
C975 Java ME Developer Guide

Version 02.00

Table of Contents

TABLE OF CONTENTS ..2

INDEX OF FIGURES ...6

INDEX OF TABLES ...7

INDEX OF CODE SAMPLES ..8

1 Introduction ..9
1.1 PURPOSE ...9
1.2 AUDIENCE ..9
1.3 DISCLAIMER ..9
1.4 REFERENCES ... 11
1.5 REVISION HISTORY .. 11
1.6 DEFINITIONS, ABBREVIATIONS, ACRONYMS .. 11
1.7 DOCUMENT OVERVIEW... 13

2 Java ME Introduction .. 15
2.1 THE JAVA PLATFORM, MICRO EDITION (JAVA ME)... 15
2.2 THE MOTOROLA JAVA ME PLATFORM ... 16
2.3 RESOURCES AND APIS AVAILABLE .. 16

3 Developing and Packaging Java ME Applications................................. 18
3.1 GUIDE TO DEVELOPMENT IN JAVA ME .. 18

4 Downloading Applications ... 20
4.1 METHODS OF DOWNLOADING.. 20

5 Application Management ... 21
5.1 DOWNLOADING A JAR FILE WITHOUT A JAD ... 21
5.2 INSTALLATION AND DELETION STATUS REPORTS ... 21
5.3 DRM CONTENT PROTECTION IN JAVA ... 22

6 Shared JAD URLs.. 23
6.1 OVERVIEW.. 23
6.2 TELL-A-FRIEND OPTION ... 23

7 JAD Attributes.. 24
7.1 JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS ... 24

8 iTAP.. 27
8.1 INTELLIGENT KEYPAD TEXT ENTRY API ... 27

9 Network APIs .. 29
9.1 NETWORK CONNECTIONS .. 29
9.2 USER PERMISSION ... 31
9.3 INDICATING A CONNECTION TO THE USER.. 31

[2/116]

9.4 HTTPS CONNECTION .. 32
9.5 DNS IP .. 34
9.6 PUSH REGISTRY.. 34
9.7 MECHANISMS FOR PUSH ... 34
9.8 PUSH REGISTRY DECLARATION .. 35
9.9 DELIVERY OF A PUSH MESSAGE ... 44
9.10 DELETING AN APPLICATION REGISTERED FOR PUSH 45
9.11 SECURITY FOR PUSH REGISTRY .. 45
9.12 NETWORK ACCESS ... 46

10 CommConnection Interface.. 47
10.1 COMMCONNECTION... 47
10.2 ACCESSING ... 47
10.3 PARAMETERS.. 47
10.4 BNF FORMAT FOR CONNECTOR.OPEN () STRING.. 49
10.5 COMM SECURITY ... 49
10.6 PORT NAMING CONVENTION ... 51
10.7 METHOD SUMMARY ... 51

11 MIDP 2.0 Security Model.. 52
11.1 UNTRUSTED MIDLET SUITES .. 53
11.2 UNTRUSTED DOMAIN ... 53
11.3 TRUSTED MIDLET SUITES ... 54
11.4 PERMISSION TYPES CONCERNING THE HANDSET .. 54
11.5 USER PERMISSION INTERACTION MODE ... 55
11.6 IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY 56
11.7 TRUSTED 3RD PARTY DOMAIN ... 56
11.8 TRUSTED MIDLET SUITES USING X.509 PKI .. 57
11.9 SIGNING A MIDLET SUITE ... 58
11.10 SIGNER OF MIDLET SUITES.. 58
11.11 MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES 58
11.12 CREATING THE SIGNING CERTIFICATE ... 59
11.13 INSERTING CERTIFICATES INTO JAD... 59
11.14 CREATING THE RSA SHA-1 SIGNATURE OF THE JAR 60
11.15 AUTHENTICATING A MIDLET SUITE .. 60
11.16 VERIFYING THE SIGNER CERTIFICATE .. 60
11.17 VERIFYING THE MIDLET SUITE JAR ... 61
11.18 BOUND CERTIFICATES .. 62

12 JSR-120 - Wireless Messaging API .. 64
12.1 WIRELESS MESSAGING API (WMA) .. 64
12.2 SMS CLIENT MODE AND SERVER MODE CONNECTION 64
12.3 SMS PORT NUMBERS .. 65
12.4 SMS STORING AND DELETING RECEIVED MESSAGES 66
12.5 SMS MESSAGE TYPES ... 66
12.6 SMS MESSAGE STRUCTURE ... 66
12.7 SMS NOTIFICATION .. 67
12.8 APP INBOX CLEAN-UP .. 73

[3/116]

13 JSR-135 - Mobile Media API ... 74
13.1 NETWORK CONNECTIONS .. 74
13.2 TONECONTROL ... 76
13.3 VOLUMECONTROL... 76
13.4 STOPTIMECONTROL .. 77
13.5 MANAGER CLASS ... 77
13.6 AUDIO MEDIA .. 77
13.7 MOBILE MEDIA FEATURE SETS .. 79
13.8 AUDIO MIXING ... 82
13.9 MEDIA LOCATORS .. 83
13.10 RTP LOCATOR... 83
13.11 HTTP LOCATOR ... 83
13.12 FILE LOCATOR .. 83
13.13 CAPTURE LOCATOR ... 83
13.14 SUPPORTED MULTIMEDIA FILE TYPES .. 84
13.15 IMAGE MEDIA ... 84
13.16 AUDIO MEDIA... 84
13.17 VIDEO MEDIA ... 85
13.18 SECURITY ... 85
13.19 POLICY .. 85
13.20 PERMISSIONS ... 86

14 JSR-139 - CLDC 1.1 ... 87
14.1 JSR-139 ... 87

15 MIDlet storage in removable memory.. 92
15.1 OVERVIEW .. 92
15.2 INSTALLING DOWNLOADED APPLICATIONS INTO REMOVABLE MEMORY 92
15.3 LISTING AND LAUNCHING JAVA ME APPLICATIONS FROM REMOVABLE MEMORY.......... 93

16 JSR-185 - JTWI .. 95
16.1 OVERVIEW .. 95
16.2 CLDC RELATED CONTENT FOR JTWI .. 96
16.3 MIDP 2.0 SPECIFIC INFORMATION FOR JTWI .. 97
16.4 WIRELESS MESSAGING API 1.1 (JSR-120) SPECIFIC CONTENT FOR JTWI 98
16.5 MOBILE MEDIA API 1.1 (JSR-135) SPECIFIC CONTENT FOR JTWI..................... 99
16.6 MIDP 2.0 SECURITY SPECIFIC CONTENT FOR JTWI...................................... 99

17 JSR-184 - Mobile 3D Graphics API... 100
17.1 OVERVIEW ...100
17.2 MOBILE 3D API...100
17.3 MOBILE 3D API FILE FORMAT SUPPORT ...101
17.4 MOBILE 3D GRAPHICS - M3G API ..101

17.4.1 TYPICAL M3G APPLICATION ...101
17.4.2 SIMPLE MIDLETS...102
17.4.3 INITIALIZING THE WORLD ..104
17.4.4 USING THE GRAPHICS3D OBJECT ...105
17.4.5 INTERROGATING AND INTERACTING WITH OBJECTS106
17.4.6 ANIMATIONS ..107

[4/116]

17.4.7 AUTHORING M3G FILES..108
APPENDIX A: Key Mapping ... 109

KEY MAPPING ..109
APPENDIX B: Memory Management Calculation 111
APPENDIX C: FAQ.. 112
APPENDIX F: Spec Sheet .. 113

SPEC SHEET..113
APPENDIX H: Quick Reference .. 115

[5/116]

Index of Figures

Figure 1 Java ME Architecture.. 16

Figure 2 Network Connections example .. 32

Figure 3 Intend Application Run Option .. 45

Figure 4 M3G Application Proccess ...101

Figure 5 M3G Application Methods ...102

Figure 6 Typical MIDlet Structure...103

[6/116]

Index of Tables
Table 1 References.. 11

Table 2 Revision History ... 11

Table 3 Definitions, Abbreviations, Acronyms ... 13

Table 4 MIDlet attributes, descriptions, and its location in the JAD and/or JAR
manifest.. 24

Table 5 iTAP feature/class ... 28

Table 6 Network API feature/class support for MIDP 29

Table 7 Interface Commconncetion optional parameters 48

Table 8 Interface Commconncetion BNF syntax .. 49

Table 9 Method Summary ... 51

Table 10 MIDP 2.0 Feature/Class .. 52

Table 11 Protected Functionality fot top line of prompt 56

Table 12 Dialog Prompts for MIDP 2.0 Permission Types 57

Table 13 Actions performed of signer certificate verification........................... 61

Table 14 Summary of MIDlet suite verification ... 62

Table 15 List of Messaging features/classes ... 68

Table 16 Multimedia file formats... 77

Table 17 Audio MIME types ... 78

Table 18 Multimedia feature/class support for JSR-135................................. 78

Table 19 Packages, classes, fields, and methods implemented for Phase II of
JSR-135 .. 79

Table 20 Image Media ... 84

Table 21 Audio Media .. 84

Table 22 Video Media .. 85

Table 23 Security policy ... 85

Table 24 Permissions within Multimedia Record .. 86

Table 25 Additional classes, fields, and methods supported for CLDC 1.1
compliance .. 87

Table 26 Key Mapping...109

[7/116]

Index of Code Samples

Code Sample 1 Socket Connection.. 30

Code Sample 2 HTTPS... 32

Code Sample 3 Push Registry.. 35

Code Sample 4 CommConnection implementation 50

Code Sample 5 JSR-120 WMA ... 69

Code Sample 6 JSR-135 MMA.. 74

Code Sample 7 Initializing the world ..104

Code Sample 8 Using the Graphics3D object ..105

Code Sample 9 Finding objects by ID. ..106

Code Sample 10 Using the Object3D.getReferences().................................106

[8/116]

1
Introduction

1.1 Purpose

This document describes the application program interfaces used to develop Motorola

compliant Java Platform, Micro Edition (Java ME) applications for the C975 handset

supporting CLDC 1.1.

For more detailed information see Section 3.1.1.

1.2 Audience

This document is intended for general Java ME developers involved in the production

of Java ME applications for the C975 handset.

1.3 Disclaimer

Motorola reserves the right to make changes without notice to any products or ser-

vices described herein. "Typical" parameters, which may be provided in Motorola

Data sheets and/or specifications can and do vary in different applications and actual

performance may vary. Customer's technical experts will validate all "Typicals" for

each customer application.

Motorola makes no warranty in regard to the products or services contained herein.

Implied warranties, including without limitation, the implied warranties of merchant-

ability and fitness for a particular purpose, are given only if specifically required by

Java ME Developer Guide
Chapter 1 - Introduction

[9/116]

applicable law. Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the

products or services, whether through a service provider or otherwise.

No warranty is made that the software will meet your requirements or will work in

combination with any hardware or application software products provided by third

parties, that the operation of the software products will be uninterrupted or error

free, or that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negli-

gence), for any damages resulting from use of a product or service described herein,

or for any indirect, incidental, special or consequential damages of any kind, or loss

of revenue or profits, loss of business, loss of information or data, or other financial

loss arising out of or in connection with the ability or inability to use the Products, to

the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incid-

ental or consequential damages, or limitation on the length of an implied warranty,

therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights,

which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applica-

tions intended to support or sustain life, or for any other application in which the

failure of the Motorola product or service could create a situation where personal in-

jury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unin-

tended or unauthorized application, the buyer shall release, indemnify and hold Mo-

torola and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the designing or manufacturing of the product or service.

Java ME Developer Guide
Chapter 1 - Introduction

[10/116]

Motorola recommends that if you are not the author or creator of the graphics, video,

or sound, you obtain sufficient license rights, including the rights under all patents,

trademarks, trade names, copyrights, and other third party proprietary rights.

1.4 References

Reference Link

Borland http://www.borland.com/

GSM 03.38 standard http://www.etsi.org

GSM 03.40 standard http://www.etsi.org

IBM http://www.ibm.com/

JSR http://www.jcp.org

Motorola http://www.motorola.com/

RFC 2068 http://www.ietf.org/rfc/rfc2068.txt

RFC 2396 http://www.ietf.org/rfc/rfc2396.txt

SAR http://www.wapforum.org

Sun Java ME http://java.sun.com/javame/

Sun Microsystems http://www.sun.com/

Sun MIDP 2.0 SDK http://java.sun.com/products/midp/

Table 1 References

1.5 Revision History

Version Date Reason

00.01 July 08th, 2004 Initial Draft

00.02 August 30th, 2004 Updates after Motorola’s review

00.03 September 08th, 2004 Updates after Motorola’s review

01.01 June 16th, 2006 Replace J2ME and Motocoder References

01.01 June 16th, 2006 Replace J2ME and Motocoder References

01.02 July 13th, 2006 Remove chipset information on
specsheet

02.00 July 13th, 2006 Document approval.

Table 2 Revision History

1.6 Definitions, Abbreviations,

Java ME Developer Guide
Chapter 1 - Introduction

[11/116]

Acronyms

Acronym Description

AMS Application Management Software

API Application Program Interface

BMP Windows BitMap Format (image extension '.bmp')

CLDC Connected Limited Device Configuration

DNS Domain Name System

DRM Digital Rights Management

GIF Graphics Interchange Format (image extension '.gif')

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers, Inc.

IP Internet Protocol

IRCOMM Is a specification from the Infrared Design Association (IRDA)
and determines how different devices can talk to each other
via infrared.

IrDA Infrared Data Association

ITU International Telecommunication Union

JAD Java Application Descriptor

JAM Java Application Manager

JAR Java Archieve. Used by Java ME applications for compression
and packaging.

Java ME Java Platform, Micro Edition (Java ME, formerly J2ME)

JPG Joint Photographic Experts Group (image extension '.jpg')

JSR Java Specification Request

JSR-139 Java Specification Request 139. Defines a revised version of
the Java ME Connected, Limited Device Configuration (CLDC)

JVM Java Virtual Machine

KVM K Virtual Machine (Java ME runtime environment)

MIB Motorola Internet Browser

MIDP Mobile Information Device Profile

MMA Multimedia API

MT Mobile Terminated

OEM Original Equipment Manufacturer

P2K Motorola Plataform 2000

PNG Portable Network Graphics (image extension '.png')

RFC Request for Comments

Java ME Developer Guide
Chapter 1 - Introduction

[12/116]

RMS Record Management System

SD/MMC Secure Digital Card / Multi Media Card

SDK Software Development Kit

SMS Short Message Service

SMSC Short Messaging Service Center

SSL Secure Sockets Layer

TCP Transmission Control Protocol

Trusted
Device

A paired device that is explicitly marked as trusted.

UDP User Datagram Protocol

UI User Interface

URI Unified Resource Identifier

URL Universal Resource Locator

USB Universal Serial Bus

VM Virtual Machine

WMA Wireless Messaging API

Table 3 Definitions, Abbreviations, Acronyms

1.7 Document Overview

This developer's guide is organized into the following chapters and appendixes:

Chapter 1 - Introduction: This chapter has general information about this
document, including purpose, scope, references, and definitions.
Chapter 2 - Java ME Introduction: This chapter describes the Java ME
platform and the available resources on this Handset.
Chapter 3 - Developing and Packaging Java ME Applications: This
chapter describes important features to look for selecting tools and emulation
environments. It also describes how to package a Java ME application, how to
package a MIDlet, and generate JAR and JAD files properly.
Chapter 4 - Downloading Applications: This chapter describes the process
for downloading applications.
Chapter 5 - Application Management: This chapter describes the lifecycle,
installation/de-installation, and updating process for a MIDlet suite.
Chapter 6 - Shared JAD URLs: This chapter describes the Share JAD URLs,
it allows users to share their downloaded Java ME application URLs with
others.
Chapter 7 - JAD Attributes: This chapter describes what attributes are
supported.
Chapter 8 - iTAP: This chapter describes iTAP support.
Chapter 9 - Network APIs: This chapter describes the Java Networking API

Java ME Developer Guide
Chapter 1 - Introduction

[13/116]

and network access.
Chapter 10 - CommConnection Interface: This chapter describes the
CommConnection API.
Chapter 11 - MIDP 2.0 Security Model: This chapter describes the MIDP
2.0 default security model."
Chapter 12 - JSR-120 - Wireless Messaging API: This chapter describes
JSR-120 implementation.
Chapter 13 - JSR-135 - Mobile Media API: This chapter describes image
types and supported formats.
Chapter 14 - JSR-139 - CLDC 1.1: This chapter describes briefly some
characteristics of CLDC 1.1 and presents additional classes, fields, and
methods supported for CLDC 1.1.
Chapter 15 - MIDlet storage in removable memory: This chapter details
storage, installation and access of Java ME applications in removable memory.
Chapter 16 - JSR-185 - JTWI: This chapter describes JTWI functionality.
Chapter 17 - JSR-184 - Mobile 3D Graphics API: This chapter describes
the JSR-184 which defines an API for rendering three-dimensional (3D)
graphics.
Appendix A - Key Mapping: This appendix describes the key mapping of the
Motorola C975 handset, including the key name, key code, and game action
of all Motorola keys
Appendix B - Memory Management Calculation: This chapter describes
the memory management calculations.
Appendix C - FAQ: This appendix provides a link to the dynamic online FAQ.
Appendix F - Spec Sheet: This appendix provides the spec sheet for the
Motorola C975 handset.
Appendix H - Quick Reference: This appendix provides quick references to
this document.

