

Technical Manual

Version 1.1

Motorola A835 Handset
J2ME™ Developer Guide

2

Table of Contents

TABLE OF CONTENTS... 2

1–INTRODUCTION .. 6
PURPOSE ... 6
SCOPE.. 6
DOCUMENT CONVENTIONS ... 6
DISCLAIMER.. 7
REFERENCES ... 8
REVISION HISTORY ... 8
DEFINITIONS, ACRONYMS, AND ABBREVIATIONS.. 8
DOCUMENT OVERVIEW ... 10

2–J2ME™ INTRODUCTION... 11
THE JAVA™ 2 PLATFORM, MICRO EDITION (J2ME™) ... 11
THE MOTOROLA J2ME™ PLATFORM ... 12
RESOURCES AVAILABLE ON THE MOTOROLA A835 HANDSET .. 13

3–DEVELOPING AND PACKAGING J2ME™ APPLICATIONS.. 14
MDP - MOTOROLA DEVELOPER PROGRAM... 14
DEVELOPING – TOOLS AND EMULATION ENVIRONMENTS... 14

Features to Look For.. 14
PACKAGING – PUTTING THE PIECES TOGETHER .. 15

Compiling .java Files to .class Files .. 16
Preverifying .class Files ... 16
Creating a Manifest File with J2ME Specific Attributes .. 16
J2ME Application Naming Convention .. 17
JARing .class Files and Other Resources... 18
Creating the JAD file.. 19

DOWNLOAD TO DEVICE... 21
4–APPLICATION MANAGEMENT ... 22

MIDLET LIFECYCLE.. 22
MIDLET SUITE INSTALLATION.. 23
MIDLET SUITE DE-INSTALLATION .. 24
MIDLET SUITE UPDATING .. 24
STARTING, PAUSING, AND EXITING... 25

AMS Control of MIDlet State Transitions .. 25
MIDlet Control of MIDlet State Transitions... 29

JAVA SYSTEM.. 30
5–LIMITED CONNECTED DEVICE USER INTERFACE (LCDUI) ... 31

OVERVIEW .. 31
CLASS DESCRIPTION ... 31
AVAILABLE FONTS.. 31

Table of Contents

3

Fonts... 31
Default Fonts .. 32

KJAVA TELEPHONY ... 32
Functionality .. 33

CODE EXAMPLES... 33
TIPS... 34
CAVEATS... 34

6–LIGHTWEIGHT WINDOW TOOLKIT (LWT).. 35
OVERVIEW .. 35
EXAMPLE OF A MIDLET USING LWT PACKAGE .. 35
CLASS HIERARCHY AND OVERVIEW .. 37

ComponentScreen... 37
Component.. 37
ComponentListener... 38
InteractableComponent .. 38
Button ... 38
ImageLabel... 38
Checkbox .. 39
CheckboxGroup.. 39
TextComponent... 39
TextField... 40
TextArea ... 40
Slider .. 40

FUNDAMENTAL COMPONENT BEHAVIORS... 40
Component Management.. 40
Component Regions.. 41
Component States ... 42
Component Layout.. 43
Validation Cycle ... 48
Focus Management .. 49
Key Event Handling.. 50
Pointer Event Handling.. 51
Rendering ... 51
Scrolling ... 52

THE COMPONENTSCREEN CLASS .. 53
ComponentScreen Definition and Constructor... 53
ComponentScreen Methods .. 53

THE COMPONENT CLASS... 55
Component Definition and Constructor ... 56
Component Fields... 56
Component Methods... 57
Using Components.. 59

THE COMPONENTLISTENER INTERFACE .. 59
ComponentListener Interface Definition .. 59
ComponentListener Interface Methods... 60

THE INTERACTABLECOMPONENT CLASS... 60
InteractableComponent Definition and Constructor .. 60
InteractableComponent Methods.. 60

THE BUTTON CLASS.. 61
Button Class Definition and Constructors.. 61
Button Class Fields... 62
Button Class Methods... 62

THE IMAGELABEL CLASS.. 62
ImageLabel Class Definition and Constructors ... 63
ImageLabel Class Fields .. 63

4

ImageLabel Class Methods .. 64
CHECKBOX CLASS... 65

Checkbox Class Definition and Constructors... 65
Checkbox Class Fields.. 65
Checkbox Class Methods.. 66
Grouping Checkboxes... 66

THE CHECKBOXGROUP CLASS.. 67
CheckboxGroup Class Definition and Constructor.. 67
CheckboxGroup Class Fields ... 68
CheckboxGroup Class methods.. 69

THE TEXTCOMPONENT CLASS .. 70
TextComponent Class Definition and Constructor... 70
TextComponent Class Fields .. 70
TextComponent Methods .. 71

THE TEXTFIELD CLASS ... 72
TextField Class Definition and Constructor... 72
TextField Class Methods .. 72

THE TEXTAREA CLASS ... 73
TextArea Class Definition and Constructor ... 73
TextArea Class Methods... 73

THE SLIDER CLASS.. 73
Slider Class Definition and Constructor .. 74
Slider Class Fields.. 74
Slider Class Methods.. 74

7–RECORD MANAGEMENT SYSTEM (RMS).. 76
OVERVIEW .. 76
CLASS DESCRIPTION ... 76
CODE EXAMPLES... 76
TIPS... 77
CAVEATS... 77

8–J2ME™ NETWORKING.. 78
OVERVIEW .. 78
CLASS DESCRIPTIONS.. 79
HTTP.. 80
HTTPS.. 81
TCP SOCKETS ... 81
SSL SECURE SOCKETS .. 82
UDP SOCKETS... 82
SERIAL PORT ACCESS.. 82

