stopbits 1 The number of stop bits per char(1 or 2)
parity none The parity can be odd, even, or none.
blocking on If on, wait for a full buffer when reading.
autocts on If on, wait for the CTS line to be on

before writing.
autorts on If on, turn on the RTS line when the input

buffer is not full. If off, the RTS line is
always on.

BNF Format for Connector.open () string
The URI will conform to the BNF syntax specified below. If the URI does not conform to
this syntax, an IllegalArgumentException is thrown.

<comm_connection_string> ::= "comm:"<port_id>[<options_list>] ;
<port_id> ::= string of alphanumeric characters
<options_list> ::= *(<baud_rate_string>| <bitsperchar>| <stopbits>| <parity>| <blocking>|

<autocts>| <autorts>) ;
; if an option duplicates a previous option in the
; option list, that option overrides the previous
; option

<baud_rate_string> ::= ";baudrate="<baud_rate>
<baud_rate> ::= string of digits
<bitsperchar> ::= ";bitsperchar="<bit_value>
<bit_value> ::= "7" | "8"
<stopbits> ::= ";stopbits="<stop_value>
<stop_value> ::= "1" | "2"
<parity> ::= ";parity="<parity_value>
<parity_value> ::= "even" | "odd" | "none"

<blocking> ::= ";blocking="<on_off>
<autocts> ::= ";autocts="<on_off>
<autorts> ::= ";autorts="<on_off>
<on_off> ::= "on" | "off"

Comm Security
Access to serial ports is restricted to prevent unauthorized transmission or reception of
data. The security model applied to the serial port connection is defined in the
implementing profile. The security model will be applied on the invocation of the
Connector.open () method with a valid serial port connection string. Should the
application not be granted access to the serial port through the profile authorization
scheme, a java.lang.SecurityException will be thrown from the
Connector.open () method. The security model will be applied during execution,
specifically when the methods openInputStream(),
openDataInputStream(), openOutputStream(), and
openDataOutputStream() are invoked.

The following are code samples to implementation of CommConnection:

Sample of a CommConnection accessing a simple loopback program
CommConnection cc = (CommConnection)
 Connector.open("comm:com0;baudrate=19200");
 int baudrate = cc.getBaudRate();
 InputStream is = cc.openInputStream();
 OutputStream os = cc.openOutputStream();
 int ch = 0;
 while(ch != 'Z') {
 os.write(ch);
 ch = is.read();
 ch++;
 }
 is.close();
 os.close();
 cc.close();

Sample of a CommConnection discovering available comm Ports
String port1;
 String ports =
System.getProperty("microedition.commports");
 int comma = ports.indexOf(',');
 if (comma > 0) {
 // Parse the first port from the available ports list.
 port1 = ports.substring(0, comma);
 } else {
 // Only one serial port available.
 port1 =ports;

 }

Port Naming Convention
Logical port names can be defined to match platform naming conventions using any
combination of alphanumeric characters. Ports will be named consistently among the
implementations of this class according to a proposed convention. VM implementations
will follow the following convention:

• Port names contain a text abbreviation indicating port capabilities followed by a
sequential number for the port. The following device name types will be used:

o COM# - COM is for RS-232 ports and # is a number assigned to the
port

o IR# - IR is for IrDA IRCOMM ports and # is a number assigned to the
port

The naming scheme allows API users to determine the type of port to use. For example, if
an application “beams” a piece of data, the application will look for IR# ports for opening
the connection.

Method Summary
The tables below describe the CommConnection method summary for MIDP 2.0.

Method Summary

Int getBaudRate()

Gets the baudrate for the serial port connection

Int setBaudRate (int baudrate)

Sets the baudrate for the serial port connection

12
JSR120 – Wireless Messaging

API

Wireless Messaging API (WMA)
Motorola has implemented certain features that are defined in the Wireless Messaging
API (WMA) 1.0 and 1.3 versions. The complete specification document is defined in JSR
120.
The JSR 120 specification states that developers can be provided access to send (MO –
mobile originated) and receive (MT – mobile terminated) SMS (Short Message Service)
on the target device.
A simple example of the WMA is the ability of two J2ME applications using SMS to
communicate game moves running on the handsets. This can take the form of chess
moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features.

 Creating an SMS
 Sending an SMS
 Receiving an SMS
 Viewing an SMS
 Deleting an SMS

SMS Client Mode and Server Mode Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),
which is defined in the CLDC specification 1.0. The use of the “Connection” framework, in
Motorola's case is “MessageConnection”.

The MessageConnection can be opened in either server or client mode. A server
connection is opened by providing a URL that specifies an identifier (port number) for an
application on the local device for incoming messages.

(MessageConnection)Connector.open("sms://:6000");

Messages received with this identifier will then be delivered to the application by this
connection. A server mode connection can be used for both sending and receiving
messages. A client mode connection is opened by providing a URL which points to
another device. A client mode connection can only be used for sending messages.

(MessageConnection)Connector.open("sms://+441234567890
:6000");

SMS Port Numbers
When a port number is present in the address, the TP-User-Data of the SMS will contain
a User-Data-Header with the application port addressing scheme information element.
When the recipient address does not contain a port number, the TP-User-Data will not
contain the application port addressing header. The J2ME MIDlet cannot receive this kind
of message, but the SMS will be handled in the usual manner for a standard SMS to the
device.

When a message identifying a port number is sent from a server type
MessageConnection, the originating port number in the message is set to the port
number of the MessageConnection. This allows the recipient to send a response to
the message that will be received by this MessageConnection.

However, when a client type MessageConnection is used for sending a message
with a port number, the originating port number is set to an implementation specific value
and any possible messages received to this port number are not delivered to the
MessageConnection. Please refer to the section A.4.0 and A.6.0 of the JSR 120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the first
MIDlet to request this identifier it will be allocated. If other applications apply for the same
identifier then an IOException will be thrown when an attempt to open
MessageConnection is made. If a system application is using this identifier, the
MIDlet will not be allocated the identifier. The port numbers allowed for this request are
restricted to SMS messages. In addition, a MIDlet is not allowed to send messages to
certain restricted ports a SecurityException will be thrown if this is attempted.

JSR 120 Section A.6.0 Restricted Ports:
2805, 2923, 2948, 2949, 5502, 5503, 5508, 5511, 5512, 9200, 9201, 9203, 9207, 49996,
49999.

If you intend to use SMSC numbers then please review A.3.0 in the JSR 120
specification. The use of an SMSC would be used if the MIDlet had to determine what
recipient number to use.

SMS Storing and Deleting Received Messages
When SMS messages are received by the MIDlet, they are removed from the SIM card
memory where they were stored. The storage location (inbox) for the SMS messages has
a capacity of up to thirty messages. If any messages are older than five days then this will
be removed, from the inbox by way of a FIFO stack.

SMS Message Types
The types of messages that can be sent are TEXT or BINARY, the method of encoding
the messages are defined in GSM 03.38 standard (Part 4 SMS Data Coding Scheme).
Refer to section A.5.0 of JSR 120 for more information.

SMS Message Structure
The message structure of SMS will comply with GSM 03.40 v7.4.0 Digital cellular
telecommunications system (Phase 2+); Technical realization of the Short Message
Service (SMS) ETSI 2000.

Motorola’s implementation uses the concatenation feature specified in sections 9.2.3.24.1
and 9.2.3.24.8 of the GSM 03.40 standard for messages that the Java application sends
that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages
and passes the fully reassembled message to the application via the API. The
implementation will support at least three SMS messages to be received and
concatenated together. Also, for sending, support for a minimum of three messages is
supported. Motorola advises that developers will not send messages that will take up
more than three SMS protocol messages unless the recipient’s device is known to support
more.

SMS Notification
Examples of SMS interaction with a MIDlet would be the following:

 A MIDlet will handle an incoming SMS message if the MIDlet is registered to
receive messages on the port (identifier) and is running.

 When a MIDlet is paused and is registered to receive messages on the port
number of the incoming message, then the user will be queried to launch the
MIDlet.

 If the MIDlet is not running and the Java Virtual Machine is not initialized, then a
Push Registry will be used to initialize the Virtual Machine and launch the J2ME
MIDlet. This only applies to trusted, signed MIDlets.

 If a message is received and the untrusted unsigned application and the KVM
are not running then the message will be discarded.

 There is a SMS Access setting in the Java Settings menu option on the handset
that allows the user to specify when and how often to ask for authorization.
Before the connection is made from the MIDlet, the options available are:

o Always ask for user authorization
o Ask once per application
o Never Ask

The following is a list of Messaging features/classes supported in the device.

Feature/Class Implementation

JSR-120 API. Specifically, APIs defined in the
javax.wireless.messaging package will be implemented with regards to
the GSM SMS Adaptor

Supported

Removal of SMS messages Supported

Terminated SMS removal – any user prompts handled by MIDlet Supported

Originated SMS removal – any user prompts handled by MIDlet Supported

All fields, methods, and inherited methods for the Connector Class in
the javax.microedition.io package

Supported

All methods for the BinaryMessage interface in the
javax.wireless.messaging package

Supported

All methods for the Message interface in the javax.wireless.messaging
package

Supported

All fields, methods, and inherited methods for the MessageConnection
interface in the javax.wireless.messaging package

Supported

Number of MessageConnection instances in the
javax.wireless.messaging package

32 maximum

Number of MessageConnection instances in the
javax.wireless.messaging package

16

All methods for the MessageListener interface in the
javax.wireless.messaging package

Supported

All methods and inherited methods for the TextMessage interface in
the javax.wireless.messaging package

Supported

16 bit reference number in concatenated messages Supported

Number of concatenated messages. 30 messages in inbox, each can
be concatenated from 3 parts.
No limitation on outbox
(immediately transmitted)

Allow MIDlets to obtain the SMSC address with the
wireless.messaging.sms.smsc system property

Supported

The following are code samples to show implementation of the JSR 120 Wireless
Messaging API:
Creation of client connection and for calling of method ‘numberOfSegments’ for
Binary message:
BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

 /* Create connection for client mode */
 connClient = (MessageConnection) Connector.open("sms://"
+ outAddr);

 /* Create BinaryMessage for client mode */
 binMsg =
(BinaryMessage)connClient.newMessage(MessageConnection.BINAR
Y_MESSAGE);

 /* Create BINARY of 'size' bytes for BinaryMsg */
 public byte[] createBinary(int size) {
 int nextByte = 0;
byte[] newBin = new byte[size];

 for (int i = 0; i < size; i++) {
 nextByte = (rand.nextInt());
 newBin[i] = (byte)nextByte;
 if ((size > 4) && (i == size / 2)) {
 newBin[i-1] = 0x1b;
 newBin[i] = 0x7f;
 }
 }
 return newBin;
 }

byte[] newBin = createBinary(msgLength);
 binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Creation of server connection:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274:9532")
;

Creation of client connection without port number:
MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection:
MessageConnection messageConnection.close();

Creation of SMS message:
Message textMessage =
messageConnection.newMessage(MessageConnection.TEXT_MESSAGE)
;

Setting of payload text for text message:

 ((TextMessage)message).setPayloadText("Text Message");
Getting of payload text of received text message:
receivedText =
((TextMessage)receivedMessage).getPayloadText();
Getting of payload data of received binary message:
BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number:
message.setAddress("sms://+18473297274:9532");

Setting of address without port number:
message.setAddress("sms://+18473297274");

Sending of message:
messageConnection.send(message);

Receiving of message:

Message receivedMessage = messageConnection.receive();

Getting of address:
String address = ((TextMessage)message).getAddress();

Getting of SMS service center address via calling of System.getProperty():
String addrSMSC =
System.getProperty("wireless.messaging.sms.smsc");

Getting of timestamp for the message:
Message message;
System.out.println("Timestamp: " +
message.getTimestamp().getTime());

Creation of client connection, creation of binary message, setting of payload for
binary message and calling of method ‘numberOfSegments(Message)’ for Binary
message:
BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

 /* Create connection for client mode */
 connClient = (MessageConnection) Connector.open("sms://"
+ outAddr);