Java ME Developer Guide
Chapter 1 - Introduction

[14/116]

2
Java ME Introduction

The Motorola C975 handset includes the Java Platform, Micro Edition, also known as

the Java ME platform. The Java ME platform enables developers to easily create a

variety of Java applications ranging from business applications to games. Prior to its

inclusion, services or applications residing on small consumer devices like cell phones

could not be upgraded or added to without significant effort. By implementing the

Java ME platform on devices like the Motorola C975 handset, service providers, as

well as customers, can easily add and remove applications allowing for quick and

easy personalization of each device. This chapter of the guide presents a quick over-

view of the Java ME environment and the tools that can be used to develop applica-

tions for the Motorola C975 handset.

2.1 The Java Platform, Micro Edition
(Java ME)

The Java ME platform is a new, very small application environment. It is a framework

for the deployment and use of Java technology in small devices such as cell phones

and pagers. It includes a set of APIs and a virtual machine that is designed in a mod-

ular fashion allowing for scalability among a wide range of devices.

The Java ME architecture, see Figure 1 , contains three layers consisting of the Java

Virtual Machine, a Configuration Layer, and a Profile Layer. The Virtual Machine (VM)

supports the Configuration Layer by providing an interface to the host operating

system. Above the VM is the Configuration Layer, which can be thought of as the

lowest common denominator of the Java Platform available across devices of the

same "horizontal market." Built upon this Configuration Layer is the Profile Layer,

Java ME Developer Guide
Chapter 2 - Java ME Introduction

[15/116]

typically encompassing the presentation layer of the Java Platform.

Figure 1 Java ME Architecture

The Configuration Layer used in the Motorola C975 handset is the Connected Limited

Device Configuration 1.1 (CLDC 1.1) and the Profile Layer used is the Mobile Inform-

ation Device Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide common

APIs for I/O, simple math functionality, UI, and more.

For more information on Java ME, see the Sun Java ME documentation

(http://java.sun.com/javame/).

2.2 The Motorola Java ME Platform

Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to

implement and support. By adding to the standard APIs, manufacturers can allow de-

velopers to access and take advantage of the unique functionality of their handsets.

The Motorola C975 handset contains OEM APIs for extended functionality ranging

from enhanced UI to advanced data security. While the Motorola C975 handset can

run any application written in standard MIDP, it can also run applications that take

advantage of the unique functionality provided by these APIs. These OEM APIs are

described in this guide

2.3 Resources and APIs Available

MIDP 2.0 will provide support to the following functional areas on the Motorola C975

Java ME Developer Guide
Chapter 2 - Java ME Introduction

[16/116]

http://java.sun.com/javame/

handset:

• Application delivery and billing
• Application lifecycle
• Application signing model and privileged security model
• End-to-end transactional security (HTTPS)
• MIDlet push registration (server push model)
• Networking
• Persistent storage
• Sounds
• Timers
• User Interface
• File Image Support (.PNG, .JPEG, .GIF, .BMP)

Additional Functionality

•••••••••••• JSR-118
• JSR-120
• JSR-135
• JSR-139
• JSR-184
• JSR-185

Java ME Developer Guide
Chapter 2 - Java ME Introduction

[17/116]

3
Developing and

Packaging Java ME
Applications

3.1 Guide to Development in Java ME

Introduction to Development

This appendix assumes the reader has previous experience in Java ME development

and can appreciate the development process for Java MIDlets. This appendix will

provide some information that a beginner in development can use to gain an under-

standing of MIDlets for Java ME handsets.

There is a wealth of material on this subject on the following websites maintained by

Motorola, Sun Microsystems and others. Please refer to the following URLs for more

information:

• http://developer.motorola.com
• http://www.java.sun.com/javame
• http://www.corej2me.com
• http://www.javaworld.com

As an introduction, brief details of Java ME are explained below.

The MIDlet will consist of two core specifications, namely Connected Limited Device

Configuration (CLDC) and Mobile Information Device Profile (MIDP). Both of these

specifications (JSR - Java Specification Requests) can be located at the

Java ME Developer Guide
Chapter 3 - Developing and Packaging Java ME Applications

[18/116]

http://developer.motorola.com
http://www.java.sun.com/javame
http://www.corej2me.com
http://www.javaworld.com

http://www.jcp.org/ site for reading.

• For MIDP 1.0; JSR-37 should be reviewed.
• For MIDP 2.0; JSR-118 should be reviewed.
• For CLDC 1.0.4; JSR-30 should be reviewed.
• For CLDC 1.1; JSR-139 should be reviewed.

For beginning development, key points to remember are memory size, processing

power, screen capabilities and wireless network characteristics. These all play an im-

portant part in the development of a MIDlet. The specifications listed above are de-

signed to work upon devices that have these characteristics.

Network conditions would only apply for networked applications such as streaming

tickers, email clients, etc.

In addition to the specifications, arrays of tools are available to assist the develop-

ment cycle. These range from the command line tools provided with by Software De-

velopment Kits (SDK) from Sun to Integrated Development Environments (IDEs)

which can be free or purchased. These IDEs come from a range of sources such as

Sun, IBM and Borland to name a few.

In addition to the IDEs and Sun SDK for development, Motorola offers access to our

own SDK which contains Motorola device emulators. From here, a MIDlet can be built

and then deployed onto an emulated target handset. This will enable debugging and

validation of the MIDlet before deployment to a real, physical handset. The latest Mo-

torola SDK can be downloaded from the MOTODEV website.

Please refer to the product specifications at the end of this guide for detailed inform-

ation on each handset.

Java ME Developer Guide
Chapter 3 - Developing and Packaging Java ME Applications

[19/116]

http://www.jcp.org/

4
Downloading
Applications

4.1 Methods of Downloading

The load of applications (MIDlets) in Motorola devices that consist of the transmission

of an application from PC to device can be carried through the direct cable USB, via

CE Bus.

The direct cable approach can be performed using a tool available from MOTODEV

called MIDway. The version available of writing is , which supports USB cable down-

load.

It is important to note that the MIDway tool will only work with a device that has

been enabled to support direct cable Java download. This feature is not available by

purchasing a device through a standard consumer outlet.

The easiest method of confirming support for this is by looking at the "Java Tool"

menu on the phone in question and seeing if a "Java app loader" option is available

on that menu. If it is not, then contact MOTODEV support for advice on how to re-

ceive an enabled handset.

For more information about MIDway tool can be obtained through the MOTODEV

website (http://developer.motorola.com).

Java ME Developer Guide
Chapter 4 - Downloading Applications

[20/116]

http://developer.motorola.com

5
Application

Management

The following sections describe the application management scheme for the Motorola

C975 handset. This chapter will discuss the following:

• Downloading a JAR without a JAD
• Installation and Deletion Status Reports
• DRM Content Protection in Java

5.1 Downloading a JAR file without a
JAD

In Motorola's MIDP 2.0 implementation, a JAR file can be downloaded without a JAD.

In this case, the user clicks on a link for a JAR file, the file is downloaded, and con-

firmation will be obtained before the installation begins. The information presented is

obtained from the JAR manifest instead of the JAD.

5.2 Installation and Deletion Status
Reports

The status (success or failure) of an installation, upgrade, or deletion of a MIDlet

suite will be sent to the server according to the JSR-118 specification. If the status

report cannot be sent, the MIDlet suite will still be enabled and the user will be al-

Java ME Developer Guide
Chapter 5 - Application Management

[21/116]

lowed to use it. In some instances, if the status report cannot be sent, the MIDlet will

be deleted by operator's request. Upon successful deletion, the handset will send the

status code 912 to the MIDlet-Delete-Notify URL. If this notification fails, the MIDlet

suite will still be deleted. If this notification cannot be sent due to lack of network

connectivity, the notification will be sent at the next available network connection.

The following codes are supported:

• 900 Success
• 901 Insufficient Memory
• 902 User Cancelled
• 903 Loss Of Service
• 904 JAR Size Mismatch
• 905 Attribute Mismatch
• 906 Invalid Descriptor
• 907 Invalid JAR
• 908 Incompatible Configuration or Profile
• 909 Application Authentication Failure
• 910 Application Authorization Failure
• 911 Push Registration Failure
• 912 Deletion Notification

5.3 DRM Content Protection in Java

Digital Rights Management (DRM) is a method to prevent MIDlets from distributing

DRM content using any packet data network connection. In others words, DRM is a

method of protecting content from illegal distribution by embedding the content into

an encrypted package, along with rules dictating its use.

If the user has a set of keys and a valid license, then they are used for a specific file.

A DRM application is required to decrypt the content for playback. This method will

be transparent for the user, if he has a valid license.

The invalid license might happen because elapsed number of times the content to be

executed/played, or elapsed validity for the license, or the content received through

separate delivery.

For more information about this method, see at http://www.openmobilealliance.org.

Java ME Developer Guide
Chapter 5 - Application Management

[22/116]

http://www.openmobilealliance.org

6
Shared JAD URLs

6.1 Overview

Actually, users are able to download Java ME applications. The first step is to down-

load the JAD file and, after a confirmation, the site is launched to download the ap-

plication. If they want to forward the JAD link to someone else, it's impossible.

The Share JAD URLs is a feature that resolves the prior problem, it allows users to

share their downloaded Java ME application URLs with others. When Java ME applica-

tions are downloaded, the browser shall provide the Java Application Manager (JAM)

with the JAD URL address. When Java ME applications are downloaded via PC or

MMS, a new JAD attribute shall specify the JAD URL address.

6.2 Tell-A-Friend Option

When entering the Java ME application context-sensitive menu, a Tell-A-Friend op-

tion will be provided. Upon selecting this option, the standard SMS messaging form

will appear. The link to the URL where the application JAD file can be found and its

name will be pre-populated into the message body. This allows the user to send

messages to friends, telling them where to download the application.

Upon receipt of a Tell-A-Friend message, a Motorola handset user should be able to

use the browser's GOTO functionality. Selecting GOTO will cause the download of JAD

to occur. The remaining download steps will occur as normal.

Java ME Developer Guide
Chapter 6 - Shared JAD URLs

[23/116]

7
JAD Attributes

7.1 JAD / Manifest Attribute
Implementations

The JAR manifest defines attributes to be used by the application management soft-

ware (AMS) to identify and install the MIDlet suite. These attributes may or may not

be found in the application descriptor.

The application descriptor is used, in conjunction with the JAR manifest, by the ap-

plication management software to manage the MIDlet. The application descriptor is

also used for the following:

• By the MIDlet for configuration specific attributes
• Allows the application management software on the handset to verify

the MIDlet is suited to the handset before loading the JAR file
• Allows configuration-specific attributes (parameters) to be supplied to

the MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application

Descriptor attributes as outlined in the JSR-118. Table 4 lists all MIDlet attributes,

descriptions, and its location in the JAD and/or JAR manifest that are supported in

the Motorola implementation. Please note that the MIDlet will not install if the

MIDlet-Data-Size is greater than 512k.

Attribute Name Attribute Description JAR
Mani-
fest

JAD

MIDlet-Name The name of the MIDlet suite that
identifies the MIDlets to the user

Yes Yes

Java ME Developer Guide
Chapter 7 - JAD Attributes

[24/116]

MIDlet-Version The version number of the MIDlet
suite

Yes Yes

MIDlet-Vendor The organization that provides
the MIDlet suite.

Yes Yes

MIDlet-Icon The case-sensitive absolute name
of a PNG file within the JAR used
to represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet
suite.

No No

MIDlet-Info-URL A URL for information further de-
scribing the MIDlet suite.

Yes No

MIDlet-<n> The name, icon, and class of the
nth MIDlet in the JAR file.
Name is used to identify this
MIDlet to the user. Icon is as
stated above. Class is the name
of the class extending the
javax.microedition.midlet. MID-
letclass.

Yes, or
no if in-
cluded in
the JAD.

Yes, or
no if in-
cluded in
the JAR
Manifest.

MIDlet-Jar-URL The URL from which the JAR file
can be loaded.

Yes

MIDlet-Jar-Size The number of bytes in the JAR
file.

Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the
MIDlet.

Yes Yes

MicroEdition-Profile The Java ME profiles required. If
any of the profiles are not imple-
mented the installation will fail.

Yes, or
no if in-
cluded in
the JAD.

Yes, or
no if in-
cluded in
the JAR
Manifest.

MicroEdition-Config-
uration

The Java ME Configuration re-
quired, i.e CLDC

Yes, or
no if in-
cluded in
the JAD.

Yes, or
no if in-
cluded in
the JAR
Manifest.

MIDlet-Permissions Zero or more permissions that
are critical to the function of the
MIDlet suite.

Yes Yes

MIDlet-Permis-
sions-Opt

Zero or more permissions that
are non-critical to the function of
the MIDlet suite.

Yes Yes

MIDlet-Push-<n> Register a MIDlet to handle in-
bound connections

Yes Yes

Java ME Developer Guide
Chapter 7 - JAD Attributes

[25/116]

MIDlet-Install-Notify The URL to which a POST request
is sent to report installation
status of the MIDlet suite.

Yes Yes

MIDlet-Delete-Notify The URL to which a POST request
is sent to report deletion of the
MIDlet suite.

Yes Yes

MIDlet-De-
lete-Confirm

A text message to be provided to
the user when prompted to con-
firm deletion of the MIDlet suite.

Yes Yes

FlipInsensitive MIDlets with this Motorola specif-
ic attribute will enable the MIDlet
to run with the flip closed.

Yes Yes

Background MIDlets with this Motorola specif-
ic attribute will continue to run
when not in focus.

Yes Yes

Table 4 MIDlet attributes, descriptions, and its location in the JAD
and/or JAR manifest

Java ME Developer Guide
Chapter 7 - JAD Attributes

[26/116]

8
iTAP

8.1 Intelligent Keypad Text Entry API

When users are using features such as SMS (short message service), or "Text Mes-

saging", they can opt for a predictive text entry method from the handset. The Java

ME environment has the ability to use SMS in its API listing. The use of a predictive

entry method is a compelling feature to the MIDlet.

This API will enable a developer to access iTAP, Numeric, Symbol and Browse text

entry methods. With previous Java ME products, the only method available was the

standard use of TAP.

Predictive text entry allows a user to simply type in the letters of a word using only

one key press per letter, as apposed to the TAP method that can require as many as

four or more key presses. The use of the iTAP method can greatly decrease text-

entry time. Its use extends beyond SMS text messaging, but into other functions

such as phonebook entries.

The following Java ME text input components will support iTAP.

• javax.microedition.lcdui.TextBox

The TextBox class is a Screen that allows the user to edit and enter text.

• javax.microedition.lcdui.TextField

A TextField is an editable text component that will be placed into a Form. It is given a

piece of text that is used as the initial value.

Refer to the Table 5 for iTAP feature/class support for MIDP 2.0:

Java ME Developer Guide
Chapter 8 - iTAP

[27/116]

Feature/Class

Predictive text capability will be offered when the constraint is set to ANY

User will be able to change the text input method during the input process
when the constraint is set to ANY (if predictive text is available)

Multi-tap input will be offered when the constraint on the text input is set to
EMAILADDR, PASSWORD, or URL

Table 5 iTAP feature/class

Java ME Developer Guide
Chapter 8 - iTAP

[28/116]

9
Network APIs

9.1 Network Connections

The Motorola implementation of Networking APIs will support several network con-

nections. The network connections necessary for Motorola implementation are the

following:

• CommConnection for serial interface
• HTTP connection
• HTTPS connection
• Push registry
• SSL (secure socket)
• Datagram (UDP)

Refer to Table 6 for Network API feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, methods, and inherited methods for the Con-
nector class in the javax.microedition.io package

Supported

Mode parameter for the open () method in the Connect-
or class the javax.microedition.io package

READ, WRITE,
READ_WRITE

The timeouts parameter for the open () method in the
Connector class of the javax.microedition.io package

HttpConnection interface in the javax.microedition.io
package

Supported

HttpsConnection interface in the javax.microedition.io
package

Supported

SecureConnection interface in the javax.microedition.io
package

Supported

SecurityInfo interface in the javax.microedition.io pack-
age

Supported

UDPDDatagramConnection interface in the Supported

Java ME Developer Guide
Chapter 9 - Network APIs

[29/116]

javax.microedition.io package

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

CommConnection interface in the javax.microedition.io
package

Supported

Dynamic DNS allocation through DHCP Supported

HttpConnection interface in the
javax.microedition.io.package.