 /* Create BinaryMessage for client mode */
 binMsg =
(BinaryMessage)connClient.newMessage(MessageConnection.BINAR
Y_MESSAGE);

 /* Create BINARY of 'size' bytes for BinaryMsg */
 public byte[] createBinary(int size) {
 int nextByte = 0;
byte[] newBin = new byte[size];

 for (int i = 0; i < size; i++) {
 nextByte = (rand.nextInt());
 newBin[i] = (byte)nextByte;
 if ((size > 4) && (i == size / 2)) {
 newBin[i-1] = 0x1b;
 newBin[i] = 0x7f;
 }
 }
 return newBin;
 }

byte[] newBin = createBinary(msgLength);

 binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Setting of MessageListener and receiving of notifications about incoming
messages:

public class JSR120Sample1 extends MIDlet implements
CommandListener {
…
JSR120Sample1Listener listener = new
JSR120Sample1Listener();
…
// open connection
messageConnection =
(MessageConnection)Connector.open("sms://:9532");
…
// create message to send
…
listener.run();
…
// set payload for the message to send
…
// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");
…
// send message (via invocation of ‘send’ method)
…
// set address for the message to receive
receivedMessage.setAddress("sms://:9532");
…
// receive message (via invocation of ‘receive’ method)
…

class JSR120Sample1Listener implements MessageListener,
Runnable {
private int messages = 0;

public void notifyIncomingMessage(MessageConnection
connection) {
System.out.println("Notification about incoming message
arrived");
 messages++;
}

public void run() {
 try {
 messageConnection.setMessageListener(listener);
 } catch (IOException e) {
 result = FAIL;

System.out.println("FAILED: exception while setting
listener: " + e.toString());
 }
}
}

App Inbox Clean-up
Actually, messages for MIDlets are stored in a separate App Inbox. This App Inbox is
cleaned up automatically.
The App Inbox capacity is 26 messages or 26 segments and when a new message is
received for a certain port number, and the App Inbox capacity has reached its limit of 26
messages, then the messages in the App Inbox will be deleted in the following order:

• If a certain port number has any unread messages in the App Inbox, then

the oldest unread message in the buffer relative to that port number WILL be
deleted next.

• If a certain port number currently has no messages in the App Inbox, then
the oldest unread message in the buffer relative to all port numbers will be
deleted next.

When the maximum number of messages is reached and the phone has reached memory
full condition, no new messages can be received by the applications. A blinking
messaging icon is used to inform the user that the messaging folder is full. At this stage
the user has to manually delete some messages to clear some memory to allow the
reception of incoming messages.

13
JSR 135 – Mobile Media API

JSR 135 Mobile Media API
The JSR 135 Mobile Media APIs feature sets are defined for five different types of media.
The media defined is as follows:

• Tone Sequence

• Sampled Audio

• MIDI
The new implementation of JSR 135 supports playback of more audio formats and
recording of time-based media – audio and video as well as still-image capture.
When a player is created for a particular type, it will follow the guidelines and control types
listed in the sections outlined below.
The following is a code sample to show implementation of the JSR 135 Mobile Media API:
JSR 135
Player player;

// Create a media player, associate it with a stream
containing media data
try
{
 player =
Manager.createPlayer(getClass().getResourceAsStream("MP3.mp3
"), "audio/mp3");
}
catch (Exception e)
{
 System.out.println("FAILED: exception for createPlayer:
" + e.toString());
}

// Obtain the information required to acquire the media
resources

try
{
 player.realize();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for realize: " +
e.toString());
}

// Acquire exclusive resources, fill buffers with media data
try
{
 player.prefetch();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for prefetch: " +
e.toString());
}

// Start the media playback
try
{
 player.start();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for start: " +
e.toString());
}

// Pause the media playback
try
{
 player.stop();
}
catch (MediaException e)
{
 System.out.println("FAILED: exception for stop: " +
e.toString());
}

// Release the resources

 player.close();

ToneControl
ToneControl is the interface to enable playback of a user-defined monotonic tone
sequence. The JSR 135 Mobile Media API will implement public interface ToneControl.
A tone sequence is specified as a list of non-tone duration pairs and user-defined
sequence blocks and is packaged as an array of bytes. The setSequence() method
is used to input the sequence to the ToneControl.
The following is the available method for ToneControl:
-setSequence (byte[] sequence): Sets the tone sequence

VolumeControl
VolumeControl is an interface for manipulating the audio volume of a Player. The JSR 135
Mobile Media API will implement public interface VolumeControl.
The following describes the different volume settings found within VolumeControl:

• Volume Settings - allows the output volume to be specified using an integer
value that varies between 0 and 100. Depending on the application, this will need
to be mapped to the volume level on the phone (0-7).

• Specifying Volume in the Level Scale - specifies volume in a linear scale. It
ranges from 0 – 100 where 0 represents silence and 100 represents the highest
volume available.

• Mute – setting mute on or off does not change the volume level returned by the
getLevel. If mute is on, no audio signal is produced by the Player. If mute is off,
an audio signal is produced and the volume is restored.

The following is a list of available methods with regards to VoumeControl:
-getLevel: Get the current volume setting.
-isMuted: Get the mute state of the signal associated with this VolumeControl.
-setLevel (int level): Set the volume using a linear point scale with values
between 0 and 100.
-setMute (Boolean mute): Mute or unmute the Player associated with this
VolumeControl.

StopTimeControl
StopTimeControl allows a specific preset sleep timer for a player. The JSR 135 Mobile
Media API will implement public interface StopTimeControl.
The following is a list of available methods with regards to StopTimeControl:
-getStopTime: Gets the last value successfully by setStopTime.

-setStopTime (long stopTime): Sets the media time at which you want the
Player to stop.

Manager Class
Manager Class is the access point for obtaining system dependant resources such as
players for multimedia processing. A Player is an object used to control and render media
that is specific to the content type of the data. Manager provides access to an
implementation specific mechanism for constructing Players. For convenience, Manager
also provides a simplified method to generate simple tones. Primarily, the Multimedia API
will provide a way to check available/supported content types.

Audio Media
The following multimedia file formats are supported:

File Type CODEC

WAV PCM

WAV ADPCM

SP MIDI General MIDI

MIDI Type 1 General MIDI

iMelody IMelody

CTG CTG

MP3 MPEG-1 layer III

AMR AMR

BAS General MIDI

The following is a list of audio MIME types supported:

Category Description MIME Type

iMelody audio/imelody x-imelody imy x-imy

MIDI audio/midi x-midi mid x-mid sp-midi

WAV audio/wav x-wav

MP3 audio/mp3 x-mp3 mpeg3 x-mpeg3 mpeg x-
mpeg

Audio

AMR/MP4 audio/amr x-amr mp4 x-mp4

Refer to the table below for multimedia feature/class support for JSR 135:

Feature/Class Implementation

Media package found Supported

Media control package Supported

Media Protocol package Streaming not supported

Control interface in javax.microedition.media Supported

All methods for the Controllable interface in
javax.microedition.media.control

Supported

All fields, methods, and inherited methods for the Player interface in
javax.microedition.media

Supported

All fields and methods for the PlayerListener interface in
javax.microedition.media

Supported

PlayerListener OEM event types for the PlayerListener interface Standard types only

All fields, methods, and inherited methods for the Manager Class in
javax.microedition.media

Supported

TONE_DEVICE_LOCATOR support in the Manager class of
javax.microedition.media

Supported

TONE_DEVICE_LOCATOR content type will be audio/x-tone-seq Supported

TONE_DEVICE_LOCATOR media locator will be device://tone Supported

All constructors and inherited methods in
javax.microedition.medi.MediaException

Supported

All fields and methods in the StopTimeControl interface in
javax.microedition.media.control

Supported

All fields and methods in the ToneControl interface in
javax.microedition.media.control

Supported

All methods in the VolumeControl interface in
javax.microedition.media.control

Supported

Max volume of a MIDlet will not exceed the maximum speaker setting
on the handset

Supported

Multiple SourceStreams for a DataSource 2

Note: The multimedia engine only supports prefetching 1 sound at a time, but 2
exceptions exist where 2 sounds can be prefetched at once. These exceptions are listed
below:

1. Motorola provides the ability to play MIDI and WAV files simultaneously, but the MIDI
track will be started first. The WAV file should have the following format: PCM 8,000
Khz; 8 Bit; Mono

2. When midi, iMelody, mix, and basetracks are involved, two instances of midi,
iMelody, mix, or basetrack sessions can be prefetched at a time, although one of
these instances has to be stopped. This is a strict requirement as (for example) two
midi sounds cannot be played simultaneously.

Mobile Media Feature Sets

The following table lists the new packages, classes, fields and methods implemented for JSR 135.
Appropriate exception shall be generated if the called method is not supported by the implementation. If a
method is accessed without proper security permissions, security exception shall be thrown.

Packages Classes Methods Comments &
Requirements

setTempo()

Sets the current
playback tempo. WILL
implement a tempo
range of 10 to 300 beats
per minute.

TempoControl
(Applicable to
MIDI/iMelody
audio formats.
Implementation
guidance -
SHOULD.)

getTempo() Gets the current
playback tempo.

getMaxPitch() Gets the maximum
playback pitch raise
supported by the player.
SHOULD implement a
maximum playback
pitch raise of 12,000
milli-semitones.

getMinPitch() Gets the minimum
playback pitch raise
supported by the player.
SHOULD implement a
minimum playback pitch
raise of 12,000
millisemitones.

javax.microediti
on.media.control

PitchControl
(Applicable to
MIDI /iMelody
audio formats.
Implementation
guidance -
SHOULD)

getPitch() Gets the current
playback pitch raise.

 setPitch() Sets the relative pitch
raise.

mapFrameToTime()

Converts the given
frame number to the
corresponding media
time.

mapTimeToFrame()

Converts the given
media time to the
corresponding frame
number.

seek()

Seeks to a given video
frame.

FramePositioningC
ontrol
(Implementation
guidance -
SHOULD)

skip()

Skips a given number of
frames from the current
position.

MIDIControl
(Implementation
guidance -
SHOULD)

All fields & methods

RecordControl

All fields & methods

RecordControl controls
the recording of media
from a Player. Supports
all methods. Required
for audio capture
functionality. Video
capture support is
optional. RecordControl
is a protected API as
specified in the Security
section.

VideoControl
(Implementation
guidance -
SHOULD)

All fields & methods.

getSnapshot() method
WILL be supported if
the VideoControl is
implemented by an
instance of camera
device.
If VideoControl is
implemented by video
player for video file/
stream playback, it is
not mandatory to
support get Snap
Shot() method.

VideoControl controls
the display of video. A
Player which supports
the playback of video
WILL provide a
VideoControl via its
getControl and
getControls methods.

MetaDataControl

Implement all fields
and methods.
Support title,
copyright, data, author
keys for CODECs
supporting these keys.

Player

All fields and methods

SHOULD allow a Player
to use a different
TimeBase other than its
own. This is required for
synchronization between
multiple Media Players.

PlayerListener All fields and methods

SHOULD let
applications register
PlayerListener for
receiving Player events.

Manager

All fields and methods

WILL support file
locator for local
playback. For streaming,
RTP locator needs to be
supported.
For camera, new device
locator, “camera” has to
be supported.

javax.microedition.m
edia

TimeBase

getTime()

Gets the current time of
this TimeBase.

javax.microediti
on.media.protoc

ol

ContentDescriptor

getContentType()

Obtains a string that
represents the content
type for this descriptor.

There are others features that can be considered, such as:

• Support synchronous mixing of two or more sound channels. MIDI+WAV is
supported, but MIDI+MP3 is highly desirable.

• The classes Manager, DataSource and RecordControl interface accepts media
locators. In addition to normal playback locators specified by JSR – 135, the
following special locators are supported:

o RTP Locators are supported for streaming media on devices
supporting real time streaming using RTSP. This support will be
available for audio and video streaming through Manager (for
playback media stream).

o HTTP Locators are supported for playing back media over network
connections. This support should be available through Manager
implementation.
e.g.: Manager.createPlayer(“http://webserver/tune.mid”)

o File locators are supported for playback and capture of media. This is
specific to Motorola J2ME implementations supporting file system API
and not as per JSR-135. The support should be available through
Manager and RecordControl implementations.
e.g.: Manager.createPlayer(“file://motorola/audio/sample.mid”)

o Capture Locator is supported for audio and video devices. A new device
“camera” will be defined and supported for camera device.
Manager.createPlayer() call shall return camera player as a special type
of video player. Camera player should implement VideoControl and
should support taking snapShots using VideoControl.getSnapshot()
method.
e.g.: Manager.createPlayer(“capture://camera”)

Supported Multimedia File Types
The following table lists multimedia file types (with corresponding CODECs) that are
supported in products that are JSR-135 compliant. The common guideline being all
codecs and file types supported by native side should be accessible through JSR-135
implementation. The implementation of JSR-135 (and these tables) is updated every time
a new file type and/or CODEC is released.

Image Media

File Type CODEC Functionality

JPEG/JFIF

JPEG Capture

JPEG/EXIF JPEG Capture

Audio Media

File Type CODEC Functionality

AAC AAC Playback

WMA Proprietary (Microsoft) Playback

AU PCM Mu-law Playback

AIFF PCM Playback

XMF General MIDI Playback

AMR AMR NB Playback and Capture

Video Media

File Type CODEC Functionality

MP4 H.263 (profile 0) or
MPEG 4 with or without
AMR/AAC audio.

Playback and Capture

3GP H.263 (profile 0) or
MPEG 4 with or without
AMR/AAC audio.

Playback and Capture

RTF Streaming RTP/RTSP/RTCP
Streaming Engine

Playback

ASF Proprietary (Microsoft) Playback

WMV Proprietary (Microsoft) Playback

Windows Streaming Proprietary (Microsoft) Playback

Canned Sounds

The implementation supports predefined sounds which can be used by applications like
games and alerts. Each predefined sound has an associated locator, which are used by
the application.
The sounds and the specific locators are to be defined by CxD.

e.g.: Manager.createPlayer (CANNED_SOUND_ALARM)

Security

Mobile Media API follows MIDP 2.0 security model. Recording functionality APIs need to
be protected. Trusted third party and untrusted applications will utilize user permissions.
Specific permission settings are detailed below.

Policy
The following security policy will be flexed in per operator requirements at ship time of the
handset.

Function Group Trusted Third
Party

Untrusted Manufacturer Operator

Multimedia Record Ask once Per
App, Always Ask,
Never Ask, No
Access

Always Ask, Ask
once Per App,
Never Ask, No
Access

Full Access Full Access

Permissions
The following table lists individual permissions within Multimedia Record function group.

Permission Protocol Function Group

javax.microedition.
media.control.
RecordControl.record

RecordControl.startReco
rd()

MultimediaRecord

14
JSR 139 – CLDC 1.1

JSR 139
CLDC 1.1 is an incremental release of CLDC version 1.0. CLDC 1.1 is fully backwards
compatible with CLDC 1.0. Implementation of CLDC 1.1 supports the following:

 Floating Point

− Data Types float and double

− All floating point byte codes

− New Data Type classes Float and Double

− Library classes to handle floating point values
 Weak reference
 Classes Calender, Date and TimeZone are J2SE compliant
 Thread objects to be compliant with J2SE.

The support of thread objects to be compliant with J2SE requires the addition of
Thread.getName and a few new contructors. The following table lists the additional
classes, fields, and methods supported for CLDC 1.1 compliance:

 Classes Additional
Fields/Methods

Comments

System Classes Java.lang.Thread Thread (Runnable
target, String name)

Allocates a new
Thread object with the
given target and name.

 Thread (String name) Allocates a new
Thread object with the
given name

 String getName () Returns this thread’s
name

 Void interrupt () Interrupts this thread

 Java.lang.String Boolean
equalIgnoreCase
(String anotherString)

Compares this string to
another String,
ignoring case
considerations

 String intern () Returns a canonical
representation for the
string object

 Static String valueOf
(float f)

Returns the string
representation of the
float argument

 Static String valueOf
(double d)

Returns the string
representation of the
double argument

Data Type Classes Java.lang.Float New Class: Refer to
CLDC Spec for more
details

 Java.lang.Double New Class: Refer to
CLDC Spec for more
details

Calender and Time
Classes

Java.util.Calender Protected int [] fields The field values for the
currently set time for
this calendar

 Protected boolean { }
is set

The flags which tell if a
specified time field for
the calendar is set

 Protected long time The currently set time
for this calendar,
expressed in
milliseconds after
January 1, 1970,
0:00:00 GMT

 Protected abstract
void ComputeFields

Converts the current
millisecond time value
to field values in fields
[]

 Protected abstract
void ComputeTime

Converts the current
field values in fields []
to the millisecond time
value time

 Java.lang.Date String toString () Converts this date
object to a String of the
form:
Dow mon dd hh:mm:ss

zzz yyyy

Exception and Error
Classes

Java.lang.NoClassDefFoundError New Class: Refer to
CLDC Spec for more
details

Weak References Java.lang.ref.Reference New Class: Refer to
CLDC Spec for more
details

 Java.lang.ref.WeakReference New Class: Refer to
CLDC Spec for more
details

Additional Utility
Classes

Java.util.Random Double nextDouble () Returns the
nextpseudorandom,
uniformly distributed
double value between
0.0 and 1.0 from the
random number
generator’s sequence

 Float nextFloat () Returns the next
pseudorandom,
uniformly distributed
double value between
0.0 and 1.0 from the
random number
generator’s sequence

 Int nextInt (int n) Returns a
pseudorandom,
uniformly distributed int
value between 0
(inclusive) and the
specified value
(exclusive), drawn
from this random
number generator’s
sequence

 Java.lang.Math Static double E The double value that
is closer than any
other to e, the base of
the natural logarithms

 Static double PI The double value that
is closer than any
other to pi, the ratio of
the circumference of a
circle to its diameter

 Static double abs
(double a)

Returns the absolute
value of a double value

 Static float abs (float
a)

Returns the absolute
value of a double value

 Static double ceil
(double a)

Returns the smallest
(closest to negative
infinity) double value
that is not less than the
argument and is equal
to a mathematical
integer

 Static double cos
(double a)

Returns the
trigonometric cosine of
an angle

 Static double floor
(double a)

Returns the largest
(closest to positive
infinity) double value
that is not greater than
the argument and is
equal to a
mathematical integer.

 Static double max
(double a, double b)

Returns the greater of
two double values

 Static float max (float
a, float b)

Returns the greater of
two float values

 Static double min
(float a, float b)

Returns the smaller of
two double values

 Static float min (float
a, float b)

Returns the smaller of
two float values

 Static double sin
(double a)

Returns the
trigonometric sine of
an angle

 Static double sqrt
(double a)

Returns the correctly
rounded positive
square root of a double
value

 Static double tan
(double a)

Returns the
trigonometric tangent
of angle

 Static double
todegrees (double
angrad)

Converts an angle
measured in radians to
the equivalent angle
measured in degrees

 Static double
toradians (double
angdeg)

Converts an angle
measured in degrees
to the equivalent angle

measured in radians

15
JSR 184 – 3D API

Overview
JSR 184 Mobile 3D API defines an API for rendering three-dimensional (3D) graphics at
interactive frame rates, including a scene graph structure and a corresponding file format
for efficient management and deployment of 3D content. Typical applications that might
make use of JSR 184 Mobile 3D API include games, map visualizations, user interface,
animated messages, and screen savers. JSR 184 requires a J2ME device supporting
MIDP 2.0 and CLDC 1.1 at a minimum.

Mobile 3D API
The Motorola C975 contains full implementation of JSR 184 Mobile 3D API
(http://jcp.org/en/jsr/detail?id=184). The Motorola C975 has also implemented the
following:

• Call to System.getProperty with key – microedition.m3g.version will return
1.0, otherwise null will be returned.

• Floating point format for input and output is the standard IEEE float having a 8-bit
exponent and a 24-bit mantissa normalized to 1.0, 2.0.

• Implementation will ensure the Object3D instances will be kept reference to
reduce overhead and possible inconsistency.

• Thread safety

• Necessary pixel format conversions for rendering output onto device

• Support at least 10 animation tracks to be associated with an Object 3D instance
(including animation controller) subject to dynamic memory availability.

Mobile 3D API File Format Support
The Motorola C975 supports both M3G and PNG file formats for loading 3D content. The
C975 supports the standard .m3g and .png extensions for its file formats. Mime type and
not extension will be used for identifying file type. In the case that the Mime type is not
available, M3G files will be identified using the file identifier and PNG files using signature.

Mobile 3D Graphics – M3G API

The M3G API lets you access the realtime 3D engine embedded on the device, to create
console quality 3D applications, such as games and menu systems. The main benefits of
the M3G engine are the following:

 the whole 3D scene can be stored in a very small file size (typically 50-150K),
allowing you to create games and applications in under 256K;

 the application can change the properties (such as position, rotation, scale, color
and textures) of objects in the scene based on user interaction with the device;

 the application can switch between cameras to get different views onto the
scene;

 the rendered images have a very high photorealistic quality.

Typical M3G Application

An application consists of logic that uses the M3G, MIDP 2.0 and CDLC 1.1 classes. The
application is compiled into a Java MIDlet that can embedded on the target device. The
MIDlet can also contain additional assets, such as one or more M3G files that define the
3D scene graph for the objects in the scene, images and sounds.

Most M3G applications use an M3G resource file that contains all the information required
to define the 3D resources, such as objects, their appearance, lights, cameras and
animations, in a scene graph. The file should be loaded into memory where object
properties can be interrogated and altered using the M3G API. Alternatively all objects
can be created from code, although this is likely to be slower and limits creativity for
designers.

Simple MIDlets

The simplest application consists of an M3G file that is loaded into the application using
the M3G Loader class, which is then passed to a Graphics3D object that renders the
world to the Display.

The World object contains the objects that define a complete 3D scene - geometry,
textures, lights, cameras, and animations. The World object mediates access to the
objects within the world. It can be passed as a block to the renderer, the Graphics3D
class.
The Loader object, populates a World by loading an M3G file from a URI or other asset
source, such as a buffer of bytes in M3G format. The Loader is not restricted to loading
just Worlds, each file can contain as little as a single object and multiple files can be
merged together on the device, or you can put everything into a single file.
The rendering class Graphics3D (by analogy to the MIDP Graphics class) takes a whole
scene (or part of a scene graph), and renders a view onto that scene using the current
camera and lighting setup. This view can be to the screen, to a MIDP image, or to a
texture in the scene for special effects. You can pass a whole world in one go (retained
mode) or you can pass individual objects (immediate mode). There is only one
Graphics3D object present at one time, so that hardware accelerators can be used.

The following graphic shows the structure of a more typical MIDlet.

Initializing the world

The Loader class is used to initialize the world. It has two static methods: one takes in a
byte array, while the other takes a named resource, such as a URI or an individual file in
the JAR package.

The load methods return an array of Object3Ds that are the root level objects in the file.
The following example calls Loader.load() and passes it an M3G file from the JAR file
using a property in the JAD file. Alternatively, you could specify a URI, for example:
Object3D[] roots =
Loader.load(http://www.example.com/m3g/simple.m3g)[0];

The example assumes that there is only one root node in the scene, which will be the
world object. If the M3G file has multiple root nodes the code should be changed to reflect
this, but generally most M3G files have a single root node.

public void startApp() throws MIDletStateChangeException

{

 myDisplay.setCurrent(myCanvas);

 try

 {

 // Load a file.

 Objects3D[] roots = Loader.load(getAppProperty("Content-

1"));

 // Assume the world is the first root node loaded.

 myWorld = (World) roots[0];

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 // Force a repaint so the update loop is started.

 myCanvas.repaint();

}

Using the Graphics3D object

Using the Graphics3D is very straightforward. Get the Graphics3D instance, bind a target
to it, render everything, and release the target.

public class myCanvas extends Canvas

{

 Graphics3D myG3D = Graphics3D.getInstance();

 public void paint(Graphics g)

 {

 myG3D.bindTarget(g);

 try

 {

 myG3D.render(myWorld);

 }

 finally

 {

 myG3D.releaseTarget();

 }

 }

}

The finally block makes sure that the target is released and the Graphics3D can be
reused. The bindTarget call should be outside the try block, as it can throw exceptions
that will cause releaseTarget to be called when a target has not been bound, and
releaseTarget throwing an exception.