Supported

HttpsConnection interface in the javaxmicroedi-
tion.io.package

Supported

SecureConnection interface in the
javax.microedition.io.package

Supported

SecurityInfo Interface in the
javax.microedition.io.package

Supported

UDPDatagramConnection interface in the
javax.microedition.io.package

Supported

Table 6 Network API feature/class support for MIDP

Code Sample 1 shows the implementation of Socket Connection:

Socket Connection

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

...

try {
//open the connection and io streams

sc = (SocketConnection)Connector.open
("socket://www.myserver.com:8080", Connector.READ_WRITE, true);

is = sc[i].openInputStream();
os = sc[i].openOutputStream();

} catch (Exception ex) {
closeAllStreams();
System.out.println("Open Failed: " + ex.getMessage());

}
}
if (os != null && is != null)
{

try
{

os.write(someString.getBytes()); //write some data to server

Java ME Developer Guide
Chapter 9 - Network APIs

[30/116]

int bytes_read = 0;
int offset = 0;
int bytes_left = BUFFER_SIZE;

//read data from server until done
do
{

bytes_read = is.read(buffer, offset, bytes_left);

if (bytes_read > 0)
{

offset += bytes_read;
bytes_left -= bytes_read;

}
}
while (bytes_read > 0);

} catch (Exception ex) {
System.out.println("IO failed: "+ ex.getMessage());

}
finally {

closeAllStreams(i); //clean up
}

}

Code Sample 1 Socket Connection

9.2 User Permission

The user of the handset will explicitly grant permission to add additional network

connections.

9.3 Indicating a Connection to the
User

When the java implementation makes any of the additional network connections, it

will indicate to the user that the handset is actively interacting with the network. To

Java ME Developer Guide
Chapter 9 - Network APIs

[31/116]

indicate this connection, the network icon will appear on the handset's status bar as

shown in Figure 2 .

Figure 2 Network Connections example

Conversely, when the network connection is no longer used the network icon will be

removed from the status bar.

If the handset supports applications that run when the flip is closed, the network icon

on the external display will be activated when the application is in an active network

connection with the flip closed. Please note that this indication is done by the imple-

mentation.

9.4 HTTPS Connection

Motorola implementation supports a HTTPS connection on the Motorola C975

handset. Additional protocols that will be supported are the following:

TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt

SSL protocol version 3.0 as defined in

http://home.netscape.com/eng/ssl3/draft302.txt

Code Sample 2 shows the implementation of HTTPS:

HTTPS

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

Java ME Developer Guide
Chapter 9 - Network APIs

[32/116]

http://www.ietf.org/rfc/rfc2246.txt
http://home.netscape.com/eng/ssl3/draft302.txt

try {
hc[i] = (HttpConnection)Connector.open("https://" + url[i] + "/");

} catch (Exception ex) {
hc[i] = null;
System.out.println("Open Failed: " + ex.getMessage());

}

if (hc[i] != null)
{

try {
is[i] = hc[i].openInputStream();

byteCounts[i] = 0;
readLengths[i] = hc[i].getLength();

System.out.println("readLengths = " + readLengths[i]);

if (readLengths[i] == -1)
{

readLengths[i] = BUFFER_SIZE;
}

int bytes_read = 0;
int offset = 0;
int bytes_left = (int)readLengths[i];

do
{

bytes_read = is[i].read(buffer, offset, bytes_left);
offset += bytes_read;
bytes_left -= bytes_read;
byteCounts[i] += bytes_read;

}
while (bytes_read > 0);

System.out.println("byte read = " + byteCounts[i]);

} catch (Exception ex) {
System.out.println("Downloading Failed: "+

ex.getMessage());
numPassed = 0;

}
finally {

try {

Java ME Developer Guide
Chapter 9 - Network APIs

[33/116]

is[i].close();
is[i] = null;

} catch (Exception ex) {}
}

}
/**
* close http connection
*/
if (hc[i] != null)
{

try {
hc[i].close();

} catch (Exception ex) { }
hc[i] = null;

}

Code Sample 2 HTTPS

9.5 DNS IP

The DNS IP will be flexed on or off (per operator requirement) under Java Settings as

read only or as user-editable. In some instances, it will be flexed with an operator-

specified IP address.

9.6 Push Registry

The push registry mechanism allows an application to register for notification events

that are meant for the application. The push registry maintains a list of inbound con-

nections.

9.7 Mechanisms for Push

Motorola implementation for push requires the support of certain mechanisms. The

mechanisms that will be supported for push are the following:

SMS push: an SMS with a port number associated with an application used to deliver

Java ME Developer Guide
Chapter 9 - Network APIs

[34/116]

the push notification.

The formats for registering any of the above mechanisms will follow those detailed in

JSR-118 specification.

9.8 Push Registry Declaration

The application descriptor file will include information about static connections that

are needed by the MIDlet suite. If all static push declarations in the application

descriptor cannot be fulfilled during the installation, the MIDlet suite will not be in-

stalled. The user will be notified of any push registration conflicts despite the mech-

anism. This notification will accurately reflect the error that has occurred.

Push registration can fail as a result of an Invalid Descriptor. Syntax errors in the

push attributes can cause a declaration error resulting in the MIDlet suite installation

being cancelled. A declaration referencing a MIDlet class not listed in the MIDlet-<n>

attributes of the same application descriptor will also result in an error and cancella-

tion of the MIDlet installation.

Two types of registration mechanisms will be supported. The registration mechan-

isms to be supported are the following:

Registration during installation through the JAD file entry using a fixed port number

Dynamically register using an assigned port number

If the port number is not available on the handset, an installation failure notification

will be displayed to the user while the error code 911 push is sent to the server. This

error will cease the download of the application.

Applications that wish to register with a fixed port number will use the JAD file to

identify the push parameters. The fixed port implementation will process the MIDlet-

Push-n parameter through the JAD file.

Code Sample 3 shows the implementation of Push Registry:

Push Registry Declaration

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

Java ME Developer Guide
Chapter 9 - Network APIs

[35/116]

import javax.microedition.io.PushRegistry;

public class PushTest_1 extends MIDlet implements CommandListener{

public Display display;

public static Form regForm;
public static Form unregForm;
public static Form mainForm;
public static Form messageForm;

public static Command exitCommand;
public static Command backCommand;
public static Command unregCommand;
public static Command regCommand;

public static TextField regConnection;
public static TextField regFilter;
public static ChoiceGroup registeredConnsCG;
public static String[] registeredConns;

public static Command mc;
public static Displayable ms;

public PushTest_1(){
regConnection = new TextField("Connection port:", "1000", 32,

TextField.PHONENUMBER);
regFilter = new TextField("Filter:", "*", 32, TextField.ANY);

display = Display.getDisplay(this);

regForm = new Form("Register");
unregForm = new Form("Unregister");
mainForm = new Form("PushTest_1");
messageForm = new Form("PushTest_1");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
unregCommand = new Command("Unreg", Command.ITEM, 1);
regCommand = new Command("Reg", Command.ITEM, 1);

mainForm.append("Press \"Reg\" softkey to register a new connec-
tion.\n" +

"Press \"Unreg\" softkey to unregister a connection.");
mainForm.addCommand(exitCommand);

Java ME Developer Guide
Chapter 9 - Network APIs

[36/116]

mainForm.addCommand(unregCommand);
mainForm.addCommand(regCommand);
mainForm.setCommandListener(this);

regForm.append(regConnection);
regForm.append(regFilter);
regForm.addCommand(regCommand);
regForm.addCommand(backCommand);
regForm.setCommandListener(this);

unregForm.addCommand(backCommand);
unregForm.addCommand(unregCommand);
unregForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}
public void pauseApp(){}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {

if((c == unregCommand) && (s == mainForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == regCommand) && (s == mainForm)){

Java ME Developer Guide
Chapter 9 - Network APIs

[37/116]

display.setCurrent(regForm);
}

if((c == regCommand) && (s == regForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == unregCommand) && (s == unregForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == backCommand) && (s == unregForm)){
display.setCurrent(mainForm);

}
if((c == backCommand) && (s == regForm)){

display.setCurrent(mainForm);
}

if((c == backCommand) && (s == messageForm)){
display.setCurrent(mainForm);

}

if((c == exitCommand) && (s == mainForm)){
destroyApp(false);

}

}

public class runThread extends Thread{
public void run(){

if((mc == unregCommand) && (ms == mainForm)){
try{

registeredConns = PushRegistry.listConnections(false);
if(unregForm.size() > 0) unregForm.delete(0);
registeredConnsCG = new ChoiceGroup("Connections",

ChoiceGroup.MULTIPLE, registeredConns, null);
if(registeredConnsCG.size() > 0) unreg-

Form.append(registeredConnsCG);
else unregForm.append("No registered connections

found.");
display.setCurrent(unregForm);

Java ME Developer Guide
Chapter 9 - Network APIs

[38/116]

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}

if((mc == regCommand) && (ms == regForm)){
try{

PushRegistry.registerConnection("sms://:" + regConnec-
tion.getString(), "Receive", regFilter.getString());

showMessage("Connection successfully registered");
} catch (Exception e){

showMessage("Unexpected " + e.toString() + ": " +
e.getMessage());

}
}

if((mc == unregCommand) && (ms == unregForm)){
try{

if(registeredConnsCG.size() > 0){
for(int i=0; i<registeredConnsCG.size(); i++){

if(registeredConnsCG.isSelected(i)){
PushRegistry.unregisterConnection(registeredConnsCG. getString(i));

registeredConnsCG.delete(i);
if(registeredConnsCG.size() == 0){

unregForm.delete(0);
unregForm.append("No registered connections

found.");
}

}
}

}
} catch (Exception e) {

showMessage("Unexpected " + e.toString() + ": " +
e.getMessage());

}
}

}
}

}

WakeUp.java

Java ME Developer Guide
Chapter 9 - Network APIs

[39/116]

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import javax.microedition.rms.*;
import java.util.*;
import javax.microedition.io.*;

public class WakeUp extends MIDlet implements CommandListener{

public static Display display;
public static Form mainForm;
public static Command exitCommand;
public static TextField tf;
public static Command registerCommand;

public void startApp() {

display = Display.getDisplay(this);

mainForm = new Form("WakeUp");
exitCommand = new Command("Exit", Command.EXIT, 0);
registerCommand = new Command("Register", Command.SCREEN, 0);
tf = new TextField("Delay in seconds", "10", 10, TextField.NUMERIC);
mainForm.addCommand(exitCommand);
mainForm.addCommand(registerCommand);
mainForm.append(tf);
mainForm.setCommandListener(this);

display.setCurrent(mainForm);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void commandAction(Command c, Displayable s) {
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);

Java ME Developer Guide
Chapter 9 - Network APIs

[40/116]

}
if(c == registerCommand){

new regThread().start();

}
}

public class regThread extends Thread{

public void run(){

try {
long delay = Integer.parseInt(tf.getString()) * 1000;

long curTime = (new Date()).getTime();

System.out.println(curTime + delay);

PushRegistry.registerAlarm("WakeUp", curTime + delay);
mainForm.append("Alarm registered successfully");

} catch (NumberFormatException nfe) {
mainForm.append("FAILED\nCan not decode delay " + nfe);

} catch (ClassNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

} catch (ConnectionNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

}

}
}

}

SMS_send.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SMS_send extends MIDlet implements CommandListener{

Java ME Developer Guide
Chapter 9 - Network APIs

[41/116]

public Display display;

public static Form messageForm;
public static Form mainForm;

public static Command exitCommand;
public static Command backCommand;
public static Command sendCommand;

public static TextField address_tf;
public static TextField port_tf;
public static TextField message_text_tf;

String[] binary_str = {"Send BINARY message"};
public static ChoiceGroup binary_cg;

byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
String address;
String text;

MessageConnection conn = null;
TextMessage txt_message = null;
BinaryMessage bin_message = null;

public SMS_send(){
address_tf = new TextField("Address:", "", 32, Text-

Field.PHONENUMBER);
port_tf = new TextField("Port:", "1000", 32, Text-

Field.PHONENUMBER);

message_text_tf = new TextField("Message text:", "test message",
160, TextField.ANY);

binary_cg = new ChoiceGroup(null, Choice.MULTIPLE, binary_str,
null);

display = Display.getDisplay(this);

messageForm = new Form("SMS_send");
mainForm = new Form("SMS_send");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
sendCommand = new Command("Send", Command.ITEM, 1);

Java ME Developer Guide
Chapter 9 - Network APIs

[42/116]

mainForm.append(address_tf);
mainForm.append(port_tf);
mainForm.append(message_text_tf);
mainForm.append(binary_cg);
mainForm.addCommand(exitCommand);
mainForm.addCommand(sendCommand);
mainForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}

public void pauseApp(){
}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {
if((c == backCommand) && (s == messageForm)){

display.setCurrent(mainForm);
}
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if((c == sendCommand) && (s == mainForm)){

address = "sms://" + address_tf.getString();
if(port_tf.size() != 0) address += ":" + port_tf.getString();
text = message_text_tf.getString();
new send_thread().start();

}

Java ME Developer Guide
Chapter 9 - Network APIs

[43/116]

}

public class send_thread extends Thread{
public void run(){

try{
conn = (MessageConnection) Connector.open(address);
if(!binary_cg.isSelected(0)){

txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);

txt_message.setPayloadText(text);
conn.send(txt_message);

} else {
bin_message = (BinaryMessage)

conn.newMessage(MessageConnection.BINARY_MESSAGE);
bin_message.setPayloadData(binary_data);
conn.send(bin_message);

}
conn.close();
showMessage("Message sent");

} catch (Throwable t) {
showMessage("Unexpected " + t.toString() + ": " +

t.getMessage());
}

}
}

}

Code Sample 3 Push Registry

9.9 Delivery of a Push Message

A push message intended for a MIDlet on the Motorola C975 handset will handle the

following interactions:

MIDlet running while receiving a push message - if the application receiving the push

message is currently running, the application will consume the push message without

user notification.

No MIDlet suites running - if no MIDlets are running, the user will be notified of the

incoming push message and will be given the option to run the intended application

Java ME Developer Guide
Chapter 9 - Network APIs

[44/116]

as shown in Figure 3 .

Figure 3 Intend Application Run Option

Push registry with Alarm/Wake-up time for application - push registry supports one

outstanding wake-up time per MIDlet in the current suite. An application will use the

TimerTask notification of time-based events while the application is running.

Another MIDlet suite is running during an incoming push - if another MIDlet is run-

ning, the user will be presented with an option to launch the application that had re-

gistered for the push message. If the user selects the launch, the current MIDlet is

terminated.

Stacked push messages - it is possible for the handset to receive multiple push mes-

sages at one time while the user is running a MIDlet. The user will be given the op-

tion to allow the MIDlets to end and new MIDlets to begin. The user will be given the

ability to read the messages in a stacked manner (stack of 5 supported), and if not

read, the messages should be discarded.

No applications registered for push - if there are no applications registered to handle

this event, the incoming push message will be ignored.

9.10 Deleting an Application
Registered for Push

If an application registered in the Push Registry is deleted, the corresponding push

entry will be deleted, making the PORT number available for future Push Registra-

tions.

Java ME Developer Guide
Chapter 9 - Network APIs

[45/116]

9.11 Security for Push Registry

Push Registry is protected by the security framework. The MIDlet registered for the

push should have the necessary permissions. Details on permissions are outlined in

the Security chapter.

9.12 Network Access

Untrusted applications will use the normal HttpConnection and HttpsConnection APIs

to access web and secure web services. There are no restrictions on web server port

numbers through these interfaces. The implementations augment the protocol so

that web servers can identify untrusted applications. The following will be imple-

mented:

• The implementation of HttpConnection and HttpsConnection will include
a separate User-Agent header with the Product-Token
"UNTRUSTED/1.0".User-Agent headers supplied by the application will
not be deleted.

• The implementation of SocketConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to
connect on ports 80 and 8080 (http) and 443 (https).

• The implementation of SecureConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suites attempts
to connect on port 443 (https).

• The implementation of the method DatagramConnection.send will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to
send datagrams to any of the ports 9200-9203 (WAP Gateway).

• The above requirements should be applied regardless of the API used to
access the network. For example, the
javax.microedition.io.Connector.open and
javax.microedition.media.Manager.createPlayer methods should throw
java.lang.SecurityException if access is attempted to these port
numbers through a means other than the normal HttpConnection and
HttpsConnection APIs.