Interrogating and interacting with objects

The World object is a container that sits at the top of the hierarchy of objects that form the
scene graph. You can find particular objects within the scene very simply by calling find()
with an ID. find() returns a reference to the object which has been assigned that ID in the
authoring tool (or manually assigned from code). This is important because it largely
makes the application logic independent of the detailed structure of the scene.

final int PERSON_OBJECT_ID = 339929883;

Node personNode = (Node)theWorld.find(PERSON_OBJECT_ID);

If you need to find many objects, or you don’t have a fixed ID, then you can follow the
hierarchy explicitly using the Object3D.getReferences() or Group.getChild() methods.

static void traverseDescendants(Object3D obj)

{

 int numReferences = obj.getReferences(null);

 if (numReferences > 0)

 {

 Object3D[] objArray = new Object3D[numReferences];

 obj.getReferences(objArray);

 for (int i = 0; i < numReferences; i++)

 traverseDescendants(objArray[i]);

 }

}

Once you have an object, most of the properties on it can be modified using the M3G API.
For example, you can change the position, size, orientation, color, brightness, or whatever
other attribute of the object is important. You can also create and delete objects and insert
them into the world, or link parts of other M3G files into the scene graph.

Animations

As well as controlling objects from code, scene designers can specify how objects should
move under certain circumstances, and store this movement in “canned” or block
animation sequences that can be triggered from code. Many object properties are
animatable, including position, scale, orientation, color and textures. Each of these
properties can be attached to a sequence of keyframes using an AnimationTrack. The
keyframe sequence can be looped, or just played once, and they can be interpolated in
several ways (stepwise, linear, spline).

A coherent action typically requires the simultaneous animation of several properties on
several objects, the tracks are grouped together using the AnimationController object.
This allows the application to control a whole animation from one place.

All the currently active animatable properties can be updated by calling animate() on the
World. (You can also call this on individual objects if you need more control). The current
time is passed through to animate(), and is used to determine the interpolated value to
assign to the properties.

The animate() method returns a validity value that indicates how long the current value of
a property is valid. Generally this is 0 which means that the object is still being animated
and the property value is no longer valid, or infinity when the object is in a static state and
does not need to be updated. If nothing is happening in the scene, you do not have to
continually redraw the screen, reducing the processor load and extending battery life.
Similarly, simple scenes on powerful hardware may run very fast; by restricting the frame-
rate to something reasonable, you can extend battery life and are more friendly to
background processes.

The animation subsystem has no memory, so time is completely arbitrary. This means
that there are no events reported (for example, animation finished). The application is
responsible for specifying when the animation is active and from which position in the
keyframe sequence the animated property is played.

Consider a world myWorld that contains an animation of 2000 ms, that you want to cycle.
First you need to set up the active interval for the animation, and set the position of the
sequence to the start. Then call World.animate() with the current world time:

anim.setActiveInterval(worldTime, worldTime+2000);

anim.setPosition(0, worldTime);

int validity = myWorld.animate(worldTime);

Authoring M3G files

You can create all your M3G content from code if necessary but this is likely to be very
time consuming and does not allow 3D artists and scene designers to easily create and
rework visually compelling content with complex animations. You can use professional,
visual development tools such as SwerveTM Studio or SwerveTM M3G exporter from
Superscape Group plc, which export content from 3ds max, the industry standard 3D
animation tool, in fully compliant M3G format. For more information please visit
http://www.superscape.com/.

16
Phonebook Access API

Phonebook Access API
Using the Phonebook Access API, an application will be able to locate and update contact
information on the handset. This contact information includes phone numbers, email
addresses, and any other directory information related to individuals, groups, or
organizations. The database used to store phonebook information will be unique and
integrated for native phonebook, SIM card, and other applications using Phonebook API.
The primary goal of the Phonebook Access API is to be simple and thin to fit in resource-
limited devices like the Motorola C975 handset. This API will specify a base storage class
for all types of contacts items presented in the vCard specification (RFC2426 –vCard
MIME Directory Profile – vCard 3.0 Specification). In addition, schema strings used in
querying and storing contact information are those specified in the RFC2426 specification.
The Phonebook Access API will perform the following functions:

• Support multiple phonebook categories

• Allow multiple phone numbers and email addresses for each contact

• Store new entries

• Retrieve entries

• Edit existing entries

• Delete entries

• Check memory status

• Order and sort contact parameters

• Support standard schema strings

• Support recent calls information
The Motorola C975 also implements com.cmcc.phonebook, PhoneBookEntry and
PhoneBook.
For more details about PhoneBookEntry and PhoneBook see CMCC GPRS Mobile
Terminal Specification, sections 6.9.4.1 and 6.9.4.2.

Phonebook Access API Permissions
Prior to a MIDlet accessing the Phonebook API for all Phonebook operations, the
implementation will check the Phonebook permissions under the Java Settings Menu. The
phonebook permissions menu gives the user the following options:

• Always ask the user for authorization on all Phonebook access requests

• Ask the user for authorization once per application (Default setting)

• Never ask the user for authorization

The following are code samples to show implementation of the Phonebook API:
Sample of code to create object of PhoneBookRecord class:

PhoneBookRecord phbkRecEmpty = new PhoneBookRecord();

String name = “Name”;
String telNo = “9999999”;
int type = PhoneBookRecord.MAIN;
int categoryId = PhoneBookRecord.CATEGORY_GENERAL;

PhoneBookRecord phbkRec = new PhoneBookRecord(name, telNo,
type, categoryId);

Sample of code for calling of ‘add(int sortOrder)’ method:

int index = phbkRec.add(PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘update(int index, int sortOrder)’ method:

phbkRec.type = PhoneBookRecord.HOME;
int newIndex = phbkRec.update(index,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘delete(int index, int sortOrder)’ method:

PhoneBookRecord.delete(index, PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘deleteAll()’ method:

PhoneBookRecord.deleteAll();

Sample of code for calling of ‘getRecord(int index, int sortOrder)’ method:

phbkRec.getRecord(index, PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘findRecordByTelNo(String tel, int sortOrder)’ method:

index = phbkRec.findRecordByTelNo(telNo,

PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘findRecordByName(char firstChar, int sortOrder)’ method:

index = PhoneBookRecord.findRecordByName('N',
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘findRecordByEmail(String email, int sortOrder)’ method:

String email = “email@mail.com”;
index = phbkRec.findRecordByEmail(email,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘getNumberRecords(int device)’ method:

// get total number of records
int numberRecsInPhone =
PhoneBookRecord.getNumberRecords(PhoneBookRecord.PHONE_MEMOR
Y);
int numberRecsInSim =
PhoneBookRecord.getNumberRecords(PhoneBookRecord
.SIM_MEMORY);
int numberRecsAll =
PhoneBookRecord.getNumberRecords(PhoneBookRecord.ALL_MEMORY)
;

Sample of code for calling of ‘getAvailableRecords(int device)’ method:

// get number of available records
int numberRecsAvalPhone =
PhoneBookRecord.getAvailableRecords(PhoneBookRecord.PHONE_ME
MORY);
int numberRecsAvalSim =

PhoneBookRecord.getAvailableRecords(PhoneBookRecord.SIM_MEMO
RY);
int numberRecsAvalAll =
PhoneBookRecord.getAvailableRecords(PhoneBookRecord.ALL_MEMO
RY);

Sample of code for calling of ‘getUsedRecords(int device, int sortOrder)’ method:

// get number of used records
int numberRecsUsedPhone =
PhoneBookRecord.getUsedRecords(PhoneBookRecord.PHONE MEMORY,
PhoneBookRecord.SORT_BY_NAME);
int numberRecsUsedSim =
PhoneBookRecord.getUsedRecords(PhoneBookRecord.SIM_MEMORY,
PhoneBookRecord.SORT_BY_NAME);
int numberRecsUsedAll =
PhoneBookRecord.getUsedRecords(PhoneBookRecord.ALL_MEMORY,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘getNumberRecordsByName(String name)’ method:

int num = PhoneBookRecord.getNumberRecordsByName(name);

Sample of code for calling of ‘getMaxNameLength(int device)’ method:

int maxNameLengthPhone =
PhoneBookRecord.getMaxNameLength(PhoneBookRecord.PHONE_MEMOR
Y);
int maxNameLengthSim =
PhoneBookRecord.getMaxNameLength(PhoneBookRecord.SIM_MEMORY)
;
int maxNameLengthAll =
PhoneBookRecord.getMaxNameLength(PhoneBookRecord.ALL_MEMORY)
;

Sample of code for calling of ‘getMaxTelNoLength (int device)’ method:

int maxTelNoLengthPhone =
PhoneBookRecord.getMaxTelNoLength(PhoneBookRecord.PHONE_MEMO
RY);
int maxTelNoLengthSim =
PhoneBookRecord.getMaxTelNoLength(PhoneBookRecord.SIM_MEMORY
);
int maxTelNoLengthAll =
PhoneBookRecord.getMaxTelNoLength(PhoneBookRecord.ALL_MEMORY
);

Sample of code for calling of ‘getMaxEmailLength ()’ method:

int maxEmailLength =
PhoneBookRecord.getMaxEmailLength();

Sample of code for calling of ‘getIndexBySpeedNo(int speedNo, int sortOrder)’ method:

int speedNo = 1;
index = PhoneBookRecord.getIndexBySpeedNo(speedNo,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘getNewSpeedNo(int num, int device)’ method:

int speedNo = 1;
int speedNo_phone =
PhoneBookRecord.getNewSpeedNo(speedNo,
PhoneBookRecord.PHONE_MEMORY);
int speedNo_sim =
PhoneBookRecord.getNewSpeedNo(speedNo,
 PhoneBookRecord.PHONE_MEMORY);
int speedNo_all =
PhoneBookRecord.getNewSpeedNo(speedNo,
PhoneBookRecord.PHONE_MEMORY);

Sample of code for calling of ‘getDeviceType(int speedNo)’ method:

int speedNo = 1;
int type = PhoneBookRecord.getDeviceType(speedNo);

Sample of code for calling of ‘setPrimary(int index, int sortOrder)’ method:

int index = 1;
PhoneBookRecord.setPrimary(index,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘resetPrimary(int index, int sortOrder)’ method:

int index = 1;
PhoneBookRecord.resetPrimary(index,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘isPrimary(int speedNo)’ method:

int speedNo = 1;
boolean res = PhoneBookRecord.isPrimary(speedNo);

Sample of code for calling of ‘fromVFormat(InputStream in, int device)’ method:

buffer = new String("BEGIN:VCARD\r\nN:;" + new String(name)
+
"\r\nTEL;TYPE=WORK:1\r\nEND:VCARD\r\n");
int num =
PhoneBookRecord.fromVFormat((InputStream)(new
ByteArrayInputStream(buffer.getBytes())),
PhoneBookRecord.PHONE_MEMORY);

Sample of code for calling of ‘toVFormat(OutputStream out,
int index, int outFormat, int sortOrder)’ method:

int index = 1;
ByteArrayOutputStream outStream = new
ByteArrayOutputStream();
PhoneBookRecord.toVFormat(outStream, index,
PhoneBookRecord.VCARD_3_0,
PhoneBookRecord.SORT_BY_NAME);

System.out.println("***** Contents of the output stream:
*****");
System.out.print(new String(outStream.toByteArray()));

Sample of code for calling of ‘createMailingList(int[] members, int sortOrder)’ method:

PhoneBookRecord mailingList = new PhoneBookRecord();
int mlSpeedNumbers[] = new int[2];
mlSpeedNumbers[0] = 1;
mlSpeedNumbers[1] = 2;

mailingList.name = “MList”;
mailingList.type = PhoneBookRecord.MAILING_LIST;
mailingList.speedNo =
 PhoneBookRecord.getNewSpeedNo(1,
PhoneBookRecord.PHONE_MEMORY);

index = mailingList.createMailingList(mlSpeedNumbers,
PhoneBookRecord.SORT_BY_NAME);

Sample of code for calling of ‘addMailingListMember(int mlSpeedNo, int mbSpeedNo)’
method:

int mlspeedNo = 3, mbspeedNo = 4;
PhoneBookRecord.addMailingListMember(mlspeedNo, mbspeedNo);

Sample of code for calling of ‘deleteMailingListMember(int mlSpeedNo, int mbSpeedNo)’
method:

int mlspeedNo = 3, mbspeedNo = 4;
PhoneBookRecord.deleteMailingListMember(mlspeedNo,
mbspeedNo);

Sample of code for calling of ‘getMailingListMembers(int speedNo)’ method:

int mlspeedNo = 3;
int[] returnArray =
PhoneBookRecord.getMailingListMembers(mlspeedNo);

Sample of code for calling of ‘isMailingListMember(int mlSpeedNo, int mbSpeedNo)’
method:

boolean returnValue = false;
int mlspeedNo = 3, mbspeedNo = 4;
returnValue = PhoneBookRecord.isMailingListMember(mlspeedNo,
mbspeedNo);

Sample of code for calling of ‘getNumberMailingListMembers(int speedNo)’ method:

int numberMembers, mlspeedNo = 3;
numberMembers =
PhoneBookRecord.getNumberMailingListMembers(mlspeedNo);

Sample of code for calling of ‘addCategory(String name)’ method:

String categoryName = “CatName”;
int categoryId = PhoneBookRecord.addCategory(categoryName);

Sample of code for calling of ‘deleteCategory(int categoryId)’ method:

PhoneBookRecord.deleteCategory(categoryId);

Sample of code for calling of ‘getCategoryName(int categoryId)’ method:

String categoryName =
PhoneBookRecord.getCategoryName(categoryId);
Sample of code for calling of ‘getCategoryMembers(int categoryId)’ method:

int SpeedNumbersArray[] = null;
SpeedNumbersArray =
PhoneBookRecord.getCategoryMembers(categoryId);

Sample of code for calling of ‘getNumberCategoryMembers (int categoryId)’ method:

int numberMembers =
PhoneBookRecord.getNumberCategoryMembers(categoryId);

Sample of code for calling of ‘getNumberCategories()’ method:

int numberCategories =
PhoneBookRecord.getNumberCategories();

Sample of code for calling of ‘getCategoryIdByIndex(int index)’ method:

int index = 1;
int categoryId =
PhoneBookRecord.getCategoryIdByIndex(index);

Sample of code for calling of ‘getMaxCategoryNameLength()’ method:

int maxCategoryNameLength =
PhoneBookRecord.getMaxCategoryNameLength();

Sample of code for calling of ‘getCurrentCategoryView()’ method:

int categoryView = PhoneBookRecord.getCurrentCategoryView();

Sample of code for calling of ‘setCategoryView()’ method:

int oldCategoryView =
PhoneBookRecord.setCategoryView(categoryId);

Sample of code to create object of RecentCallDialed class:

String name = “Name”;
String telNo = “9999999”;
int type = RecentCallRecord.VOICE;
int attribute = RecentCallRecord.CALL_CONNECTED;
long time = 10000;
int duration = 3000;
boolean show_id = true;

RecentCallDialed dialedRecentCall = new
RecentCallDialed(name, telNo, type, attribute, time,
duration, show_id);

Sample of code for calling of ‘add()’ method:

String name = “Name”;
String telNo = “9999999”;
int type = RecentCallRecord.VOICE;
int attribute = RecentCallRecord.CALL_CONNECTED;
long time = 10000;
int duration = 3000;
boolean show_id = true;

RecentCallDialed dialedRecord = new RecentCallDialed(name,
telNo, type, attribute, time, duration, show_id);
dialedRecord.add();

Sample of code for calling of ‘delete(int index)’ method:

int index = 1;
RecentCallDialed.delete(1);

Sample of code for calling of ‘deleteAll()’ method:

RecentCallDialed.deleteAll();

Sample of code for calling of ‘getRecord(int index)’ method:

int index = 1;
dialedRecord.getRecord(1);

Sample of code for calling of ‘getUsedRecords()’ method:

int usedRecs = RecentCallDialed.getUsedRecords();

Sample of code for calling of ‘getNumberRecords()’ method:

int numberRecs = RecentCallDialed.getNumberRecords();

Sample of code for calling of ‘getMaxNameLength()’ method:

int maxNameLength = RecentCallDialed.getMaxNameLength();

Sample of code for calling of ‘getMaxTelNoLength()’ method:

int maxTelNoLength = RecentCallDialed.getMaxTelNoLength();

Sample of code to create object of RecentCallReceived class:

String name = “Name”;
String telNo = “9999999”;
int type = RecentCallRecord.VOICE;
int attribute = RecentCallRecord.CALL_CONNECTED;
long time = 10000;
int duration = 3000;
int cli_type = RecentCallReceived.CALLER_ID_NAME;

RecentCallReceived receivedRecentCall = new
RecentCallReceived (name, telNo, type, attribute, time,
duration, cli_type);

Sample of code for calling of ‘add()’ method:

String name = “Name”;
String telNo = “9999999”;
int type = RecentCallRecord.VOICE;
int attribute = RecentCallRecord.CALL_CONNECTED;
long time = 10000;
int duration = 3000;
int cli_type = RecentCallReceived.CALLER_ID_NAME;

RecentCallReceived receivedRecord = new
RecentCallReceived(name, telNo, type, attribute, time,
duration, show_id);
receivedRecord.add();

Sample of code for calling of ‘delete(int index)’ method:

int index = 1;
RecentCallReceived.delete(1);

Sample of code for calling of ‘deleteAll()’ method:

RecentCallReceived.deleteAll();

Sample of code for calling of ‘getRecord(int index)’ method:

int index = 1;
receivedRecord.getRecord(1);
Sample of code for calling of ‘getUsedRecords()’ method:

int usedRecs = RecentCallReceived.getUsedRecords();

Sample of code for calling of ‘getNumberRecords()’ method:

int numberRecs = RecentCallReceived.getNumberRecords();

Sample of code for calling of ‘getMaxNameLength()’ method:

int maxNameLength = RecentCallReceived.getMaxNameLength();

Sample of code for calling of ‘getMaxTelNoLength()’ method:

int maxTelNoLength = RecentCallReceived.getMaxTelNoLength();

17
Telephony API

The Telephony API allows a MIDlet to make a voice call, however, the user needs to
confirm the action before any voice call is made. The reason for the confirmation is to
provide a measure of security from rogue applications overtaking the handset.
Unlike standard TAPI, the wireless Telephony API provide simple function and simple
even listener: startCall (), send ExtNo(), and endCall (), DialerListener.
The tables below describe the Interface and Class Summary:

Interface Summary
DialerListener The DialerListener interface provides a mechanism for the application to be notified of

phone call event.

Class Summary
Dialer The Dialer class defines the basic functionality for start and end phone call.
DialerEvent The DialerEvent class defines phone call events.

Dialer Class
The dialer Class can be used to start and end a phone call and user listener to receive an
event. The applications use a Dialer to make a phone call and use DialerListener to
receive event.

Class DialerEvent
The DialerEvent class defines phone call events. The table below describes the Field
Summary:

Summary
static byte PHONE_VOICECALL_CONNECT

 Phone call was connected event
static byte PHONE_VOICECALL_DISCONNECT

 Phone call was disconnected event
static byte PHONE_VOICECALL_DTMF_FAILURE

 Send extension number error event
static byte PHONE_VOICECALL_FAILURE

 start phone call error event
static byte PHONE_VOICECALL_HOLD

 Current java phone call was held by native phone event
static byte PHONE_VOICECALL_INIT

 Phone start dial-up event
static byte PHONE_VOICECALL_TIMEOUT

 Phone process timeout event
static byte PHONE_VOICECALL_UNHOLD

 Current java phone call was unheld event

The table below describes the Constructor Summary:

Constructor Summary
DialerEvent()

 The following methods are inherited from class java.lang.Object:

• equals

• getClass

• hashCode

• notify

• notifyAll

• toString

• wait
The following table describes the Field Details:

Field Detail Definition
PHONE_VOICECALL_INIT

public static final byte
PHONE_VOICECALL_INIT

Phone start
dial-up
event

PHONE_VOICECALL_FAILURE

public static final byte
PHONE_VOICECALL_FAILURE

Start
phone call
error event

PHONE_VOICECALL_CONNECT

public static final byte
PHONE_VOICECALL_CONNECT

Phone call
was
connected
event

PHONE_VOICECALL_DISCONNECT public static final byte Phone call

 PHONE_VOICECALL_DISCONNECT

was
disconnect
ed event

PHONE_VOICECALL_TIMEOUT

public static final byte
PHONE_VOICECALL_TIMEOUT

Phone
process
timeout
event

PHONE_VOICECALL_HOLD

public static final byte
PHONE_VOICECALL_HOLD

Current
java phone
call was
held by
native
phone
event

PHONE_VOICECALL_UNHOLD

public static final byte
PHONE_VOICECALL_UNHOLD

Current
java phone
call was
unheld
event

PHONE_VOICECALL_DTMF_FAILURE

public static final byte
PHONE_VOICECALL_DTMF_FAILURE

Send
extension
number
error event

Class Dialer
The Dialer class defines the basic functionality for starting and ending a phone call. The
table below describes the Method Summary:

Method Summary
 void endCall()

 end or cancel a phone call
static Dialer getDefaultDialer()

 void sendExtNo(String extNumber)

 send extension number.
 void setDialerListener(DialerListener listener)

 Registers a DialerListener object.
 void startCall(String telenumber)

 start a phone call using given telephone number.
 void startCall(String teleNumber, String extNo)

 start a phone call using given telephone number and extension number.

The following methods are inherited from java.lang.object:

• equals

• getClass

• hashCode

• notify

• notifyAll

• toString

• wait

getDefaultDialer
 public static Dialer getDefaultDialer()

Get a Dialer instance.

setDialerListener
public void setDialerListener(DialerListener listener)

Registers a DialerListener object.
The platform will notify this listener object when a phone event has been received to this
Dialer object.

There can be at most one listener object registered for a Dialer object at any given
point in time. Setting a new listener will implicitly de-register the possibly previously set
listener.
Passing null as the parameter de-registers the currently registered listener, if any.
Parameters:
listener - DialerListener object to be registered. If null, the possibly currently
registered listener will be de-registered and will not receive phone call event.

startCall
public void startCall(String telenumber)

 throws IOException
start a phone call using given telephone number.
Parameters:

telenumber - the telephone number to be call.

extNo - the extension number to be send.
Throws:
IOException - if the call could not be created or because of network failure

NullPointerException - if the parameter is null

SecurityException - if the application does not have permission to start the call

startCall
public void startCall(String teleNumber,

 String extNo)

 throws IOException
start a phone call using given telephone number and extension number.
Parameters:
telenumber - the telephone number to be call.

extNo - the extension number to be send.
Throws:
IOException - if the call could not be created or because of network failure

NullPointerException - if the parameter is null

SecurityException - if the application does not have permission to start the call

sendExtNo
public void sendExtNo(String extNumber)

 throws IOException
send extension number.
Parameters:
sendExtNo - the extension number to be send.
Throws:
IOException - if the extension could not be send or because of network failure

endCall
public void endCall()
 throws IOException
end or cancel a phone call
Throws:
IOException - if the call could not be end or cancel.

Interface DialerListener
public interface DialerListener
The DialerListener interface provides a mechanism for the application to be notified
of phone call event.
When an event arrives, the notifyDialerEvent() method is called
The listener mechanism allows applications to receive TAPI voice call event without
needing to have a listener thread
If multiple event arrive very closely together in time, the implementation has calling this
listener in serial.