Java ME Developer Guide
Chapter 9 - Network APIs

[46/116]

10
CommConnection

Interface

10.1 CommConnection

The CommConnection interface defines a logical serial port connection. A logical

serial port connection is a logical connection through which bytes are transferred

serially. This serial port is defined within the underlying operating system and may

not correspond to a physical RS-232 serial port. For example, IrDA IRCOMM ports

can be configured as a logical serial port within the operating system so it can act as

a logical serial port.

10.2 Accessing

The Comm port is accessed using a Generic Connection Framework string with an ex-

plicit port identifier and embedded configuration parameters, each separated with a

semi-colon (;). Only one application may be connected to a particular serial port at a

given time. A is thrown if an attempt is made to open the

serial port with if the connection is already open.

A URI with the type and parameters is used to open the connection. The scheme, as

defined in RFC 2396, will be the following:

•

Java ME Developer Guide
Chapter 10 - CommConnection Interface

[47/116]

10.3 Parameters

The first parameter will be a port identifier, which is a logical device name. These

port identifiers are device specific and should be used with care.

The valid identifiers for a particular device and OS can be queried through the

method using the key microedition.commports. A list of

ports, separated by commas, is returned which can be combined with a comm: prefix

as the URL string to open a serial port connection.device specific and should be used

with care.

The valid identifiers for a particular device and OS can be queried through the

method using the key . A list of

ports, separated by commas, is returned which can be combined with a comm: prefix

as the URL string to open a serial port connection.

Any additional parameters will be separated by a semi-colon (;) without spaces. If a

particular parameter is not applicable to a particular port, the parameter will be ig-

nored. The port identifier cannot contain a semi-colon (;).

Legal parameters are defined by the definition of the parameters below. Illegal or un-

recognized parameters cause an . If the value of a para-

meter is supported by the device, it will be honored. If the value of a parameter is

not supported, a is thrown. If a baudrate parameter is re-

quested, it is treated the same way that a method handles baudrates.

For example, if the baudrate requested is not supported, the system will substitute a

valid baudrate which can be discovered using the method.

The Table 7 describes optional parameters.

Parameter Default Description

baudrate platform dependent The speed of the port.

bitsperchar 8 The number bits per char-
acter(7 or 8).

stopbits 1 The number of stop bits per
char(1 or 2)

parity none The parity can be odd,
even, or none.

Java ME Developer Guide
Chapter 10 - CommConnection Interface

[48/116]

blocking on If on, wait for a full buffer
when reading.

autocts on If on, wait for the CTS line
to be on before writing.

autorts on If on, turn on the RTS line
when the input buffer is not
full. If off, the RTS line is
always on.

Table 7 Interface Commconncetion optional parameters

10.4 BNF Format for Connector.open
() string

The URI must conform to the BNF syntax specified in Table 8 . If the URI does not

conform to this syntax, an is thrown.

BNF syntax

<comm_connection_stri
ng>

::= "comm:"<port_id>[<options_list>] ;

<port_id> ::= string of alphanumeric characters

<options_list> ::= *(<baud_rate_string>| <bitsperchar>|
<stopbits>| <parity>| <blocking>| <autocts>|
<autorts>) ;
; if an option duplicates a previous option in the
; option list, that option overrides the previous
; option

<baud_rate_string> ::= ";baudrate="<vbaud_rate>

<baud_rate> ::= string of digits

<bitsperchar> ::= ";bitsperchar="<bit_value>

<bit_value> ::= "7" | "8"

<stopbits> ::= ";stopbits="<stop_value>

<stop_value> ::= "1" | "2"

<parity> ::= ";parity="<parity_value>

<parity_value> ::= "even" | "odd" | "none"

<blocking> ::= ";blocking="<on_off>

<autocts> ::= ";autocts="<on_off>

<autorts> ::= ";autorts="<on_off>

<on_off> ::= "on" | "off"

Table 8 Interface Commconncetion BNF syntax

Java ME Developer Guide
Chapter 10 - CommConnection Interface

[49/116]

10.5 Comm Security

Access to serial ports is restricted to prevent unauthorized transmission or reception

of data. The security model applied to the serial port connection is defined in the im-

plementing profile. The security model will be applied on the invocation of the

method with a valid serial port connection string. Should the applic-

ation not be granted access to the serial port through the profile authorization

scheme, a will be thrown from the

method. The security model will be applied during execution, specifically when the

methods

are invoked.

The Code Sample 4 shows the implementation of CommConnection:

Sample of a CommConnection accessing a simple loopback program

CommConnection cc = (CommConnection)
Connector.open("comm:com0;baudrate=19200");

int baudrate = cc.getBaudRate();
InputStream is = cc.openInputStream();
OutputStream os = cc.openOutputStream();
int ch = 0;
while(ch != 'Z') {

os.write(ch);
ch = is.read();
ch++;

}
is.close();
os.close();
cc.close();

Sample of a CommConnection discovering available comm Ports

String port1;
String ports = System.getProperty("microedition.commports");
int comma = ports.indexOf(',');
if (comma > 0) {

// Parse the first port from the available ports list.
port1 = ports.substring(0, comma);

} else {
// Only one serial port available.

Java ME Developer Guide
Chapter 10 - CommConnection Interface

[50/116]

port1 =ports;
}

Code Sample 4 CommConnection implementation

10.6 Port Naming Convention

Logical port names can be defined to match platform naming conventions using any

combination of alphanumeric characters. Ports will be named consistently among the

implementations of this class according to a proposed convention. VM implementa-

tions will follow the following convention:

• Port names contain a text abbreviation indicating port capabilities
followed by a sequential number for the port. The following device name
types will be used:

COM# - COM is for RS-232 ports and # is a number assigned to the
port
IR# - IR is for IrDA IRCOMM ports and # is a number assigned to the
port

The naming scheme allows API users to determine the type of port to use. For ex-

ample, if an application "beams" a piece of data, the application will look for IR#

ports for opening the connection.

10.7 Method Summary

The Table 9 describe the CommConnection method summary for MIDP .

Method Summary

int
Gets the baudrate for the serial port
connection

int
Sets the baudrate for the serial port
connection

Table 9 Method Summary

Java ME Developer Guide
Chapter 10 - CommConnection Interface

[51/116]

11
MIDP 2.0 Security

Model

The following sections describe the MIDP 2.0 Default Security Model for the Motorola

C975 handset. The chapter discusses the following topics:

• Untrusted MIDlet suites and domains
• Trusted MIDlet suites and domains
• Permissions
• Certificates

For a detailed MIDP 2.0 Security process diagram, refer to the Motodev website

(http://developer.motorola.com).

Refer to Table 10 for the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the
javax.microedition.pki package

Supported

All fields, constructors, methods, and inherited
methods for the CertificateException class in the
javax.microedition.pki package

Supported

A MIDlet suite will be authenticated as stated in
Trusted MIDletSuites using X.509 of MIDP 2.0
minus all root certificates processes and references

Supported

Verification of SHA-1 signatures with a MD5 mes-
sage digest algorithm

Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 at-
tribute

Supported

All methods for the Certificate interface in the
javax.microedition.pki package

Supported

All fields, constructors, methods, and inherited
methods for the CertificateException class in the

Supported

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[52/116]

http://developer.motorola.com

javax.microedition.pki package

Will preload two self authorizing Certificates Supported

All constructors, methods, and inherited methods
for the MIDletStateChangeException class in the
javax.microedition.midlet package

Supported

All constructors and inherited methods for the MID-
letStateChangeException class in the
javax.microedition.midlet package

Supported

Table 10 MIDP 2.0 Feature/Class

Please note the domain configuration is selected upon agreement with the operator.

11.1 Untrusted MIDlet Suites

A MIDlet suite is untrusted when the origin or integrity of the JAR file cannot be

trusted by the device.

The following are conditions of untrusted MIDlet suites:

• If one or more errors occur in the process of verifying if a MIDlet suite is
trusted, then the MIDlet suite will be rejected.

• Untrusted MIDlet suites will execute in the untrusted domain where
access to protected APIs or functions is not allowed or allowed with
explicit confirmation from the user.

11.2 Untrusted Domain

Any MIDlet suites that are unsigned will belong to the untrusted domain. Untrusted

domains handsets will allow, without explicit confirmation, untrusted MIDlet suites

access to the following APIs:

• javax.microedition.rms - RMS APIs
• javax.microedition.midlet - MIDlet Lifecycle APIs
• javax.microedition.lcdui - User Interface APIs
• javax.microedition.lcdui.game - Gaming APIs
• javax.microedition.media - Multimedia APIs for sound playback
• javax.microedition.media.control - Multimedia APIs for sound playback

The untrusted domain will allow, with explicit user confirmation, untrusted MIDlet

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[53/116]

suites access to the following protected APIs or functions:

• javax.microedition.io.HttpConnection - HTTP protocol
• javax.microedition.io.HttpsConnection - HTTPS protocol

11.3 Trusted MIDlet Suites

Trusted MIDlet suites are MIDlet suites in which the integrity of the JAR file can be

authenticated and trusted by the device, and bound to a protection domain. The Mo-

torola C975 will use x.509PKI for signing and verifying trusted MIDlet suites.

Security for trusted MIDlet suites will utilize protection domains. Protection domains

define permissions that will be granted to the MIDlet suite in that particular domain.

A MIDlet suite will belong to one protection domain and its defined permissible ac-

tions. For implementation on the Motorola C975, the following protection domains

should exist:

• Manufacturer - permissions will be marked as "Allowed" (Full Access).
Downloaded and authenticated manufacturer MIDlet suites will perform
consistently with MIDlet suites pre-installed by the manufacturer.

• Operator - permissions will be marked as "Allowed" (Full Access).
Downloaded and authenticated operator MIDlet suites will perform
consistently with other MIDlet suites installed by the operator.

• 3rd Party - permissions will be marked as "User". User interaction is
required for permission to be granted. MIDlets do not need to be aware
of the security policy except for security exceptions that will occur when
accessing APIs.

• Untrusted - all MIDlet suites that are unsigned will belong to this
domain.

Permissions within the above domains will authorize access to the protected APIs or

functions. These domains will consist of a set of "Allowed" and "User" permissions

that will be granted to the MIDlet suite.

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[54/116]

11.4 Permission Types concerning the
Handset

A protection domain will consist of a set of permissions. Each permission will be "Al-

lowed" or "User", not both. The following is the description of these sets of permis-

sions as they relate to the handset:

• "Allowed" (Full Access) permissions are any permission that explicitly
allow access to a given protected API or function from a protected
domain. Allowed permissions will not require any user interaction.

• "User" permissions are any permission that requires a prompt to be
given to the user and explicit user confirmation in order to allow the
MIDlet suite access to the protected API or function.

11.5 User Permission Interaction Mode

User permission for the Motorola C975 handsets is designed to allow the user the

ability to either deny or grant access to the protected API or function using the fol-

lowing interaction modes (bolded term(s) is the prompt displayed to the user):

• blanket - grants access to the protected API or function every time it is
required by the MIDlet suite until the MIDlet suite is uninstalled or the
permission is changed by the user. (Never Ask)

• session - grants access to the protected API or function every time it is
required by the MIDlet suite until the MIDlet suite is terminated. This
mode will prompt the user on or before the final invocation of the
protected API or function. (Ask Once Per App)

• oneshot - will prompt the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

• No - will not allow the MIDlet suite access to the requested API or
function that is protected. (No Access)

The prompt No, Ask Later will be displayed during runtime dialogs and will enable

the user to not allow the protected function to be accessed this instance, but to ask

the user again the next time the protected function is called.

User permission interaction modes will be determined by the security policy and

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[55/116]

device implementation. User permission will have a default interaction mode and a

set of other available interaction modes. The user should be presented with a choice

of available interaction modes, including the ability to deny access to the protected

API or function. The user will make their decision based on the user-friendly descrip-

tion of the requested permissions provided for them.

The Permissions menu allows the user to configure permission settings for each

MIDlet when the VM is not running. This menu is synchronized with available run-

time options.

11.6 Implementation based on
Recommended Security Policy

The required trust model, the supported domain, and their corresponding structure

will be contained in the default security policy for Motorola's implementation for MIDP

2.0. Permissions will be defined for MIDlets relating to their domain. User permission

types, as well as user prompts and notifications, will also be defined.

11.7 Trusted 3rd Party Domain

A trusted third party protection domain root certificate is used to verify third party

MIDlet suites. These root certificates will be mapped to a location on the handset

that cannot be modified by the user.

The Table 11 shows the specific wording to be used in the first line of the above

prompt:

Protected Functionality Top Line of Prompt

Data Network Send Data?

Data Network (server mode) Receive Data?

Comm Connect?

Push Auto Start-Up?

SMS Use SMS?

SMS send Send SMS?

SMS receive Receive SMS?

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[56/116]

Access phonebook Use Phonebook?

Dial a call Make Phone Call?

CBS Use CBS?

Receive CBS Receive CBS?

Record audio/video Record?

Capture snapshot image Video capture?

Access File System Using File?

Table 11 Protected Functionality fot top line of prompt

The radio button messages will appear as follows and mapped to the permission

types as shown in the Table 12 :

MIDP 2.0 Permission Types Dialogs prompts

Blanket Always yes. Do not ask again.

Session Yes, this is running.

Oneshot Only this operation. Ask me again.

No access Not this operation. Ask me again.
Not this running.
No, always denied. Do not ask again.

Table 12 Dialog Prompts for MIDP 2.0 Permission Types

The above runtime dialog prompts will not be displayed when the protected function

is set to "Allowed" (or full access), or if that permission type is an option for that pro-

tected function according to the security policy table flexed in the handset.

11.8 Trusted MIDlet Suites Using
x.509 PKI

Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset will be able

to verify the signer of the MIDlet suite and bind it to a protection domain which will

allow the MIDlet suite access to the protected API or function. Once the MIDlet suite

is bound to a protection domain, it will use the permission defined in the protection

domain to grant the MIDlet suite access to the defined protected APIs or functions.

The MIDlet suite is protected by signing the JAR file. The signature and certificates

are added to the application descriptor (JAD) as attributes and will be used by the

handset to verify the signature. Authentication is complete when the handset uses

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[57/116]

the root certificate (found on the handset) to bind the MIDlet suite to a protection

domain (found on the handset).

11.9 Signing a MIDlet Suite

The default security model involves the MIDlet suite, the signer, and public key certi-

ficates. A set of root certificates are used to verify certificates generated by the

signer. Specially designed certificates for code signing can be obtained from the

manufacturer, operator, or certificate authority. Only root certificates stored on the

handset will be supported by the Motorola C975 handset.

11.10 Signer of MIDlet Suites

The signer of a MIDlet suite can be the developer or an outside party that is respons-

ible for distributing, supporting, or the billing of the MIDlet suite. The signer will have

a public key infrastructure and the certificate will be validated to one of the protec-

tion domain root certificates on the handset. The public key is used to verify the sig-

nature of JAR on the MIDlet suite, while the public key is provided as a x.509 certi-

ficate included in the application descriptor (JAD).

11.11 MIDlet Attributes Used in
Signing MIDlet Suites

Attributes defined within the manifest of the JAR are protected by the signature. At-

tributes defined within the JAD are not protected or secured. Attributes that appear

in the manifest (JAR file) will not be overridden by a different value in the JAD for all

trusted MIDlets. If a MIDlet suite is to be trusted, the value in the JAD will equal the

value of the corresponding attribute in the manifest (JAR file), if not, the MIDlet suite

will not be installed.

The attributes MIDlet-Permissions (-OPT) are ignored for unsigned MIDlet suites. The

untrusted domain policy is consistently applied to the untrusted applications. It is

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[58/116]

legal for these attributes to exist only in JAD, only in the manifest, or in both loca-

tions. If these attributes are in both the JAD and the manifest, they will be identical.

If the permissions requested in the HAD are different than those requested in the

manifest, the installation must be rejected.

Methods:

1. MIDlet.getAppProperty will return the attribute value from the manifest
(JAR) if one id defined. If an attribute value is not defined, the attribute
value will return from the application descriptor (JAD) if present.

11.12 Creating the Signing Certificate

The signer of the certificate will be made aware of the authorization policy for the

handset and contact the appropriate certificate authority. The signer can then send

its distinguished name (DN) and public key in the form of a certificate request to the

certificate authority used by the handset. The CA will create a x.509 (version 3) cer-

tificate and return to the signer. If multiple CAs are used, all signer certificates in the

JAD will have the same public key.

11.13 Inserting Certificates into JAD

When inserting a certificate into a JAD, the certificate path includes the signer certi-

ficate and any necessary certificates while omitting the root certificate. Root certific-

ates will be found on the device only.