Sample DialerListener Implementation
Dialer listener program

import java.io.IOException;
 import javax.microedition.midlet.*;
 import javax.microedition.io.*;
 import com.motorola.*;

 public class Example extends MIDlet implements DialerListener {
 Dialer dialer;

 // Initial tests setup and execution.

 public void startApp() {
 try {
 dialer = Dialer.getDefaultDialer();

 // Register a listener for inbound TAPI voice call events.
 dialer.setDialerListener(this);
 dialer.startCall("01065642288");

 } catch (IOException e) {

 // Handle startup errors
 }
 }

Asynchronous callback for receive phone call event

 public void notifyDialerEvent(Dialer dialer, byte event) {
 switch (event) {
 case DialerEvent.PHONE_VOICECALL_INIT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_FAILURE:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_CONNECT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_DISCONNECT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_TIMEOUT:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_HOLD:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_UNHOLD:
 // your process
 break;
 case DialerEvent.PHONE_VOICECALL_DTMF_FAILURE:
 // your process
 break;
 }
 }

 // Required MIDlet method - release the connection and
 // signal the reader thread to terminate.

 public void pauseApp() {
 try {
 dialer.endCall();
 } catch (IOException e) {
 // Handle errors
 }
 }

 // Required MIDlet method - shutdown.
 // @param unconditional forced shutdown flag

 public void destroyApp(boolean unconditional) {
 try {
 dialer.setDialerListener(null);
 dialer.endCall();
 } catch (IOException e) {
 // Handle shutdown errors.

 }
 }
 }

notifyDialerEvent
public void notifyDialerEvent(Dialer dialer,
 byte event)
Called by the platform when a phone call event was received by a Dialer object where
the application has registered this listener object.
This method is called once for each TAPI voice call event to the Dialer object.
NOTE: The implementation of this method MUST return quickly and MUST NOT perform
any extensive operations. The application SHOULD NOT receive and handle the
message during this method call. Instead, it should act only as a trigger to start the activity
in the application's own thread.
Parameters:
dialer - the Dialer where the TAPI voice call event has arrived

event - the TAPI voice call event type.

Class Hierarchy
• class java.lang.Object

o class com.motorola.phone.Dialer

o class com.motorola.phone.DialerEvent

Interface Hierarchy
• interface com.motorola.phone.DialerListener

18
JSR 185 - JTWI

JTWI specifies a set of services to develop highly portable, interoperable Java
applications. JTWI reduces API fragmentation and broadens the number of applications
for mobile phones.

Overview
Any Motorola device implementing JTWI will support the following minimum hardware
requirements in addition to the minimum requirements specified in MIDP 2.0:

• At least a 125 x 125 pixels screen size as returned by full screen mode
Canvas.getHeight () and Canvas.getWidth ()

• At least a color depth of 4096 colors (12-bit) as returned by Display.numColors ()

• Pixel shape of 1:1 ratio

• At least a Java Heap Size of 512 KB

• Sound mixer with at least 2 sounds

• At least a JAD file size of 5 KB

• At least a JAR file size of 64 KB

• At least a RMS data size of 30 KB
Any Motorola JTWI device will implement the following and pass the corresponding TCK:

• CLDC 1.0 or CLDC 1.1

• MIDP 2.0 (JSR 118)

• Wireless Messaging API 1.1 (JSR 120)

• Mobile Media API 1.1 (JSR 135)

CLDC related content for JTWI
JTWI is designed to be implemented on top of CLDC 1.0 or CLDC 1.1. The configuration
provides the VM and the basic APIs of the application environment. If floating point
capabilities are exposed to Java Applications, CLDC 1.1 will be implemented.
The following CLDC requirements will be supported:

• Minimum Application thread count will allow a MIDlet suite to create a minimum
of 10 simultaneous running threads

• Minimum Clock Resolution – The method java.land.System.currentTimeMillis ()
will record the elapsed time in increments not to exceed 40 msec. At least 80%
of test attemps will meet the time elapsed requirement to achieve acceptable
conformance.

• Names for Encodings will support at least the preferred MIME name as defined
by IANA (http://www.iana.org/assignments/character-sets) for the supported
character encodings. If not preferred name has been defined, the registered
name will be used (i.e UTF-16).

• Character Properties will provide support for character properties and case
conversions for the characters in the Basic Latin and Latin-1 Supplement blocks
of Unicode 3.0. Other Unicode character blocks will be supported as necessary.

• Unicode Version will support Unicode characters. Character information is based
on the Unicode Standard version 3.0. Since the full character tables required for
Unicode support can be excessively large for devices with tight memory budgets,
by default, the character property and case conversion facilities in CLDC assume
the presence of ISO Latin-1 range of characters only. Refer to JSR 185 for more
information.

• Custom Time Zone Ids will permit use of custom time zones which adhere to the
following time xone format:

o General Time Zone: For time zones representing a GMT offset value,
the following syntax is used:

 Custom ID:

• GMT Sign Hours: Minutes

• GMT Sign Hours Minutes

• GMT Sign Hours Hours
 Sign: one of:

• + -
 Hours:

• Digit

• Digit Digit
 Minutes:

• Digit Digit

 Digit: one of:

• 0 1 2 3 4 5 6 7 8 9

NOTE: Hours will be between 0 and 23, and minutes will be between 00 and 50. For
example, GMT +10 and GMT +0010 equates to ten hours and ten minutes ahead of GMT.

When creating a TimeZone, the specified custom time zone ID is
normalized in the following syntax:

• NormalizedCustomID:
o GMT Sign TwoDigitHours: Minutes
o Sign: one of:

 + -
o TwoDigitHours:

 Digit Digit
o Minutes:

 Digit Digit
o Digit: one of:

 0 1 2 3 4 5 6 7 8 9

MIDP 2.0 specific information for JTWI
MIDP 2.0 provides the library support for user interface, persistent storage, networking,
security, and push functions. MIDP 2.0 contains a number of optional functions, some of
which will be implemented as outlined below. The following JTWI requirements for MIDP
2.0 will be supported:

 Record Store Minimum will permit a MIDlet suite to create at least 5 independent
RecordStores. This requirement does not intend to mandate that memory be
reserved for these Record Stores, but it will be possible to create the
RecordStores if the required memory is available.

 HTTP Support for Media Content will provide support for HTTP 1.1 for all
supported media types. HTTP 1.1 conformance will match the MIDP 2.0
specification. See package.javax.microedition.io for specific requirements.

 JPEG for Image Objects – ISO/IEC JPEG together wil JFIF will be supported.
The support for ISO/IEC JPEG only applies to baseline DCT, non-differential,
Huffman coding, as defined in JSR 185 JTWI specification, symbol ‘SOF0’. This
support extends to the class javax.microedition.lcdui.Image, including the
methods outlined above. This mandate is voided in the event that the JPEG
image format becomes encumbered with licensing requirements.

 Timer Resolution will permit an application to specify the values for the firstTime,
delay, and period parameters of java.util.timer.schedule () methods with a
distinguishable resolution of no more than 40 ms. Various factors (such as

garbage collection) affect the ability to achieve this requirement. At least 80% of
test attempts will meet the schedule resolution requirement to achieve
acceptable conformance.

 Minimum Number of Timers will allow a MIDlet to create a minimum of 5
simultaneously running Timers. This requirement is independent of the minimum
specified by the Minimum Application Thread Count.

 Bitmap Minimums will support the loading of PNG images with pixel color depths
of 1, 2, 4, 8, 16, 24, and 32 bits per pixel per the PNG format specification. For
each of these color depths, as well as for JFIF image formats, a compliant
implementation will support images up to 76800 total pixels.

 TextField and TextBox and Phonebook Coupling – when the center select key is
pressed while in a TextBox or TextField and the constraint of the TextBox or
TextField is TextField.PHONENUMBER, the names in the Phonebook will be
displayed in the “Insert Phonenumber?” screen.

 Supported characters in TextField and TextBox – TextBox and TextField with
input constraint TextField.ANY will support inputting all the characters listed in
JSR 185.

 Supported characters in EMAILADDR and URL Fields – Class
javax.microedition.lcdui.TextBox and javax.microedition.lcdui.TextField with
either of the constraints TextField.EMAILADDR or TextField.URL will allow the
same characters to be input as are allowed for input constraint TextField.ANY

 Push Registry Alarm Events will implement alarm-based push registry entries.
 Identification of JTWI via system property – to identify a compliant device and the

implemented version of this specification, the value of the system property
microedition.jtwi.version will be 1.0

Wireless Messaging API 1.1 (JSR 120) specific
content for JTWI

WMA defines an API used to send and receive short messages. The API provides access
to network-specific short message services such as GSM SMS or CDMA short
messaging. JTWI will support the following as it is outlined in the JSR 120 chapter of this
developer guide:

 Support for SMS in GSM devices
 Cell Broadcast Service in GSM devices
 SMS Push

Mobile Media API 1.1 (JSR 135) specific content for
JTWI

The following will be supported for JTWI compliance:
 HTTP 1.1 Protocol will be supported for media file download for all supported

media formats
 MIDI feature set specified in MMAPI (JSR 135) will be implemented. MIDI file

playback will be supported.
 VolumeControl will be implemented and is required for controlling the colume of

MIDI file playback.
 JPEG encoding in video snapshots will be supported if the handset supports the

video feature set and video image capture.
 Tone sequence file format will be supported. Tone sequences provide an

additional simple format for supporting the audio needs of many types of games
and other applications.

MIDP 2.0 Security specific content for JTWI
• The Motorola C975 follows the security policy outlined in the Security

chapter of this developer guide.

19
MIDP 2.0 Security Model

The following sections describe the MIDP 2.0 Default Security Model for the Motorola
C975 handset. The chapter discusses the following topics:

• Untrusted MIDlet suites and domains

• Trusted MIDlet suites and domains

• Permissions

• Certificates
For a detailed MIDP 2.0 Security process diagram, refer to the Motocoder website
(http://www.motocoder.com).

Refer to the table below for the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the javax.microedition.pki
package

Supported

All fields, constructors, methods, and inherited methods for the
CertificateException class in the javax.microedition.pki package

Supported

MIDlet-Certificate attribute in the JAD Supported

A MIDlet suite will be authenticated as stated in Trusted MIDletSuites
using X.509 of MIDP 2.0 minus all root certificates processes and
references

Supported

Verification of SHA-1 signatures with a MD5 message digest algorithm Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 attribute Supported

All methods for the Certificate interface in the javax.microedition.pki
package

Supported

All fields, constructors, methods, and inherited methods for the
CertificateException class in the javax.microedition.pki package

Supported

Will preload two self authorizing Certificates Supported

All constructors, methods, and inherited methods for the
MIDletStateChangeException class in the javax.microedition.midlet

Supported

package

All constructors and inherited methods for the
MIDletStateChangeException class in the javax.microedition.midlet
package

Supported

Please note the domain configuration is selected upon agreement with the operator.

Untrusted MIDlet Suites
A MIDlet suite is untrusted when the origin or integrity of the JAR file cannot be trusted by
the device.
The following are conditions of untrusted MIDlet suites:

• If errors occur in the process of verifying if a MIDlet suite is trusted, then the
MIDlet suite will be rejected.

• Untrusted MIDlet suites will execute in the untrusted domain where access to
protected APIs or functions is not allowed or allowed with explicit confirmation
from the user.

Untrusted Domain
Any MIDlet suites that are unsigned will belong to the untrusted domain. Untrusted
domains handsets will allow, without explicit confirmation, untrusted MIDlet suites access
to the following APIs:

• javax.microedition.rms – RMS APIs

• javax.microedition.midlet – MIDlet Lifecycle APIs

• javax.microedition.lcdui – User Interface APIs

• javax.microedition.lcdui.game – Gaming APIs

• javax.microedition.media – Multimedia APIs for sound playback

• javax.microedition.media.control – Multimedia APIs for
sound playback

The untrusted domain will allow, with explicit user confirmation, untrusted MIDlet suites
access to the following protected APIs or functions:

• javax.microedition.io.HttpConnection – HTTP protocol

• javax.microedition.io.HttpsConnection – HTTPS protocol

Trusted MIDlet Suites
Trusted MIDlet suites are MIDlet suites in which the integrity of the JAR file can be
authenticated and trusted by the device, and bound to a protection domain. The Motorola
C975 will use x.509PKI for signing and verifying trusted MIDlet suites.
Security for trusted MIDlet suites will utilize protection domains. Protection domains define
permissions that will be granted to the MIDlet suite in that particular domain. A MIDlet
suite will belong to one protection domain and its defined permissible actions. For
implementation on the Motorola C975, the following protection domains should exist:

• Manufacturer – permissions will be marked as “Allowed” (Full Access).
Downloaded and authenticated manufacturer MIDlet suites will perform
consistently with MIDlet suites pre-installed by the manufacturer.

• Operator – permissions will be marked as “Allowed” (Full Access). Downloaded
and authenticated operator MIDlet suites will perform consistently with other
MIDlet suites installed by the operator.

• 3rd Party – permissions will be marked as “User”. User interaction is required for
permission to be granted. MIDlets do not need to be aware of the security policy
except for security exceptions that will occur when accessing APIs.

• Untrusted – all MIDlet suites that are unsigned will belong to this domain.
Permissions within the above domains will authorize access to the protected APIs or
functions. These domains will consist of a set of “Allowed” and “User” permissions that will
be granted to the MIDlet suite.

Permission Types concerning the Handset
A protection domain will consist of a set of permissions. Each permission will be “Allowed”
or “User”, not both. The following is the description of these sets of permissions as they
relate to the handset:

• “Allowed” (Full Access) permissions are any permissions that explicitly allow
access to a given protected API or function from a protected domain. Allowed
permissions will not require any user interaction.

• “User” permissions are any permissions that require a prompt to be given to the
user and explicit user confirmation in order to allow the MIDlet suite access to the
protected API or function.

User Permission Interaction Mode
User permission for the Motorola C975 handsets is designed to allow the user the ability
to either deny or grant access to the protected API or function using the following
interaction modes (bolded term(s) is prompt displayed to the user):

• blanket – grants access to the protected API or function every time it is required
by the MIDlet suite until the MIDlet suite is uninstalled or the permission is
changed by the user. (Never Ask)

• session – grants access to the protected API or function every time it is required
by the MIDlet suite until the MIDlet suite is terminated. This mode will prompt the
user on or before the final invocation of the protected API or function. (Ask Once
Per App)

• oneshot – will prompt the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

• No – will not allow the MIDlet suite access to the requested API or function that is
protected. (No Access)

• The prompt No, Ask Later will be displayed during runtime dialogs and will
enable the user to not allow the protected function to be accessed this instance,
but to ask the user again the next time the protected function is called.

•
User permission interaction modes will be determined by the security policy and device
implementation. User permission will have a default interaction mode and a set of other
available interaction modes. The user should be presented with a choice of available
interaction modes, including the ability to deny access to the protected API or function.
The user will make their decision based on the user-friendly description of the requested
permissions provided for them.
The Permissions menu allows the user to configure permission settings for each MIDlet
when the VM is not running. This menu is synchronized with available run-time options.

Implementation based on Recommended Security
Policy

The required trust model, the supported domain, and their corresponding structure will be
contained in the default security policy for Motorola’s implementation for MIDP 2.0.
Permissions will be defined for MIDlets relating to their domain. User permission types, as
well as user prompts and notifications, will also be defined.

Trusted 3rd Party Domain
A trusted third party protection domain root certificate is used to verify third party MIDlet
suites. These root certificates will be mapped to a location on the handset that cannot be
modified by the user. The storage of trusted third party protection domain root certificates
and operator protection domain root certificates in the handset is limited to 12 certificates.
If a certificate is not available on the handset, the third party protection domain root
certificates will be disabled. The user will have the ability to disable root certificates
through the browser menu and will be prompted to warn them of the consequences of
disabling root certificates. These third party root certificates will not be used to verify
downloaded MIDlet suites.
The user will be able to enable any disabled trusted third party protection domain root
certificates. If disabled, the third party domain will no longer be associated with this
certificate. Permissions for trusted third party domain will be “User” permissions;
specifically user interaction is required in order for permissions to be granted.

The following table shows the specific wording to be used in the first line of the above
prompt:

Protected Functionality Top Line of Prompt Right Softkey
Data Network Use data network? OK

Messaging Use messaging? OK

App Auto-Start Launch <MIDlet names>? OK

Connectivity Options Make a local connection? OK

User Data Read Capability Read phonebook data? OK

User Data Write Capability Modify phonebook data? OK

App Data Sharing Share data between apps? OK

The radio button messages will appear as follows and mapped to the permission types as
shown in the table below:

MIDP 2.0 Permission Types Runtime Dialogs UI Permission Prompts
Oneshot Yes, Always Ask Always Ask

Session Yes, Ask Once Ask Once per App

Blanket Yes, Always Grant Access Never Ask

no access No, Never Grant Access No, Access

The above runtime dialog prompts will not be displayed when the protected function is set
to “Allowed” (or full access), or if that permission type is an option for that protected
function according to the security policy table flexed in the handset.

Security Policy for Protection Domains
The following table lists the security policy by function groups for each domain. Under
each domain are the settings allowed for that function within the given domain, while the
bolded setting is the default setting. The Function Group is what will be displayed to the
user when access is requested and when modifying the permissions in the menu. The
default setting is the setting that is effective at the time the MIDlet suite is first invoked and
remains in effect until the user changes it.
Permissions can be implicitly granted or not granted to a MIDlet based on the
configuration of the domain the MIDlet is bound to. Specific permissions cannot be
defined for this closed class. A MIDlet has either been developed or not been developed

to utilize this capability. The other settings are options the user is able to change from the
default setting.

Function
Group

Trusted Third Party Untrusted Manufacturer Operator

Data Network Ask Once Per App,
Always Ask, Never
Ask, No Access

Always Ask, Ask
Once Per App, No
Access

Full Access Full Access

Messaging Always Ask, No
Access

Always Ask, No
Access

Full Access Full Access

App Auto-Start Ask Once Per App,
Always Ask, Never
Ask, No Access

Ask Once Per App,
Always Ask, No
Access

Full Access Full Access

Connectivity
Options

Ask Once Per App,
Always Ask, Never
Ask, No Access

Ask Once Per App,
Always Ask, Never
Ask, No Access

Full Access Full Access

User Data
Read
Capability

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

User Data
Write
Capability

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Multimedia
Recording

Ask Once Per App,
Always Ask, Never
Ask, No Access

No Access Full Access Full Access

The table below shows individual permissions assigned to the function groups shown in
the table above.

MIDP 2.0 Specific Functions
Permission Protocol Function

Group

javax.microedition.io.Connector.http http Data
Network

javax.microedition.io.Connector.https https Data
Network

javax.microedition.io.Connector.datagra
m

Datagram Data
Network

javax.microedition.io.Connector.datagra
mreceiver

datagram server (w/o host) Data
Network

javax.microedition.io.Connector.socket Socket Data
Network

javax.microedition.io.Connector.servers
ocket

server socket (w/ o host) Data
Network

javax.microedition.io.Connector.ssl Ssl Data
Network

javax.microedition.io.Connector.comm Comm. Connectivit
y Options

javax.microedition.io.PushRegistry All App Auto-
Start

Phonebook API

com.motorola.phonebook.readaccess PhoneBookRecord.findRecordByName()
PhoneBookRecord.findRecordByTelNo()
PhoneBookRecord.findRecordByEmail()
PhoneBookRecord.getNumberRecordsByName()
PhoneBookRecord.getRecord()
PhoneBookRecord.toVFormat()
PhoneBookRecord.getCategoryName()
PhoneBookRecord.getMailingListMembers()
RecentCallDialed.getRecord()
RecentCallReceived.getRecord()

User Data
Read
Capability

com.motorola.phonebook.writeaccess PhoneBookRecord.add()
PhoneBookRecord.update()
PhoneBookRecord.delete()
PhoneBookRecord.deleteAll()
PhoneBookRecord.setPrimary()
PhoneBookRecord.resetPrimary()
PhoneBookRecord.fromVFormat()
PhoneBookRecord.addCategory()
PhoneBookRecord.deleteCategory()
PhoneBookRecord.setCategoryView()
PhoneBookRecord.createMailingList()
PhoneBookRecord.addMailingListMember()
PhoneBookRecord.deleteMailingListMember()
RecentCallDialed.add()

User Data
Write
Capability

RecentCallDialed.delete()
RecentCallDialed.deleteAll()

Wireless Messaging API - JSR 120

javax.wireless.messaging.sms.send Messaging

javax.wireless.messaging.sms.receive Messaging

javax.microedition.io.Connector.sms Messaging

javax.wireless.messaging.cbs.receive Messaging

Multimedia Recording

javax.microedition.media.RecordControl
.startRecord

RecordControl.startRecord () Multimedia
Recording

Each phone call or messaging action will present the user with the destination phone
number before the user approves the action. The handset will ensure that I/O access from
the Mobile Media API follows the same security requirements as the Generic Connection
Framework.

Displaying of Permissions to the User
Permissions will be divided into function groups and two high-level categories, with the
function groups being displayed to the user. These two categories are Network/Cost
related and User/Privacy related.
The Network/Cost related category will include net access, messaging, application auto
invocation, and local connectivity function groups.
The user/privacy related category will include multimedia recording, read user data
access, and the write user data access function groups. These function groups will be
displayed in the settings of the MIDlet suite.
Only 3rd party and untrusted permissions can be modified or accessed by the user.
Operator and manufacturer permissions will be displayed for each MIDlet suite, but
cannot be modified by the user.

Trusted MIDlet Suites Using x.509 PKI
Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset will be able to
verify the signer of the MIDlet suite and bind it to a protection domain which will allow the
MIDlet suite access to the protected API or function. Once the MIDlet suite is bound to a
protection domain, it will use the permission defined in the protection domain to grant the
MIDlet suite access to the defined protected APIs or functions.

The MIDlet suite is protected by signing the JAR file. The signature and certificates are
added to the application descriptor (JAD) as attributes and will be used by the handset to
verify the signature. Authentication is complete when the handset uses the root certificate
(found on the handset) to bind the MIDlet suite to a protection domain (found on the
handset).

Signing a MIDlet Suite
The default security model involves the MIDlet suite, the signer, and public key
certificates. A set of root certificates are used to verify certificates generated by the signer.
Specially designed certificates for code signing can be obtained from the manufacturer,
operator, or certificate authority. Only root certificates stored on the handset will be
supported by the Motorola C975 handset.

Signer of MIDlet Suites
The signer of a MIDlet suite can be the developer or an outside party that is responsible
for distributing, supporting, or the billing of the MIDlet suite. The signer will have a public
key infrastructure and the certificate will be validated to one of the protection domain root
certificates on the handset. The public key is used to verify the signature of JAR on the
MIDlet suite, while the public key is provided as a x.509 certificate included in the
application descriptor (JAD).

MIDlet Attributes Used in Signing MIDlet Suites
Attributes defined within the manifest of the JAR are protected by the signature. Attributes
defined within the JAD are not protected or secured. Attributes that appear in the manifest
(JAR file) will not be overridden by a different value in the JAD for all trusted MIDlets. If a
MIDlet suite is to be trusted, the value in the JAD will equal the value of the corresponding
attribute in the manifest (JAR file), if not, the MIDlet suite will not be installed.
The attributes MIDlet-Permissions (-OPT) are ignored for unsigned MIDlet suites. The
untrusted domain policy is consistently applied to the untrusted applications. It is legal for
these attributes to exist only in JAD, only in the manifest, or in both locations. If these
attributes are in both the JAD and the manifest, they will be identical. If the permissions
requested in the HAD are different than those requested in the manifest, the installation
will be rejected.
Methods:

1. MIDlet.getAppProperty will return the attribute value from the manifest (JAR) if
one id defined. If an attribute value is not defined, the attribute value will return
from the application descriptor (JAD) if present.

Creating the Signing Certificate
The signer of the certificate will be made aware of the authorization policy for the handset
and contact the appropriate certificate authority. The signer can then send its
distinguished name (DN) and public key in the form of a certificate request to the
certificate authority used by the handset. The CA will create a x.509 (version 3) certificate
and return to the signer. If multiple CAs are used, all signer certificates in the JAD will
have the same public key.