Each certificate is encoded using base 64 without line breaks, and inserted into the

application descriptor as outlined below per MIDP 2.0.

MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>

Note the following:

<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater

than the previous number for additional certification paths. This defines the sequence

in which the certificates are tested to see if the corresponding root certificate is on

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[59/116]

the device.

<m>:= a number equal to 1 for the signer's certificate in a certification path or 1

greater than the previous number for any subsequent intermediate certificates.

11.14 Creating the RSA SHA-1
signature of the JAR

The signature of the JAR is created with the signer's private key according to the

EMSA-PKCS1 -v1_5 encoding method of PKCS #1 version 2.0 standard from RFC

2437. The signature is base64 encoded and formatted as a single MIDlet-

Jar-RSA-SHA1 attribute without line breaks and inserted into the JAD.

It will be noted that the signer of the MIDlet suite is responsible for its protection do-

main root certificate owner for protecting the domain's APIs and protected functions;

therefore, the signer will check the MIDlet suite before signing it. Protection domain

root certificate owners can delegate signing MIDlet suites to a third party and in

some instances, the author of the MIDlet.

11.15 Authenticating a MIDlet Suite

When a MIDlet suite is downloaded, the handset will check the JAD attribute MIDlet-

Jar-RSA-SHA1. If this attribute is present, the JAR will be authenticated by verifying

the signer certificates and JAR signature as described. MIDlet suites with application

descriptors that do not have the attributes previously stated will be installed and in-

voked as untrusted. For additional information, refer to the MIDP 2.0 specification.

11.16 Verifying the Signer Certificate

The signer certificate will be found in the application descriptor of the MIDlet suite.

The process for verifying a Signer Certificate is outlined in the steps below:

1. Get the certification path for the signer certificate from the JAD

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[60/116]

attributes MIDlet-Certificate-1<m>, where <m> starts at 1 and is
incremented by 1 until there is no attribute with this name. The value of
each attribute is a base64 encoded certificate that will need to be
decoded and parsed.

2. Validate the certification path using the basic validation process as
described in RFC2459 using the protection domains as the source of the
protection domain root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that
contains the protection domain root certificate that validated the first
chain from signer to root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> with <n> is greater than 1 are

present and full certification path could not be established after verifying
MIDlet-Certificate-<1>-<m> certificates, then repeat step 1 through 3
for the value <n> greater by 1 than the previous value.

The Table 13 describes actions performed upon completion of signer certificate veri-

fication:

Result Action

Attempted to validate <n> paths. No
public keys of the issuer for the certi-
ficate can be found, or none of the
certificate paths can be validated.

Authentication fails, JAR installation is
not allowed.

More than one full certification path is
established and validated.

Implementation proceeds with the
signature verification using the first
successfully verified certificate path
for authentication and authorization.

Only one certification path estab-
lished and validated.

implementation proceeds with the
signature verification.

Table 13 Actions performed of signer certificate verification

11.17 Verifying the MIDlet Suite JAR

The following are the steps taken to verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature,

and refer to RFC 2437 for more detail.
4. Use the signer's public key, signature, and SHA-1 digest of JAR to verify

the signature. If the signature verification fails, reject the JAD and

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[61/116]

MIDlet suite. The MIDlet suite will not be installed or allow MIDlets from
the MIDlet suite to be invoked as shown in the Table 13

5. Once the certificate, signature, and JAR have been verified, the MIDlet
suite is known to be trusted and will be installed (authentication process
will be performed during installation).

Table 14 is a summary of MIDlet suite verification including dialog prompts:

Initial State Verification Result

JAD not present, JAR
downloaded

Authentication can not be performed, will install
JAR. MIDlet suite is treated as untrusted. The
following error prompt will be shown, "Applica-
tion installed, but may have limited functional-
ity."

JAD present, but JAR is un-
signed

Authentication can not be performed, will install
JAR. MIDlet suite is treated as untrusted. The
following error prompt will be shown, "Applica-
tion installed, but may have limited functional-
ity."

JAR signed but no root cer-
tificate present in the key-
store to validate the certi-
ficate chain

Authentication can not be performed. JAR in-
stallation will not be allowed. The following er-
ror prompt will be shown, "Root certificate
missing. Application not installed."

JAR signed, a certificate on
the path is expired

Authentication can not be completed. JAR in-
stallation will not be allowed. The following er-
ror prompt will be shown, "Expired Certificate.
Application not installed."

JAR signed, a certificate re-
jected for reasons other
than expiration

JAD rejected, JAR installation will not be al-
lowed. The following error prompt will be
shown, "Authentication Error. Application not
installed."

JAR signed, certificate path
validated but signature
verification fails

JAD rejected, JAR installation will not be al-
lowed. The following error prompt will be
shown, "Authentication Error. Application not
installed."

Parsing of security attrib-
utes in JAD fails

JAD rejected, JAR installation will not be al-
lowed. The following error prompt will be
shown, "Failed Invalid File."

JAR signed, certificate path
validated, signature veri-
fied

JAR will be installed. The following prompt will
be shown, "Installed."

Table 14 Summary of MIDlet suite verification

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[62/116]

11.18 Bound Certificates

Bound certificates enable an efficient process to aid developers in the MIDlet devel-

opment and testing phase when working with signed applications. Currently the

delay for the developer occurs because specific flex files need to be created for each

developer and for each domain being tested.

Java ME Developer Guide
Chapter 11 - MIDP 2.0 Security Model

[63/116]

12
JSR-120 - Wireless

Messaging API

12.1 Wireless Messaging API (WMA)

Motorola has implemented certain features that are defined in the Wireless Mes-

saging API (WMA) 1.0. The complete specification document is defined in JSR-120.

The JSR-120 specification states that developers can be provided access to send (MO

- mobile originated) and receive (MT - mobile terminated) SMS (Short Message Ser-

vice) on the target device.

A simple example of the WMA is the ability of two Java ME applications using SMS to

communicate game moves running on the handset. This can take the form of chess

moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features.

• Creating an SMS
• Sending an SMS
• Receiving an SMS
• Viewing an SMS
• Deleting an SMS

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[64/116]

12.2 SMS Client Mode and Server
Mode Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),

which is defined in the CLDC specification 1.1. The use of the "Connection" frame-

work, in Motorola's case is " ".

The can be opened in either server or client mode. A server con-

nection is opened by providing a URL that specifies an identifier (port number) for an

application on the local device for incoming messages.

Messages received with this identifier will then be delivered to the application by this

connection. A server mode connection can be used for both sending and receiving

messages. A client mode connection is opened by providing a URL which points to

another device. A client mode connection can only be used for sending messages.

12.3 SMS Port Numbers

When a port number is present in the address, the TP-User-Data of the SMS will con-

tain a User-Data-Header with the application port addressing scheme information

element. When the recipient address does not contain a port number, the TP-

User-Data will not contain the application port addressing header. The Java ME

MIDlet cannot receive this kind of message, but the SMS will be handled in the usual

manner for a standard SMS to the device.

When a message identifying a port number is sent from a server type

, the originating port number in the message is set to the port number of the

. This allows the recipient to send a response to the message

that will be received by this .

However, when a client type is used for sending a message with

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[65/116]

a port number, the originating port number is set to an implementation specific value

and any possible messages received to this port number are not delivered to the

Please refer to the sections A.4.0 and A.6.0 of the JSR-120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the

first MIDlet to request this identifier it will be allocated. If other applications apply for

the same identifier then an will be thrown when an attempt to open

is made. If a system application is using this identifier, the

MIDlet will not be allocated the identifier. The port numbers allowed for this request

are restricted to SMS messages. In addition, a MIDlet is not allowed to send mes-

sages to certain restricted ports, a will be thrown if this is at-

tempted.

JSR-120 Section A.6.0 Restricted Ports: 2805, 2923, 2948, 2949, 5502, 5503, 5508,

5511, 5512, 9200, 9201, 9203, 9207, 49996, 49999.

If you intend to use SMSC numbers then please review A.3.0 in the JSR-120 specific-

ation. The use of an SMSC would be used if the MIDlet had to determine what recip-

ient number to use.

12.4 SMS Storing and Deleting
Received Messages

When SMS messages are received by the MIDlet, they are removed from the SIM

card memory where they were stored. The storage location (inbox) for the SMS mes-

sages has a capacity of up to thirty messages. If any messages are older than five

days then they will be removed, from the inbox by way of a FIFO stack.

12.5 SMS Message Types

The types of messages that can be sent are TEXT or BINARY, the method of encoding

the messages are defined in GSM 03.38 standard (Part 4 SMS Data Coding Scheme).

Refer to section A.5.0 of JSR-120 for more information.

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[66/116]

12.6 SMS Message Structure

The message structure of SMS will comply with GSM 03.40 v7.4.0 Digital cellular

telecommunications system (Phase 2+); Technical realization of the Short Message

Service (SMS) ETSI 2000.

Motorola's implementation uses the concatenation feature specified in sections

9.2.3.24.1 and 9.2.3.24.8 of the GSM 03.40 standard for messages that the Java ap-

plication sends that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages

and passes the fully reassembled message to the application via the API. The imple-

mentation will support at least three SMS messages to be received and concatenated

together. Also, for sending, support for a minimum of three messages is supported.

Motorola advises that developers should not send messages that will take up more

than three SMS protocol messages unless the recipient's device is known to support

more.

12.7 SMS Notification

Examples of SMS interaction with a MIDlet would be the following:

• A MIDlet will handle an incoming SMS message if the MIDlet is
registered to receive messages on the port (identifier) and is running.

• When a MIDlet is paused and is registered to receive messages on the
port number of the incoming message, then the user will be queried to
launch the MIDlet.

• If the MIDlet is not running and the Java Virtual Machine is not
initialized, then a Push Registry will be used to initialize the Virtual
Machine and launch the Java ME MIDlet. This only applies to trusted,
signed MIDlets.

• If a message is received and the untrusted unsigned application and the
KVM are not running then the message will be discarded.

• There is a SMS Access setting in the Java Settings menu option on the
handset that allows the user to specify when and how often to ask for
authorization. Before the connection is made from the MIDlet, the
options available are:

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[67/116]

Always ask for user authorization
Ask once per application
Never Ask

The Table 15 is a list of Messaging features/classes supported in the device.

Feature/Class Implementation

JSR-120 API. Specifically, APIs defined in the
javax.wireless.messaging package will be imple-
mented with regards to the GSM SMS Adaptor

Supported

Removal of SMS messages Supported

Terminated SMS removal - any user prompts
handled by MIDlet

Supported

Originated SMS removal - any user prompts
handled by MIDlet

Supported

All fields, methods, and inherited methods for the
Connector Class in the javax.microedition.io pack-
age

Supported

All methods for the BinaryMessage interface in the
javax.wireless.messaging package

Supported

All methods for the Message interface in the
javax.wireless.messaging package

Supported

All fields, methods, and inherited methods for the
MessageConnection interface in the
javax.wireless.messaging package

Supported

Number of MessageConnection instances in the
javax.wireless.messaging package

32 maximum

Number of MessageConnection instances in the
javax.wireless.messaging package

16

All methods for the MessageListener interface in
the javax.wireless.messaging package

Supported

All methods and inherited methods for the Text-
Message interface in the javax.wireless.messaging
package

Supported

16 bit reference number in concatenated messages Supported

Number of concatenated messages. 30 messages in inbox,
each can be
concatenated from 3
parts. No limitation on
outbox (immediately
transmitted)

Allow MIDlets to obtain the SMSC address with the
wireless.messaging.sms.smsc system property

Supported

Table 15 List of Messaging features/classes

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[68/116]

The Code Sample 5 shows implementation of the JSR-120 Wireless Messaging API:

Creation of client connection and for calling of method
'numberOfSegments' for Binary message:

BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

/* Create connection for client mode */
connClient = (MessageConnection) Connector.open("sms://" + outAd-

dr);

/* Create BinaryMessage for client mode */
binMsg =

(BinaryMessage)connClient.newMessage(MessageConnection. BIN-
ARY_MESSAGE);

/* Create BINARY of 'size' bytes for BinaryMsg */
public byte[] createBinary(int size) {

int nextByte = 0;
byte[] newBin = new byte[size];

for (int i = 0; i < size; i++) {
nextByte = (rand.nextInt());
newBin[i] = (byte)nextByte;
if ((size > 4) && (i == size / 2)) {

newBin[i-1] = 0x1b;
newBin[i] = 0x7f;

}
}
return newBin;

}

byte[] newBin = createBinary(msgLength);
binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Creation of server connection:

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number:

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[69/116]

MessageConnection messageConnection = (MessageConnection)
Connector.open("sms://+18473297274:9532");

Creation of client connection without port number:

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection:

MessageConnection messageConnection.close();

Creation of SMS message:

Message textMessage =
messageConnection.newMessage(MessageConnection.
TEXT_MESSAGE);

Setting of payload text for text message:

((TextMessage)message).setPayloadText("Text Message");

Getting of payload text of received text message:

receivedText = ((TextMessage)receivedMessage).getPayloadText();

Getting of payload data of received binary message:

BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number:

message.setAddress("sms://+18473297274:9532");

Setting of address without port number:

message.setAddress("sms://+18473297274");

Sending of message:

messageConnection.send(message);

Receiving of message:

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[70/116]

Message receivedMessage = messageConnection.receive();

Getting of address:

String address = ((TextMessage)message).getAddress();

Getting of SMS service center address via calling of
System.getProperty():

String addrSMSC = System.getProperty("wireless.messaging.sms.smsc");

Getting of timestamp for the message:

Message message;
System.out.println("Timestamp: " + message.getTimestamp().getTime());

Creation of client connection, creation of binary message, setting of
payload for binary message and calling of method
'numberOfSegments(Message)' for Binary message:

BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

/* Create connection for client mode */
connClient = (MessageConnection) Connector.open("sms://" + outAd-

dr);

/* Create BinaryMessage for client mode */
binMsg =

(BinaryMessage)connClient.newMessage(MessageConnection. BIN-
ARY_MESSAGE);

/* Create BINARY of 'size' bytes for BinaryMsg */
public byte[] createBinary(int size) {

int nextByte = 0;
byte[] newBin = new byte[size];

for (int i = 0; i < size; i++) {
nextByte = (rand.nextInt());
newBin[i] = (byte)nextByte;
if ((size > 4) && (i == size / 2)) {

newBin[i-1] = 0x1b;
newBin[i] = 0x7f;

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[71/116]

}
}
return newBin;

}

byte[] newBin = createBinary(msgLength);
binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Setting of MessageListener and receiving of notifications about
incoming messages:

public class JSR120Sample1 extends MIDlet implements CommandListener {

JSR120Sample1Listener listener = new JSR120Sample1Listener();

// open connection
messageConnection =
(MessageConnection)Connector.open("sms://:9532");

// create message to send

listener.run();

// set payload for the message to send

// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");

// send message (via invocation of 'send' method)

// set address for the message to receive
receivedMessage.setAddress("sms://:9532");

// receive message (via invocation of 'receive' method)

class JSR120Sample1Listener implements MessageListener, Runnable {
private int messages = 0;

public void notifyIncomingMessage(MessageConnection connection) {
System.out.println("Notification about incoming message arrived");

messages++;
}

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[72/116]

public void run() {
try {
messageConnection.setMessageListener(listener);
} catch (IOException e) {

result = FAIL;
System.out.println("FAILED: exception while setting listener: " +
e.toString());

}
}
}

Code Sample 5 JSR-120 WMA

12.8 App Inbox Clean-up

Actually, messages for MIDlets are stored in a separate App Inbox. This App Inbox is

cleaned up automatically.

The App Inbox capacity is 26 messages or 26 segments and when a new message is

received for a certain port number, and the App Inbox capacity has reached its limit

of 26 messages, then the messages in the App Inbox will be deleted in the following

order:

• If a certain port number has any unread messages in the App Inbox,
then the oldest unread message in the buffer relative to that port
number WILL be deleted next.

• If a certain port number currently has no messages in the App Inbox,
then the oldest unread message in the buffer relative to all port
numbers will be deleted next.

When the maximum number of messages is reached and the phone has reached

memory full condition, no new messages can be received by the applications. A

blinking messaging icon is used to inform the user that the messaging folder is full.

At this stage the user has to manually delete some messages to clear some memory

to allow the reception of incoming messages.

Java ME Developer Guide
Chapter 12 - JSR-120 - Wireless Messaging API

[73/116]

13
JSR-135 - Mobile Media

API

13.1 Network Connections

The JSR-135 Mobile Media APIs feature sets are defined for five different types of

media. The media defined is as follows:

• Tone Sequence
• Sampled Audio
• MIDI

The new implementation of JSR-135 supports the playback of more audio formats

and recording of time-based media-audio and video as well as still-image capture.