Inserting Certificates into JAD
When inserting a certificate into a JAD, the certificate path includes the signer certificate
and any necessary certificates while omitting the root certificate. Root certificates will be
found on the device only.
Each certificate is encoded using base 64 without line breaks, and inserted into the
application descriptor as outlined below per MIDP 2.0.
MIDlet-Certificate-<n>-<m>: <base64 encoding of a
certificate>

Note the following:
<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater than
the previous number for additional certification paths. This defines the sequence in which
the certificates are tested to see if the corresponding root certificate is on the device.
<m>:= a number equal to 1 for the signer’s certificate in a certification path or 1 greater
than the previous number for any subsequent intermediate certificates.

Creating the RSA SHA-1 signature of the JAR
The signature of the JAR is created with the signer’s private key according to the EMSA-
PKCS1 –v1_5 encoding method of PKCS #1 version 2.0 standard from RFC 2437. The
signature is base64 encoded and formatted as a single MIDlet-Jar-RSA-SHA1 attribute
without line breaks and inserted into the JAD.
It will be noted that the signer of the MIDlet suite is responsible to its protection domain
root certificate owner for protecting the domain’s APIs and protected functions; therefore,
the signer will check the MIDlet suite before signing it. Protection domain root certificate
owners can delegate signing MIDlet suites to a third party and in some instances, the
author of the MIDlet.

Authenticating a MIDlet Suite
When a MIDlet suite is downloaded, the handset will check the JAD attribute MIDlet-Jar-
RSA-SHA1. If this attribute is present, the JAR will be authenticated by verifying the
signer certificates and JAR signature as described. MIDlet suites with application
descriptors that do not have the attributes previously stated will be installed and invoked
as untrusted. For additional information, refer to the MIDP 2.0 specification.

Verifying the Signer Certificate
The signer certificate will be found in the application descriptor of the MIDlet suite. The
process for verifying a Signer Certificate is outlined in the steps below:

1. Get the certification path for the signer certificate from the JAD attributes MIDlet-
Certificate-1<m>, where <m> starts a 1 and is incremented by 1 until there is no
attribute with this name. The value of each attribute is abase64 encoded
certificate that will need to be decoded and parsed.

2. Validate the certification path using the basic validation process as described in
RFC2459 using the protection domains as the source of the protection domain
root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that contains the
protection domain root certificate that validated the first chain from signer to root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> with <n> being greater than 1 are present

and full certification path could not be established after verifying MIDlet-
Certificate-<1>-<m> certificates, then repeat step 1 through 3 for the value <n>
greater by 1 than the previous value.

The following table describes actions performed upon completion of signer certificate
verification:

Result Action
Attempted to validate <n> paths. No public keys of the
issuer for the certificate can be found, or none of the
certificate paths can be validated.

Authentication fails, JAR installation is not
allowed.

More than one full certification path is established and
validated.

Implementation proceeds with the signature
verification using the first successfully verified
certificate path for authentication and
authorization.

Only one certification path established and validated. Implementation proceeds with the signature
verification.

Verifying the MIDlet Suite JAR
The following are the steps taken to verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature, and refer

to RFC 2437 for more detail.
4. Use the signer’s public key, signature, and SHA-1 digest of JAR to verify the

signature. If the signature verification fails, reject the JAD and MIDlet suite. The
MIDlet suite will not be installed or allow MIDlets from the MIDlet suite to be
invoked as shown in the following table.

5. Once the certificate, signature, and JAR have been verified, the MIDlet suite is
known to be trusted and will be installed (authentication process will be
performed during installation).

The following is a summary of MIDlet suite verification including dialog prompts:

Initial State Verification Result

JAD not present, JAR downloaded

Authentication can not be performed, will install JAR. MIDlet suite is
treated as untrusted. The following error prompt will be shown,
“Application installed, but may have limited functionality.”

JAD present but is JAR is
unsigned

Authentication can not be performed, will install JAR. MIDlet suite is
treated as untrusted. The following error prompt will be shown,
“Application installed, but may have limited functionality.”

JAR signed but no root certificate
present in the keystore to validate
the certificate chain

Authentication can not be performed. JAR installation will not be
allowed. The following error prompt will be shown, “Root certificate
missing. Application not installed.”

JAR signed, a certificate on the
path is expired

Authentication can not be completed. JAR installation will not be
allowed. The following error prompt will be shown, “Expired
Certificate. Application not installed.”

JAR signed, a certificate rejected
for reasons other than expiration

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Authentication Error. Application not
installed.”

JAR signed, certificate path
validated but signature verification
fails

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Authentication Error. Application not
installed.”

Parsing of security attributes in
JAD fails

JAD rejected, JAR installation will not be allowed. The following error
prompt will be shown, “Failed Invalid File.”

JAR signed, certificate path
validated, signature verified

JAR will be installed. The following prompt will be shown, “Installed.”

Carrier Specific Security Model
The MIDP 2.0 security model will vary based on carrier requests. Contact the carrier for
specifics.

Bound Certificates

Bound certificates enable an efficient process to aid developers in the MIDlet
development and testing phase when working with signed applications. Currently the
delay for the developer occurs because specific flex files need to be created for each
developer and for each domain being tested.

By implementing Bound certificates, the process of creating and supporting developer-
specific flex files can be eliminated, which in turn simplifies the developer's environment,
avoiding dependency from the flex tools. Bound certificates will take advantage of the
High Assurance Boot system implemented at Motorola. The main difference becomes
relevant during the creation of the signing certificate for the developer. Below are the
steps necessary for the developer to follow:

• The MIDlet developer generates a signing key that contains public and
private keys.

• The developer will send the CSR, containing the developer’s public portion
of the signing key, and the serial number(s) of the handset(s) the developer
is using for testing, and the intended protected domains the MIDlet will be
signed against to the Motorola Java Signing Center.

• The Signing Center constructs a developer certificate that includes the
public key and a tag, that denotes this is a bound certificate.

• This bound certificate has the serial number for the unit appended to the
certificate format and the resulting file is signed using the PCS Java CA.

• When the phone starts to load this type of certificate, it will identify the bound
tag and pull the electronic number from the processor and use it to validate
the signature of that certificate. Once this validation takes place, then the
certificate will be used to validate the signature of the JAD file and if it
passes, then it will install the JAR file on the product.

This implementation incorporates information about the target domain into the
bound certificate used for signing. This information should be submitted along
with developer's CSR and bound tag(s) of the target device(s). If Java security

manager has this information in runtime, it will be able to decide what domain to
use for binding.

Following are the requirements concerning these bound certificates:

• An X.509 bound certificate shall support at least 10 serial numbers
supplied in the special bound tag extension.

• A bound MIDlet shall be successfully installed on the target device, if at
least one of serial numbers supplied in the bound certificate coincides
with the processor's serial number retrieved from the target device.

• A bound MIDlet shall not be installed if bound tag verification fails.
• A bound MIDlet, after successful bound tag check, shall be successfully

mapped to the hardcoded, SRP* compliant manufacturer domain, if the
bound certificate includes information about target developer's domain
where all permissions have type allowed.

• A bound MIDlet, after successful bound tag check, shall be successfully
mapped to the hardcoded, SRP* compliant 3rd party domain, if the
bound certificate includes information about target developer's domain
where all permissions have type user.

• A bound MIDlet, after successful bound tag check, shall be mapped to a
domain in accordance with flexed policy file, if the bound certificate
either doesn't include any information about target developer's domain
or includes information about domain unknown to the device. The
MIDlet shall not be installed if the domain policy flexed on the target
device doesn't include an appropriate domain.

* SRP - MIDP 2.0 Security Recommended Practice for GSM/UMTS
compliant devices.

Appendix A:
Key Mapping

Key Mapping for the Motorola C975
The table below identifies key names and corresponding Java assignments. All other keys
are not processed by Java.

Key Assignment
0 NUM0
1 NUM1
2 NUM2
3 NUM3
4 NUM4
5 SELECT, followed by NUM5
6 NUM6
7 NUM7
8 NUM8
9 NUM9
STAR (*) ASTERISK
POUND (#) POUND
JOYSTICK LEFT LEFT
JOYSTICK RIGHT RIGHT
JOYSTICK UP UP
JOYSTICK DOWN DOWN
SCROLL UP UP
SCROLL DOWN DOWN
SOFTKEY 1 SOFT1
SOFTKEY 2 SOFT2
MENU SOFT3 (MENU)
SEND SELECT

Also, handled according to VSCL specification: incoming call
accepted, if Java has high priority
Also, call placed if pressed on lcdui.TextField or lcdui.TextBox
with PHONENUMBER constraint set.

CENTER SELECT SELECT
END Handled according to VSCL specification:

Pause/End/Resume/Background menu invoked.

Appendix B:
Memory Management

Calculation

Available Memory
The available memory on the Motorola C975 is the following:

• 4M shared memory for MIDlet storage
• 1.5 MB Heap size
• Recommended maximum MIDlet size is 200 Kb

Memory Calculation for MIDlets
The calculation for determining the amount of memory needed to run a MIDlet is
computed by a formula. The details menu for the application show the Kilobytes required
by the application as computed by the formula below:
 (size of the JAD file)
 + (size of the JAR file)
 + (size of the data space used by the MIDlet)
 ==================================
(memory required to run the MIDlet)

Please note that the same memory calculation is applied while performing the memory
check during the download of an application.

Appendix C:
FAQ

Online FAQ
The MOTOCODER developer program is online and able to provide access to Frequently
Asked Questions around enabling technologies on Motorola products.
Access to dynamic content based on questions from the Motorola J2ME developer
community is available at the URL listed below.
http://www.motocoder.com

Appendix F:
Spec Sheet

Motorola C975 Spec Sheet
Listed below are the spec sheets for the Motorola C975 handset. The spec sheet contains
information regarding the following areas:

• Technical Specifications

• Key Features

• J2ME Information

• Motorola Developer Information

• Tools

• Other Related Information

 Motorola C975
Developer Reference Sheet

Band/Frequency UMTS 2100 MHz

GSM 900/1800/1900 MHz
GPRS (2U/4D, Class 10, B)

Region North America
Technology WAP 2.0, J2ME, SMS, EMS,

MMS,
Connectivity USB, via CE Bus
Dimensions 53.2 x 114 x 24.2 mm
Weight 139 grams
Display 1.9” 176 x 220
Operating System Motorola
Chipset TBD

• 3D stereo sound
• Point to Point Video
• Integrated Digital Video/Still Camera
• Large Color Display
• Integrated MP3 Player
• iTAP Predictive Text Entry
• Transflash expandable memory

CLDC v1.1 and MIDP v2.0 compliant
Maximum MIDlet suite size 200 KB
Heap size 1.5 MB
Maximum record store size 64 K
MIDlet storage available TBD
Interface connections HTTP 1.1, UDP,

TCP
Maximum number of sockets 4
Supported image formats GIF, JPEG, PNG,

BMP
Double buffering Supported
Encoding schemes ISO8859_1,

ISO10646
Input methods Multitap, iTAP
Additional API’s JSR 118, JSR 120,

JSR 135, JSR 139,
JSR 184, JSR 185

Audio MIDI, WAV, AMR,
MP3, MP4, iMelody

Motorola Developer Information:
Developer Resources at http://www.motocoder.com/

Tools:
CodeWarrior® Wireless Studio v7.0
J2ME™ SDK version v4.0
Motorola Messaging Suite v1.1

Documentation:
Creating Media for the C975

References:
J2ME™ specifications: http://www.java.sun.com/j2me
MIDP v2.0 specifications:
http://www.java.sun.com/products/midp
CLDC v1.0 specifications:
http://www.java.sun.com/products/cldc
WAP forum: http://www.wap.org
EMS standards: http://www.3GPP.org

Purchase:
Visit the Motocoder Shop at http://www.motocoder.com/
Accessories: http://www.motorola.com/consumer

Key Features J2ME™ Information

Technical Specifications

Related Information

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or
service names are the property of their respective owners. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

© Motorola, Inc. 2004.