When a player is created for a particular type, it will follow the guidelines and control

types listed in the sections outlined below.

The Code Sample 6 to show implementation of the JSR-135 Mobile Media API:

JSR-135

Player player;

// Create a media player, associate it with a stream containing media data
try
{

player = Manager.createPlayer(getClass().getResourceAsStream
("MP3.mp3"), "audio/mp3");
}
catch (Exception e)

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[74/116]

{
System.out.println("FAILED: exception for createPlayer: " + e.toString());

}

// Obtain the information required to acquire the media resources
try
{

player.realize();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for realize: " + e.toString());
}

// Acquire exclusive resources, fill buffers with media data
try
{

player.prefetch();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for prefetch: " + e.toString());
}

// Start the media playback
try
{

player.start();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for start: " + e.toString());
}

// Pause the media playback
try
{

player.stop();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for stop: " + e.toString());
}

// Release the resources

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[75/116]

player.close();

Code Sample 6 JSR-135 MMA

13.2 ToneControl

ToneControl is the interface to enable playback of a user-defined monotonic tone se-

quence. The JSR-135 Mobile Media API will implement public interface ToneControl.

A tone sequence is specified as a list of non-tone duration pairs and user-defined se-

quence blocks and is packaged as an array of bytes. The method is

used to input the sequence to the ToneControl.

The following is the available method for ToneControl:

Sets the tone sequence.

13.3 VolumeControl

VolumeControl is an interface for manipulating the audio volume of a Player. The

JSR-135 Mobile Media API will implement public interface VolumeControl.

The following describes the different volume settings found within VolumeControl:

• Volume Settings - allows the output volume to be specified using an
integer value that varies between 0 and 100. Depending on the
application, this will need to be mapped to the volume level on the
phone (0-7).

• Specifying Volume in the Level Scale - specifies volume in a linear scale.
It ranges from 0 - 100 where 0 represents silence and 100 represents
the highest volume available.

• Mute - setting mute on or off does not change the volume level returned
by the getLevel. If mute is on, no audio signal is produced by the Player.
If mute is off, an audio signal is produced and the volume is restored.

The following is a list of available methods with regards to VoumeControl:

Get the current volume setting.

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[76/116]

Get the mute state of the signal associated with this VolumeControl.

Set the volume using a linear point scale with values

between 0 and 100.

Mute or unmute the Player associated with this Volume-

Control.

13.4 StopTimeControl

StopTimeControl allows a specific preset sleep timer for a player. The JSR-135 Mobile

Media API will implement public interface StopTimeControl.

The following is a list of available methods with regards to StopTimeControl:

Gets the last value successfully by setStopTime.

Sets the media time at which you want the Player

to stop.

13.5 Manager Class

Manager Class is the access point for obtaining system dependant resources such as

players for multimedia processing. A Player is an object used to control and render

media that is specific to the content type of the data. Manager provides access to an

implementation specific mechanism for constructing Players. For convenience, Man-

ager also provides a simplified method to generate simple tones. Primarily, the Multi-

media API will provide a way to check available/supported content types.

13.6 Audio Media

Table 16 describes multimedia file formats are supported:

File Type CODEC

WAV PCM

WAV ADPCM

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[77/116]

MP3 MPEG-1 layer III

SP MIDI General MIDI

MIDI Type 0 General MIDI

MIDI Type 1 General MIDI

BAS General MIDI

Table 16 Multimedia file formats

Table 17 is a list of audio MIME types supported:

Category Description MIME Type

Audio MIDI audio/midi x-midi mid x-mid sp-midi

Audio MP3 Audio audio/mpeg

Audio WAV audio/wav x-wav

Audio AMR audio/amr audio/mp4

Audio iMelody audio/imy

Table 17 Audio MIME types

Table 18 decepts multimedia feature/class support for JSR-135:

Feature/Class Implementation

Media package found Supported

Media control package Supported

Media Protocol package Streaming not supported

Control interface in javax.microedition.media Supported

All methods for the Controllable interface in
javax.microedition.media.control

Supported

All fields, methods, and inherited methods for
the Player interface in javax.microedition.media

Supported

All fields and methods for the PlayerListener in-
terface in javax.microedition.media

Supported

PlayerListener OEM event types for the PlayerL-
istener interface

Standard types only

All fields, methods, and inherited methods for
the Manager Class in javax.microedition.media

Supported

TONE_DEVICE_LOCATOR support in the Man-
ager class of javax.microedition.media

Supported

TONE_DEVICE_LOCATOR content type will be
audio/x-tone-seq

Supported

TONE_DEVICE_LOCATOR media locator will be
device://tone

Supported

All constructors and inherited methods in
javax.microedition.medi.MediaException

Supported

All fields and methods in the StopTimeControl Supported

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[78/116]

interface in javax.microedition.media.control

All fields and methods in the ToneControl inter-
face in javax.microedition.media.control

Supported

All methods in the VolumeControl interface in
javax.microedition.media.control

Supported

Max volume of a MIDlet will not exceed the
maximum speaker setting on the handset

Supported

Multiple SourceStreams for a DataSource 2

Table 18 Multimedia feature/class support for JSR-135

NOTE: The multimedia engine only supports prefetching 1 sound at a time,
but 2 exceptions exist where 2 sounds can be prefetched at once. These ex-
ceptions are listed below:

1. Motorola provides the ability to play MIDI and WAV files simul-
taneously, but the MIDI track must be started first. The WAV file
should have the following format: PCM 8,000 Khz; 8 Bit; Mono

2. When midi, iMelody, mix, and basetracks are involved, two in-
stances of midi, iMelody, mix, or basetrack sessions can be
prefetched at a time, although one of these instances has to be
stopped. This is a strict requirement as (for example) two midi
sounds cannot be played simultaneously.

13.7 Mobile Media Feature Sets

Table 19 lists the packages, classes, fields, and methods that must/should be imple-

mented for Phase II of JSR-135 in addition to the Phase I implementation of JSR-

135.

Appropriate exception shall be generated if the called method is not supported by the

implementation. If a method is accessed without proper security permissions, se-

curity exception shall be thrown.

Package Classes Methods Comments & Require-
ments

javax.microedition. TempoCon- setTempo() Sets the current

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[79/116]

media. control trol
(Applicable
to
MIDI/iMelody
audio
formats.
Implementa-
tion
guidance -
SHOULD.)

playback tempo. MUST
implement a tempo
range of 10 to 300 beats
per minute.

getTempo() Gets the current
playback tempo.

PitchControl
Applicable to
MIDI /
iMelody
audio
formats.
Implementa-
tion
guidance -
SHOULD)

getMax-
Pitch()

Gets the maximum
playback pitch raise
supported by the player.
SHOULD implement a
maximum playback
pitch raise of 12,000
milli-semitones.

getMinPitch() Gets the minimum
playback pitch raise
supported by the player.
SHOULD implement a
minimum playback pitch
raise of 12,000 mil-
lisemitones.

getPitch() Gets the current
playback pitch raise.

setPitch() Sets the relative pitch
raise.

FramePosi-
tioningC
ontrol
(Implementa
tion
guidance -
SHOULD)

mapFrameT-
oTime()

Converts the given frame
number to the
corresponding media
time.

mapTimeTo-
Frame()

Converts the given
media time to the
corresponding frame
number.

seek() Seeks to a given video

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[80/116]

frame.

skip() Skips a given number of
frames from the current
position.

MIDIControl
(Implementa
tion
guidance -
SHOULD)

All fields &
methods

RecordCon-
trol

All fields &
methods

RecordControl controls
the recording of media
from a Player. Supports
all methods. Required
for audio capture
functionality. Video
capture support is
optional. RecordControl
is a protected API as
specified in the Security
section.

VideoControl
(Implementa
tion
guidance -
SHOULD)

All fields &
methods.
getSnap-
shot() meth-
od
MUST be
supported if
the Video-
Control is
implemented
by an
instance of
camera
device.
If VideoCon-
trol is
implemented
by video
player for
video file/
stream play-
back, it is
not mandat-
ory to
support get

VideoControl controls
the display of video. A
Player which supports
the playback of video
MUST provide a
VideoControl via its
getControl and
getControls methods.

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[81/116]

Snap
Shot() meth-
od.

MetaData-
Control

Implement
all fields
and meth-
ods.
Support title,
copyright,
data, author
keys for CO-
DECs
supporting
these keys.

javax.microediti
on.media

Player All fields and
methods

SHOULD allow a Player
to use a different
TimeBase other than its
own. This is required for
synchronization between
multiple Media Players.

PlayerListen-
er

All fields and
methods

SHOULD let
applications register
PlayerListener for
receiving Player events.

Manager All fields and
methods

MUST support file
locator for local
playback. For streaming,
RTP locator needs to be
supported.
For camera, new device
locator, "camera" has to
be supported.

TimeBase getTime() Gets the current time of
this TimeBase.

javax.microediti
on.media.protoc
ol

content-
Descriptor

getcontent-
Type()

Obtains a string that
represents the content
type for this descriptor.

Table 19 Packages, classes, fields, and methods implemented for
Phase II of JSR-135

13.8 Audio Mixing

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[82/116]

Must support synchronous mixing of at least two or more sound channels.

MIDI+WAV must be supported and MIDI+MP3 is highly desirable.

13.9 Media Locators

The classes Manager, DataSource and RecordControl interface accepts media loc-

ators. In addition to normal playback locators specified by JSR-135, the following

special locators need to be supported.

13.10 RTP locator

RTP Locators must be supported for streaming media on devices supporting real time

streaming using RTSP. This support must be available for audio and video streaming

through Manager (for playback media stream).

NOTE: Refer to JSR-135 API for RTP locator syntax.

13.11 HTTP Locator

HTTP Locators must be supported for playing back media over network connections.

This support should be available through Manager implementation.

E.g.: Manager.createPlayer("http://webserver/tune.mid")

13.12 File Locator

File locators must be supported for playback and capture of media. This is specific to

Motorola Java ME ™ implementations supporting file system API and not as per JSR-

135. The support should be available through Manager and RecordControl imple-

mentations.

E.g.: Manager.createPlayer("file://motorola/audio/sample.mid")

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[83/116]

13.13 Capture Locator

Capture Locator should be supported for audio and video devices. A new device

"camera" must be defined and supported for camera device. Manager.createPlayer()

call shall return camera player as a special type of video player. Camera player

should implement VideoControl and should support taking snapShots using Video-

Control.getSnapshot() method. E.g.: Manager.createPlayer("capture://camera")

NOTE: For mandatory capture formats, refer to section 0.0.4. Refer to JSR-
135 API for capture locator syntax.

13.14 Supported Multimedia File
Types

The following sections have tables that list multimedia file types (with corresponding

CODECs) that should be supported in products that are JSR-135 compliant in addi-

tion to JSR-135 Mobile API Phase I. The common guideline being all codecs and file

types supported by native side should be accessible through JSR-135 implementa-

tion. The implementation of JSR-135 (and these tables) must be updated every time

a new file type and/or CODEC is released. Multimedia File Type Support.

13.15 Image Media

File Type CODEC Functionality

JPEG JPEG Capture

Table 20 Image Media

13.16 Audio Media

File Type CODEC Functionality

MP3 MPEG-1 layer III Playback

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[84/116]

WAV PCM Playback

AMR AMR NB Playback and Capture

Table 21 Audio Media

13.17 Video Media

File Type CODEC Functionality

MPEG4 MPEG4 with or
without AMR audio
(NOT Supported for
KJAVA Application).

Playback

H.263 H.263 with or
without AMR audio
(NOT Supported for
KJAVA Application).

Playback

Table 22 Video Media

13.18 Security

Mobile Media API shall follow MIDP 2.0 security model. Recording functionality APIs

need to be protected. Trusted third party and untrusted applications must utilize user

permissions. Specific permission settings are detailed below.

13.19 Policy

Table 23 security policy will be flexed in per operator requirements at ship time of

the handset.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Multimedia
Record

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, Never
Ask, No
Acess

Full Access Full Access

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[85/116]

Table 23 Security policy

13.20 Permissions

Table 24 lists individual permissions within Multimedia Record function group.

Permission Protocol Function Group

javax.microedition.
media.control.
RecordControl.re

RecordCon-
trol.startRecord()

MultimediaRecord

Table 24 Permissions within Multimedia Record

NOTE: The Audio/Media formats may differ or may not be avaliable, de-
pending on the Carrier or region.

Java ME Developer Guide
Chapter 13 - JSR-135 - Mobile Media API

[86/116]

14
JSR-139 - CLDC 1.1

14.1 JSR-139

CLDC 1.1 is an incremental release of CLDC version 1.0. CLDC 1.1 is fully backwards

compatible with CLDC 1.0. Implementation of CLDC 1.1 supports the following:

• Floating Point
Data Types float and double
All floating point byte codes
New Data Type classes Float and Double
Library classes to handle floating point values

• Weak reference
• Classes Calender, Date and TimeZone are Java SE compliant
• Thread objects to be compliant with Java SE.

The support of thread objects to be compliant with Java SE requires the addition of

Thread.getName and a few new constructors. The following table lists the additional

classes, fields, and methods supported for CLDC 1.1 compliance:

Classes Additional Fields/
Methods

Comments

System Classes Java.lang.Thread Thread (Runnable
target, String
name)

Allocates a new
Thread object
with the given
target and name

Thread (String
name)

Allocates a new
Thread object
with the given
name

String getName () Returns this
thread's name

Void interrupt () Interrupts this

Java ME Developer Guide
Chapter 14 - JSR-139 - CLDC 1.1

[87/116]

thread

Java.lang.String Boolean equ-
alIgnoreCase
(String another-
String)

Compares this
string to another
String, ignoring
case considera-
tions

String intern () Returns a canon-
ical representa-
tion for the string
object

Static String
valueOf (float f)

Returns the
string represent-
ation of the float
argument

Static String
valueOf (double d)

Returns the
string represent-
ation of the
double argument

Data Type
Classes

Java.lang.Float New Class: Refer
to CLDC Spec for
more details

Java.lang.Double New Class: Refer
to CLDC Spec for
more details

Calendar and
Time Classes

Java.util.Calendar Protected int []
fields

The field values
for the currently
set time for this
calendar

Protected boolean {
} is set

The flags which
tell if a specified
time field for the
calendar is set

Protected long time The currently set
time for this cal-
endar, expressed
in milliseconds
after January 1,
1970, 0:00:00
GMT

Protected abstract
void ComputeFields

Converts the cur-
rent millisecond
time value to
field values in
fields []

Protected abstract Converts the cur-

Java ME Developer Guide
Chapter 14 - JSR-139 - CLDC 1.1

[88/116]

void ComputeTime rent field values
in fields [] to the
millisecond time
value time

Java.lang.Date String toString () Converts this
date object to a
String of the
form: Dow mon
dd hh:mm:ss zzz
yyyy

Exception and
Error Classes

Java.lang.NoClass
DefFoundError

New Class: Refer
to CLDC Spec for
more details

Weak References Java.lang.ref.Refe
rence

New Class: Refer
to CLDC Spec for
more details

Java.lang.ref.Wea
kReference

New Class: Refer
to CLDC Spec for
more details

Additional Utility
Classes

Java.util.Random Double nextDouble
()

Returns the next-
pseudorandom,
uniformly distrib-
uted double
value between
0.0 and 1.0 from
the random num-
ber generator's
sequence

Float nextFloat () Returns the next
pseudorandom,
uniformly distrib-
uted double
value between
0.0 and 1.0 from
the random num-
ber generator's
sequence

Int nextInt (int n) Returns a pseu-
dorandom, uni-
formly distrib-
uted int value
between 0
(inclusive) and
the specified
value

Java ME Developer Guide
Chapter 14 - JSR-139 - CLDC 1.1

[89/116]

(exclusive),
drawn from this
random number
generator's se-
quence

Java.lang.Math Static double E The double value
that is closer
than any other to
e, the base of the
natural logar-
ithms

Static double PI The double value
that is closer
than any other to
pi, the ratio of
the circumfer-
ence of a circle
to its diameter

Static double abs
(double a)

Returns the ab-
solute value of a
double value

Static float abs
(float a)

Returns the ab-
solute value of a
double value

Static double ceil
(double a)

Returns the
smallest (closest
to negative infin-
ity) double value
that is not less
than the argu-
ment and is
equal to a math-
ematical integer

Static double cos
(double a)

Returns the tri-
gonometric co-
sine of an angle

Static double floor
(double a)

Returns the
largest (closest
to positive infin-
ity) double value
that is not great-
er than the argu-
ment and is
equal to a math-
ematical integer.

Java ME Developer Guide
Chapter 14 - JSR-139 - CLDC 1.1

[90/116]

Static double max
(double a, double b)

Returns the
greater of two
double values

Static float max
(float a, float b)

Returns the
greater of two
float values

Static double min
(float a, float b)

Returns the
smaller of two
double values

Static float min
(float a, float b)

Returns the
smaller of two
float values

Static double sin
(double a)

Returns the tri-
gonometric sine
of an angle

Static double sqrt
(double a)

Returns the cor-
rectly rounded
positive square
root of a double
value

Static double tan
(double a)

Returns the tri-
gonometric tan-
gent of angle

Static double tode-
grees (double an-
grad)

Converts an
angle measured
in radians to the
equivalent angle
measured in de-
grees

Static double toradi-
ans (double ang-
deg)

Converts an
angle measured
in degrees to the
equivalent angle
measured in ra-
dians

Table 25 Additional classes, fields, and methods supported for CLDC
1.1 compliance

Java ME Developer Guide
Chapter 14 - JSR-139 - CLDC 1.1

[91/116]

15
MIDlet storage in

removable memory

15.1 Overview

Motorola Java ME enabled devices with removable memory like SD/MMC cards will be

able to store, install and access Java ME Applications on removable memory or phone

memory once the application gets downloaded. The user also can to list and launch

Java ME Applications stored on removable memory.

Other feature included is a mechanism to DRM protects Java ME Applications in-

stalled in secondary memory.

15.2 Installing downloaded
applications into removable memory

The Java ME Application may get downloaded via direct cable (USB). The installation

procedure for downloaded applications onto phone/removable memory follows the

below steps and rules:

• Initially, the user has a DOWNLOAD option that allows to choice
between installing the application on removable memory or phone. The
phone option should be the default option.

• There will be a separate directory within removable memory for Java ME
applications. All Java ME Applications stored on removable memory and

Java ME Developer Guide
Chapter 15 - MIDlet storage in removable memory

[92/116]

information associated with them shall reside in this directory.
• An installed application on one device cannot be run on another device

by swapping memory card. Separate installation is required for each
device.

• Memory full condition handling while installing will be same for phone
and removable memory.

• It is to provide push registry support for applications residing on
removable memory. If this feature is not implemented, application that
declare push registry usage in JAD file will not be allowed to be installed
on removable memory.

15.3 Listing and Launching Java ME
Applications from removable memory

By default, the JAM will list all installed applications on phone. The following rules will

guide the user through of the available options:

• There will be a "Switch Storage Device" option under Games & Apps
(MyJavaApps) menu allowing user to switch between storage devices
(phone/removable memory) while listing applications. If user selects
removable memory option, all installed applications on removable
memory must get listed.

• Delete All Apps option under Java Settings menu must be effective for
current storage device specified as above only. If phone is current
storage device, only Java ME applications installed in phone must be
deleted. The delete confirmation notice shall be modified to provide the
current storage device information to the user. Delete all operation
should only uninstall the application installed on removable memory.
Original JAD and JAR files should not be deleted.

• Last menu item in the applications listing from removable memory shall
be named [Install New]. If user selects this item, all application files
(including already installed applications) from the Java ME directory in
removable memory shall be listed. Both JAD and JAR files shall be listed.
JAD and JAR file names will be preceded with a distinct icon to
distinguish each type of file.

• User can select either JAD or JAR file if both are available. If user selects
JAR file, implementation will search for JAD file with the same name in
the same directory. If a JAD file is found and it refers to the selected
JAR file, it shall be used. Otherwise JAR only installation shall be
followed.

• Corresponding JAD and JAR files will be available in removable memory
for installable applications requiring JAD file. JAD file should refer to the

Java ME Developer Guide
Chapter 15 - MIDlet storage in removable memory

[93/116]

local JAR file only. Downloading of JAR files over the network for new
application installation shall not be supported for this release.

• All externally loaded application JAD and JAR files must be kept in the
Java ME directory in removable memory for AMS to list these as new
applications for installation.

• Context sensitive menu of new applications should have "Delete" option
to delete the application files. This operation should delete both JAD and
JAR files (if present) permanently from removable memory.

• JAM will refresh application listing from removable device each time
listing is required after a power cycle. This is to ensure that applications
removed/added externally can be reflected upon each invocation.

• AMS will do an extra preverification step before launching applications
from removable memory. This is to ensure that applications are not
corrupted (externally or otherwise). If application is corrupted, a prompt
shall be displayed after the user selects application to be launched.

• Delete, Details, Permissions options should be available under Games &
Apps Menu for Java ME Applications installed on removable memory.
Delete operation should only uninstall the application installed on
removable memory.

• AMS should support same application being installed on phone and
removable memory. However duplicate applications will not be
permitted on same storage device.

• If push registration is not supported for applications stored on
removable memory, an IOException shall be returned if a Java ME
application residing on removable memory tries to use
javax.microedition.io.PushRegistry.registerConnection() method. The
handling of this exception is left to the application.

Java ME Developer Guide
Chapter 15 - MIDlet storage in removable memory

[94/116]

16
JSR-185 - JTWI

JTWI specifies a set of services to develop highly portable, interoperable Java applic-

ations. JTWI reduces API fragmentation and broadens the number of applications for

mobile phones.

16.1 Overview

Any Motorola device implementing JTWI will support the following minimum hard-

ware requirements in addition to the minimum requirements specified in MIDP 2.0:

• At least a screen size of 125 x 125 pixels screen size as returned by full
screen mode Canvas.getHeight () and Canvas.getWidth ()

• At least a color depth of 4096 colors (12-bit) as returned by
Display.numColors ()

• Pixel shape of 1:1 ratio
• At least a Java Heap Size of 512 KB
• Sound mixer with at least 2 sounds
• At least a JAD file size of 5 KB
• At least a JAR file size of 64 KB
• At least a RMS data size of 30 KB

Any Motorola JTWI device will implement the following and pass the corresponding

TCK:

• CLDC 1.0 or CLDC 1.1
• MIDP 2.0 (JSR-118)
• Wireless Messaging API 1.1 (JSR-120)
• Mobile Media API 1.1 (JSR-135)

Java ME Developer Guide
Chapter 16 - JSR-185 - JTWI

[95/116]

16.2 CLDC related content for JTWI

JTWI is designed to be implemented on top of CLDC 1.0 or CLDC 1.1. The configura-

tion provides the VM and the basic APIs of the application environment. If floating

point capabilities are exposed to Java Applications, CLDC 1.1 will be implemented.

The following CLDC requirements will be supported:

• Minimum Application thread count will allow a MIDlet suite to create a
minimum of 10 simultaneous running threads

• Minimum Clock Resolution - The method
java.land.System.currentTimeMillis () will record the elapsed time in
increments not to exceed 40 msec. At least 80% of test attemps will
meet the time elapsed requirement to achieve acceptable conformance.

• Names for Encodings will support at least the preferred MIME name as
defined by IANA (http://www.iana.org/assignments/character-sets) for
the supported character encodings. If preferred name has not been
defined, the registered name will be used (i.e UTF-16).

• Character Properties will provide support for character properties and
case conversions for the characters in the Basic Latin and Latin-1
Supplement blocks of Unicode 3.0. Other Unicode character blocks will
be supported as necessary.

• Unicode Version will support Unicode characters. Character information
is based on the Unicode Standard version 3.0. Since the full character
tables required for Unicode support can be excessively large for devices
with tight memory budgets, by default, the character property and case
conversion facilities in CLDC assume the presence of ISO Latin-1 range
of characters only. Refer to JSR-185 for more information.

• Custom Time Zone Ids will permit to use of custom time zones which
adhere to the following time zone format:

General Time Zone: For time zones representing a GMT offset value,
the following syntax is used:

• Custom ID:
GMT Sign Hours: Minutes
GMT Sign Hours Minutes
GMT Sign Hours Hours

• Sign: one of:
+ -

• Hours:
Digit

Java ME Developer Guide
Chapter 16 - JSR-185 - JTWI

[96/116]

http://www.iana.org/assignments/character-sets

Digit Digit
• Minutes:

Digit Digit
• Digit: one of:

0 1 2 3 4 5 6 7 8 9

When creating a TimeZone, the specified custom time zone ID is
normalized in the following syntax:

• NormalizedCustomID:
GMT Sign TwoDigitHours: Minutes
Sign: one of:

• + -
TwoDigitHours:

• Digit Digit
Minutes:

• Digit Digit
Digit: one of:

• 0 1 2 3 4 5 6 7 8 9

16.3 MIDP 2.0 specific information for
JTWI

MIDP 2.0 provides the library support for user interface, persistent storage, net-

working, security, and push functions. MIDP 2.0 contains a number of optional func-

tions, some of which will be implemented as outlined below. The JTWI requirements

for MIDP 2.0 will support the following points:

• Record Store Minimum will permit a MIDlet suite to create at least 5
independent RecordStores. This requirement does not intend to
mandate that memory be reserved for these Record Stores, but it will be
possible to create the RecordStores if the required memory is available.

• HTTP Support for Media Content will provide support for HTTP 1.1 for all
supported media types. HTTP 1.1 conformance will match the MIDP 2.0
specification. See package.javax.microedition.io for specific
requirements.

• JPEG for Image Objects - ISO/IEC JPEG together wil JFIF will be
supported. The support for ISO/IEC JPEG only applies to baseline DCT,
non-differential, Huffman coding, as defined in JSR-185 JTWI
specification, symbol 'SOF0'. This support extends to the class
javax.microedition.lcdui.Image, including the methods outlined above.
This mandate is voided in the event that the JPEG image format

Java ME Developer Guide
Chapter 16 - JSR-185 - JTWI

[97/116]

becomes encumbered with licensing requirements.
• Timer Resolution will permit an application to specify the values for the

firstTime, delay, and period parameters of java.util.timer.schedule ()
methods with a distinguishable resolution of no more than 40 ms.
Various factors (such as garbage collection) affect the ability to achieve
this requirement. At least 80% of test attempts will meet the schedule
resolution requirement to achieve acceptable conformance.

• Minimum Number of Timers will allow a MIDlet to create a minimum of 5
simultaneously running Timers. This requirement is independent of the
minimum specified by the Minimum Application Thread Count.

• Bitmap Minimums will support the loading of PNG images with pixel
color depths of 1, 2, 4, 8, 16, 24, and 32 bits per pixel per the PNG
format specification. For each of these color depths, as well as for JFIF
image formats, a compliant implementation will support images up to
76800 total pixels.

• TextField and TextBox and Phonebook Coupling - when the center select
key is pressed while in a TextBox or TextField and the constraint of the
TextBox or TextField is TextField.PHONENUMBER, the names in the
Phonebook will be displayed in the "Insert Phonenumber?" screen.

• Supported characters in TextField and TextBox - TextBox and TextField
with input constraint TextField.ANY will support inputting all the
characters listed in JSR-185.

• Supported characters in EMAILADDR and URL Fields - Class
javax.microedition.lcdui.TextBox and javax.microedition.lcdui.TextField
with either of the constraints TextField.EMAILADDR or TextField.URL will
allow the same characters to be input as are allowed for input constraint
TextField.ANY

• Push Registry Alarm Events will implement alarm-based push registry
entries.

• Identification of JTWI via system property - to identify a compliant
device and the implemented version of this specification, the value of
the system property microedition.jtwi.version will be 1.0

16.4 Wireless Messaging API 1.1
(JSR-120) specific content for JTWI

WMA defines an API used to send and receive short messages. The API provides ac-

cess to network-specific short message services such as GSM SMS or CDMA short

messaging. JTWI will support the following as it is outlined in the JSR-120 chapter of

this developer guide:

Java ME Developer Guide
Chapter 16 - JSR-185 - JTWI

[98/116]

• Support for SMS in GSM devices
• Cell Broadcast Service in GSM devices
• SMS Push

16.5 Mobile Media API 1.1 (JSR-135)
specific content for JTWI

The following will be supported for JTWI compliance:

• HTTP 1.1 Protocol will be supported for media file download for all
supported media formats

• MIDI feature set specified in MMAPI (JSR-135) will be implemented.
MIDI file playback will be supported.

• VolumeControl will be implemented and is required for controlling the
colume of MIDI file playback.

• JPEG encoding in video snapshots will be supported if the handset
supports the video feature set and video image capture.

• Tone sequence file format will be supported. Tone sequences provide an
additional simple format for supporting the audio needs of many types
of games and other applications.

16.6 MIDP 2.0 Security specific
content for JTWI

• The Motorola C975 follows the security policy outlined in the Security
chapter of this developer guide.

Java ME Developer Guide
Chapter 16 - JSR-185 - JTWI

[99/116]

17
JSR-184 - Mobile 3D

Graphics API

17.1 Overview

JSR-184 Mobile 3D API defines an API for rendering three-dimensional (3D) graphics

at interactive frame rates, including a scene graph structure and a corresponding file

format for efficient management and deployment of 3D content. Typical applications

that might make use of JSR-184 Mobile 3D API include games, map visualizations,

user interface, animated messages, and screen savers. JSR-184 requires a Java ME

device supporting MIDP 2.0 and CLDC 1.1 as a minimum.

17.2 Mobile 3D API

The Motorola C975 contains full implementation of JSR-184 Mobile 3D API

(http://jcp.org/en/jsr/detail?id=184). The Motorola C975 has also implemented the

following:

• Call to with key - microedition.m3g.version will
return 1.0, otherwise null will be returned.

• Floating point format for input and output is the standard IEEE float
having an 8-bit exponent and a 24-bit mantissa normalized to 1.0, 2.0.

• Implementation will ensure the Object3D instances will be kept
reference to reduce overhead and possible inconsistency.

• Thread safety.
• Necessary pixel format conversions for rendering output onto device.

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[100/116]

http://jcp.org/en/jsr/detail?id=184

• Support at least 10 animation tracks to be associated with an Object 3D
instance (including animation controller) subject to dynamic memory
availability.

17.3 Mobile 3D API File Format
Support

The Motorola C975 supports both M3G and PNG file formats for loading 3D content.

The C975 supports the standard .m3g and .png extensions for its file formats. Mime

type and not extension will be used for identifying file type. In the case that the

Mime type is not available, M3G files will be identified using the file identifier and

PNG files using signature.

17.4 Mobile 3D Graphics - M3G API

The M3G API lets you access the realtime 3D engine embedded on the device, to

create console quality 3D applications, such as games and menu systems. The main

benefits of the M3G engine are the following:

• the whole 3D scene can be stored in a very small file size (typically
50-150K), allowing you to create games and applications in under 256K;

• the application can change the properties (such as position, rotation,
scale, color and textures) of objects in the scene based on user
interaction with the device;

• the application can switch between cameras to get different views onto
the scene;

• the rendered images have a very high photorealistic quality.

17.4.1 Typical M3G Application

An application consists of logic that uses the M3G, MIDP 2.0 and CDLC 1.1 classes.

The application is compiled into a Java MIDlet that can be embedded on the target

device. The MIDlet can also contain additional assets, such as one or more M3G files

that define the 3D scene graph for the objects in the scene, images and sounds.

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[101/116]

Figure 4 M3G Application Proccess

Most M3G applications use an M3G resource file that contains all the information re-

quired to define the 3D resources, such as objects, their appearance, lights, cameras

and animations, in a scene graph. The file must be loaded into memory where object

properties can be interrogated and altered using the M3G API. Alternatively all ob-

jects can be created from code, although this is likely to be slower and limits cre-

ativity for designers.

17.4.2 Simple MIDlets

The simplest application consists of an M3G file that is loaded into the application

using the M3G Loader class, which is then passed to a Graphics3D object that

renders the world to the Display.

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[102/116]

Figure 5 M3G Application Methods

The World object contains the objects that define a complete 3D scene - geometry,

textures, lights, cameras, and animations. The World object mediates access to the

objects within the world. It can be passed as a block to the renderer, the Graphics3D

class.

The Loader object, populates a World by loading an M3G file from a URI or other

asset source, such as a buffer of bytes in M3G format. The Loader is not restricted to

loading just Worlds, each file can contain as little as a single object and multiple files

can be merged together on the device, or you can put everything into a single file.

The rendering class Graphics3D (by analogy to the MIDP Graphics class) takes a

whole scene (or part of a scene graph), and renders a view onto that scene using the

current camera and lighting setup. This view can be to the screen, to a MIDP image,

or to a texture in the scene for special effects. You can pass a whole world in one go

(retained mode) or you can pass individual objects (immediate mode). There is only

one Graphics3D object present at one time, so that hardware accelerators can be

used.

Figure 6 shows the structure of a more typical MIDlet.

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[103/116]

Figure 6 Typical MIDlet Structure

17.4.3 Initializing the world

The Loader class is used to initialize the world. It has two static methods: one takes

in a byte array, while the other takes a named resource, such as a URI or an indi-

vidual file in the JAR package.

The load methods return an array of Object3Ds that are the root level objects in the

file.

The following example calls Loader.load() and passes it an M3G file from the JAR file

using a property in the JAD file. Alternatively, you could specify a URI, for example:

;

The example assumes that there is only one root node in the scene, which will be the

world object. If the M3G file has multiple root nodes the code must be changed to re-

flect this, but generally most M3G files have a single root node.

public void startApp() throws MIDletStateChangeException
{

myDisplay.setCurrent(myCanvas);

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[104/116]

try
{

// Load a file.
Objects3D[] roots = Loader.load(getAppProperty("Content-1"));

// Assume the world is the first root node loaded.
myWorld = (World) roots[0];

}
catch(Exception e)
{

e.printStackTrace();
}

// Force a repaint so the update loop is started.
myCanvas.repaint();

}

Code Sample 7 Initializing the world

17.4.4 Using the Graphics3D object

Using the Graphics3D is very straightforward. Get the Graphics3D instance, bind a

target to it, render everything, and release the target.

public class myCanvas extends Canvas
{

Graphics3D myG3D = Graphics3D.getInstance();

public void paint(Graphics g)
{

myG3D.bindTarget(g);

try
{

myG3D.render(myWorld);
}
finally
{

myG3D.releaseTarget();
}

}

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[105/116]

}

Code Sample 8 Using the Graphics3D object

The final block makes sure that the target is released and the Graphics3D can be re-

used. The bindTarget call must be outside the try block, as it can throw exceptions

that will cause releaseTarget to be called when a target has not been bound, and re-

leaseTarget throwing an exception.

17.4.5 Interrogating and interacting with
objects

The World object is a container that sits at the top of the hierarchy of objects that

form the scene graph. You can find particular objects within the scene very simply by

calling find() with an ID. find() returns a reference to the object which has been as-

signed that ID in the authoring tool (or manually assigned from code). This is im-

portant because it largely makes the application logic independent of the detailed

structure of the scene.

final int PERSON_OBJECT_ID = 339929883;
Node personNode = (Node)theWorld.find(PERSON_OBJECT_ID);

Code Sample 9 Finding objects by ID.

If you need to find many objects, or you don't have a fixed ID, then you can follow

the hierarchy explicitly using the Object3D.getReferences() or Group.getChild()

methods.

static void traverseDescendants(Object3D obj)
{

int numReferences = obj.getReferences(null);

if (numReferences > 0)
{

Object3D[] objArray = new Object3D[numReferences];

obj.getReferences(objArray);

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[106/116]

for (int i = 0; i < numReferences; i++)
traverseDescendants(objArray[i]);

}

}

Code Sample 10 Using the Object3D.getReferences().

Once you have an object, most of the properties on it can be modified using the M3G

API. For example, you can change the position, size, orientation, color, brightness, or

whatever other attribute of the object is important. You can also create and delete

objects and insert them into the world, or link parts of other M3G files into the scene

graph.

17.4.6 Animations

As well as controlling objects from code, scene designers can specify how objects

should move under certain circumstances, and store this movement in 'canned' or

block animation sequences that can be triggered from code. Many object properties

are animatable, including position, scale, orientation, color and textures. Each of

these properties can be attached to a sequence of keyframes using an Animation-

Track. The keyframe sequence can be looped, or just played once, and they can be

interpolated in several ways (stepwise, linear, spline).

A coherent action typically requires the simultaneous animation of several properties

on several objects, the tracks are grouped together using the AnimationController

object. This allows the application to control a whole animation from one place.

All the currently active animatable properties can be updated by calling animate() on

the World. (You can also call this on individual objects if you need more control). The

current time is passed through to animate(), and is used to determine the interpol-

ated value to assign to the properties.

The animate() method returns a validity value that indicates how long the current

value of a property is valid. Generally this is 0 which means that the object is still

being animated and the property value is no longer valid, or infinity when the object

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[107/116]

is in a static state and does not need to be updated. If nothing is happening in the

scene, you do not have to continually redraw the screen, reducing the processor load

and extending battery life. Similarly, simple scenes on powerful hardware may run

very fast; by restricting the frame-rate to something reasonable, you can extend bat-

tery life and are more friendly to background processes.

The animation subsystem has no memory, so time is completely arbitrary. This

means that there are no events reported (for example, animation finished). The ap-

plication is responsible for specifying when the animation is active and from which

position in the keyframe sequence the animated property is played.

Consider a world myWorld that contains an animation of 2000 ms, that you want to

cycle. First you need to set up the active interval for the animation, and set the posi-

tion of the sequence to the start. Then call World.animate() with the current world

time:

anim.setActiveInterval(worldTime, worldTime+2000);
anim.setPosition(0, worldTime);

int validity = myWorld.animate(worldTime);

Code Sample 11

17.4.7 Authoring M3G files

You can create all your M3G content from code if necessary but this is likely to be

very time consuming and does not allow 3D artists and scene designers to easily

create and rework visually compelling content with complex animations. You can use

professional, visual development tools such as SwerveTM Studio or SwerveTM M3G

exporter from Superscape Group plc, which export content from 3ds max, the in-

dustry standard 3D animation tool, in fully compliant M3G format. For more informa-

tion please visit http://www.superscape.com/.

Java ME Developer Guide
Chapter 17 - JSR-184 - Mobile 3D Graphics API

[108/116]

http://www.superscape.com/

Appendix A
Key Mapping

Key Mapping

Table 26 identifies key names and corresponding Java assignments. All other keys

are not processed by Java.

Key Assignment

0 NUM0

1 NUM1

2 NUM2

3 NUM3

4 NUM4

5 SELECT, followed by NUM5

6 NUM6

7 NUM7

8 NUM8

9 NUM9

STAR (*) ASTERISK

POUND z#) POUND

JOYSTICK LEFT LEFT

JOYSTICK RIGHT RIGHT

JOYSTICK UP UP

JOYSTICK DOWN DOWN

SCROLL UP UP

SCROLL DOWN DOWN

SOFTKEY 1 SOFT1

SOFTKEY 2 SOFT2

MENU SOFT3 (MENU)

SEND SELECT
Also, call placed if pressed on
lcdui.TextField or lcdui.TextBox with

Java ME Developer Guide
Appendix A - Key Mapping

[109/116]

PHONENUMBER constraint set.

CENTER SELECT SELECT

END Handled according to Motorola specifica-
tion: Pause/End/Resume/Background
menu invoked.

Table 26 Key Mapping

Java ME Developer Guide
Appendix A - Key Mapping

[110/116]

Appendix B
Memory Management

Calculation

The available memory on the C975 is the following:

• 4 MB shared memory for MIDlet storage
• 1.5 MB Heap size

Java ME Developer Guide
Appendix B - Memory Management Calculation

[111/116]

Appendix C
FAQ

The MOTODEV developer program is online and provides access to Frequently Asked

Questions about enabling technologies on Motorola products.

Access to dynamic content based on questions from the Motorola Java ME developer

community is available at the URL stated below.

http://developer.motorola.com/

Java ME Developer Guide
Appendix C - FAQ

[112/116]

http://developer.motorola.com/

Appendix F
Spec Sheet

Spec Sheet

Listed below is the spec sheets for the C975. The spec sheet contains information re-

garding the following areas:

• Technical Specifications
• Key Features
• Java ME Information
• Motorola Developer Information
• Tools
• Other Related Information

Java ME Developer Guide
Appendix F - Spec Sheet

[113/116]

Motorola C975
Developer Reference Sheet

Technical Specifications

Band/Frequency UMTS 2100 MHz GSM 900/1800/1900
MHz GPRS (2U/4D, Class 10, B)

Region North America
Technology WAP 2.0, Java ME, SMS, EMS, MMS
Connectivity USB, via CE Bus
Dimensions 53.2 x 114 x 24.2 mm
Weight 139 g
Display 1.9" 176 x 220 65k TFT Color

Operating System Motorola
Chipset

Java ME Information

CLDC v1.1 and MIDP v2.0 compliant
Heap Size 1.5 MB
Maximum record store size 64 KB
MIDlet storage avaliable 4 MB
Interface connections HTTP 1.1, UDP, TCP
Maximum number of Sockets 4
Supported image formats GIF,JPEG,PNG,BMP
Double buffering Supported
Encoding schemes ISO8859_1, ISO10646
Input methods Multitap, iTAP
Additional API's JSR-118 JSR-120

JSR-135 JSR-139 JSR-184
JSR-185

Audio MIDI, MP3, AMR, WAV, MP4,
iMelody

Key Features

• 3D stereo sound

• Point to Point Video

• Integrated Digital Video/Still Camera

• Large Color Display

• Integrated MP3 Player

• iTAP Predictive Text Entry

• Transflash expandable memory

Related Information

Motorola Developer Information:
Developer Resources at
http://developer.motorola.com/
Tools:
Motorola Java™ ME SDK version v6.1 SE
Motorola Messaging Suite v1.1
Documentation:
Creating Media for the Motorola C975 Handset

References:
Java ME specifications:
http://java.sun.com/javame/
MIDP v2.0 specifications:
http://www.java.sun.com/products/midp
CLDC v1.0/v1.1 specifications:
http://www.java.sun.com/products/cldc
WAP forum: http://www.wap.org
EMS standards: http://www.3GPP.org
Purchase:
Visit the Motodev Shop at http://developer.motorola.com/
Accessories: http://www.motorola.com/consumer

Some features are network, subscription and SIM card or service provider dependent and may be not available in all areas. MOTOROLA and the Stylized M Logo are registered in the
US Patent & Trademark Office. The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Motorola is under license. Java and all Java-
based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other product or service names are the property of their
respective owners. © Motorola, Inc. 2006

Updated in 13-Jul-2006.

http://developer.motorola.com/
http://java.sun.com/javame/
http://www.java.sun.com/products/midp
http://www.java.sun.com/products/cldc
http://www.wap.org
http://www.3GPP.org
http://developer.motorola.com/
http://www.motorola.com/consumer

Appendix H
Quick Reference

CLDC: 9 16 16 18 65 87 87
96 96 100

HTTP: 32 32 83

JAD: 21 23 23 23 23 24
35 35 57 58 58 58 59 59 60 60
104

JSR-118: 21 24 35

JSR-120: 64 64 65 66 66 66 68
98

MIDP: 16 16 16 16 18 21 24 27
29 51 52 52 52 56 59 60 85 95
97 100 101 103

SMS: 23 27 27 34 41
64 64 65 66 66 66 66 67
67 67 67 71 98

WMA: 64 64 98

Java ME Developer Guide
Appendix H - Quick Reference

[115/116]

	C975 Developer Guide
	Index
	Table of Contents
	Index of Figures
	Index of Tables
	Index of Code Samples

	Chapter 1 - Introduction
	Section 1.1 - Purpose
	Section 1.2 - Audience
	Section 1.3 - Disclaimer
	Section 1.4 - References
	Section 1.5 - Revision History
	Section 1.6 - Definitions, Abbreviations, Acronyms
	Section 1.7 - Document Overview

	Chapter 2 - Java ME Introduction
	Section 2.1 - The Java Platform, Micro Edition (Java ME)
	Section 2.2 - The Motorola Java ME Platform
	Section 2.3 - Resources and APIs Available

	Chapter 3 - Developing and Packaging Java ME Applications
	Section 3.1 - Guide to Development in Java ME

	Chapter 4 - Downloading Applications
	Section 4.1 - Methods of Downloading

	Chapter 5 - Application Management
	Section 5.1 - Downloading a JAR file without a JAD
	Section 5.2 - Installation and Deletion Status Reports
	Section 5.3 - DRM Content Protection in Java

	Chapter 6 - Shared JAD URLs
	Section 6.1 - Overview
	Section 6.2 - Tell-A-Friend Option

	Chapter 7 - JAD Attributes
	Section 7.1 - JAD / Manifest Attribute Implementations

	Chapter 8 - iTAP
	Section 8.1 - Intelligent Keypad Text Entry API

	Chapter 9 - Network APIs
	Section 9.1 - Network Connections
	Section 9.2 - User Permission
	Section 9.3 - Indicating a Connection to the User
	Section 9.4 - HTTPS Connection
	Section 9.5 - DNS IP
	Section 9.6 - Push Registry
	Section 9.7 - Mechanisms for Push
	Section 9.8 - Push Registry Declaration
	Section 9.9 - Delivery of a Push Message
	Section 9.10 - Deleting an Application Registered for Push
	Section 9.11 - Security for Push Registry
	Section 9.12 - Network Access

	Chapter 10 - CommConnection Interface
	Section 10.1 - CommConnection
	Section 10.2 - Accessing
	Section 10.3 - Parameters
	Section 10.4 - BNF Format for Connector.open () string
	Section 10.5 - Comm Security
	Section 10.6 - Port Naming Convention
	Section 10.7 - Method Summary

	Chapter 11 - MIDP 2.0 Security Model
	Section 11.1 - Untrusted MIDlet Suites
	Section 11.2 - Untrusted Domain
	Section 11.3 - Trusted MIDlet Suites
	Section 11.4 - Permission Types concerning the Handset
	Section 11.5 - User Permission Interaction Mode
	Section 11.6 - Implementation based on Recommended Security Policy
	Section 11.7 - Trusted 3rd Party Domain
	Section 11.8 - Trusted MIDlet Suites Using x.509 PKI
	Section 11.9 - Signing a MIDlet Suite
	Section 11.10 - Signer of MIDlet Suites
	Section 11.11 - MIDlet Attributes Used in Signing MIDlet Suites
	Section 11.12 - Creating the Signing Certificate
	Section 11.13 - Inserting Certificates into JAD
	Section 11.14 - Creating the RSA SHA-1 signature of the JAR
	Section 11.15 - Authenticating a MIDlet Suite
	Section 11.16 - Verifying the Signer Certificate
	Section 11.17 - Verifying the MIDlet Suite JAR
	Section 11.18 - Bound Certificates

	Chapter 12 - JSR-120 - Wireless Messaging API
	Section 12.1 - Wireless Messaging API (WMA)
	Section 12.2 - SMS Client Mode and Server Mode Connection
	Section 12.3 - SMS Port Numbers
	Section 12.4 - SMS Storing and Deleting Received Messages
	Section 12.5 - SMS Message Types
	Section 12.6 - SMS Message Structure
	Section 12.7 - SMS Notification
	Section 12.8 - App Inbox Clean-up

	Chapter 13 - JSR-135 - Mobile Media API
	Section 13.1 - Network Connections
	Section 13.2 - ToneControl
	Section 13.3 - VolumeControl
	Section 13.4 - StopTimeControl
	Section 13.5 - Manager Class
	Section 13.6 - Audio Media
	Section 13.7 - Mobile Media Feature Sets
	Section 13.8 - Audio Mixing
	Section 13.9 - Media Locators
	Section 13.10 - RTP locator
	Section 13.11 - HTTP Locator
	Section 13.12 - File Locator
	Section 13.13 - Capture Locator
	Section 13.14 - Supported Multimedia File Types
	Section 13.15 - Image Media
	Section 13.16 - Audio Media
	Section 13.17 - Video Media
	Section 13.18 - Security
	Section 13.19 - Policy
	Section 13.20 - Permissions

	Chapter 14 - JSR-139 - CLDC 1.1
	Section 14.1 - JSR-139

	Chapter 15 - MIDlet storage in removable memory
	Section 15.1 - Overview
	Section 15.2 - Installing downloaded applications into removable memory
	Section 15.3 - Listing and Launching Java ME Applications from removable memory

	Chapter 16 - JSR-185 - JTWI
	Section 16.1 - Overview
	Section 16.2 - CLDC related content for JTWI
	Section 16.3 - MIDP 2.0 specific information for JTWI
	Section 16.4 - Wireless Messaging API 1.1 (JSR-120) specific content for JTWI
	Section 16.5 - Mobile Media API 1.1 (JSR-135) specific content for JTWI
	Section 16.6 - MIDP 2.0 Security specific content for JTWI

	Chapter 17 - JSR-184 - Mobile 3D Graphics API
	Section 17.1 - Overview
	Section 17.2 - Mobile 3D API
	Section 17.3 - Mobile 3D API File Format Support
	Section 17.4 - Mobile 3D Graphics - M3G API
	Section 17.4.1 - Typical M3G Application
	Section 17.4.2 - Simple MIDlets
	Section 17.4.3 - Initializing the world
	Section 17.4.4 - Using the Graphics3D object
	Section 17.4.5 - Interrogating and interacting with objects
	Section 17.4.6 - Animations
	Section 17.4.7 - Authoring M3G files

	Appendix A - Key Mapping
	Key Mapping

	Appendix B - Memory Management Calculation
	Appendix C - FAQ
	Appendix F - Spec Sheet
	Spec Sheet

	C975 Spec Sheet
	Appendix H - Quick Reference