Communicating on a Port... 84
Example using StreamConnection.. 85

IMPLEMENTATION NOTES.. 85
TIPS... 86

9–MOTOROLA GAMING API.. 87
FUNCTIONAL DESCRIPTION ... 87
CLASS HIERARCHY.. 87
BACKGROUNDMUSIC CLASS ... 88

BackgroundMusic Methods .. 88
Using BackgroundMusic .. 88

GAMESCREEN CLASS .. 88
GameScreen Fields... 88
GameScreen Methods... 89
Using GameScreen ... 91

Table of Contents

5

IMAGEUTIL CLASS .. 92
ImageUtil Fields... 92
ImageUtil Methods ... 92
Using ImageUtil ... 94

PALLETEIMAGE CLASS.. 94
PalleteImage Constructor... 95
PalleteImage Methods .. 95
Using PalleteImage .. 96

PLAYFIELD CLASS .. 96
Using Static and Animated Tiles... 97
Using Sprites .. 97
Defining View Windows.. 97
PlayField Constructor .. 98
PlayField Methods.. 99
Using PlayField.. 103

SOUNDEFFECT CLASS ... 103
SoundEffect Methods .. 103
Using SoundEffect .. 104

SPRITE CLASS.. 104
Animation Frames .. 104
Sprite Drawing ... 104
Sprite Constructor .. 105
Sprite Methods.. 106
Using Sprite .. 108

FILEFORMATNOTSUPPORTEDEXCEPTION ... 109
FileFormatNotSupportedException Constructors .. 109

10 - LOCATION API ... 110
LOCATION API .. 110

APPENDIX A: KEY MAPPING OF MOTOROLA A835 HANDSET ... 112
KEY MAPPING ... 112

APPENDIX B: HOW TO .. 114
DOWNLOADING TO THE DEVICE.. 114

Serial port download procedure... 114
OTA procedure ... 115

INSTALLATION .. 115
STARTING APPLICATIONS.. 117
EXITING APPLICATIONS... 117

APPENDIX C: FAQ... 118
ONLINE FAQ... 118

APPENDIX D: SUN MICROSYSTEM’S J2ME™ WIRELESS TOOLKIT 119
OVERVIEW .. 119
CUSTOMIZING THE WIRELESS TOOLKIT TO THE MOTOROLA A835 HANDSET.. 120
USING STUBBED-OUT CLASSES ... 120
PACKAGING APPLICATIONS... 121

APPENDIX E: SPEC SHEET... 122
SPEC SHEET... 122

6

1–Introduction

Purpose
This document describes the application program interfaces used to develop Motorola
compliant Java™ 2 Platform, Micro Edition (J2ME™) applications for the A835 handset
device, and a description of how to package and deploy those same J2ME applications.

Scope
This document is for all developers involved with the development of J2ME applications
for the A835 handset device.

Document Conventions

Convention Definition
<install-dir> Refers to the directory in which the Motorola SDK

components are installed.
| Either-or choice. [a | b]

1–Introduction

7

Disclaimer
Motorola reserves the right to make changes without notice to any products or services
described herein. “Typical” parameters, which may be provided in Motorola Data sheets
and/or specifications can and do vary in different applications and actual performance
may vary. Customer’s technical experts must validate all “Typicals” for each customer
application.
Motorola makes no warranty with regard to the products or services contained herein.
Implied warranties, including without limitation, the implied warranties of merchantability
and fitness for a particular purpose, are given only if specifically required by applicable
law. Otherwise, they are specifically excluded.
No warranty is made as to coverage, availability, or grade of service provided by the
products or services, whether through a service provider or otherwise.
No warranty is made that the software will meet your requirements or will work in
combination with any hardware or applications software products provided by third
parties, that the operation of the software products will be uninterrupted or error free, or
that all defects in the software products will be corrected.
In no event shall Motorola be liable, whether in contract or tort (including negligence) for
any damages resulting form use of a product or service described herein, or for any
indirect, incidental, special or consequential damages of any kind, or loss of revenue or
profits, loss of business, loss of information or data, or other financial loss arising out of or
in connection with the ability or inability to use the Products, to the full extent these
damages may be disclaimed by law.
Some states and other jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, or limitation on the length of an implied warranty, so the above
limitations or exclusions may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights, which
vary from jurisdiction to jurisdiction.
Motorola products or services are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may
occur.
Should the buyer purchase or use Motorola products or services for any such unintended
or unauthorized application, buyer shall release, indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacture of the product or service.

8

References
• [1] Sun™ J2ME Documentation, java.sun.com/j2me/

• [2] Sun™ MIDP Specification, java.sun.com/products/midp/

• [3] Lightweight Window Toolkit Programmer’s Guide,
www.motorola.com/developers/wireless/

• [4] J2ME Wireless Toolkit homepage,
java.sun.com/products/j2mewtoolkit/download.html

• [5] Motorola Developer Program site,
www.motorola.com/developers/wireless/

Revision History
Version Date Name Reason

1.00 Nov 04, 2002 CESAR Final draft

1.01 Nov 18, 2002 MW MDP Reformatted

1.02 Nov 22, 2002 MW MDP Revised on review

1.03 Mar 19, 2003 MW MDP Added MIDI comment to
BackgroundMusic method

1.1 November 23,
2003

Motorola Update

Definitions, Acronyms, and Abbreviations
Acronym Description

AMS Application Management Software
API Application Program Interface.

CLDC Connected Limited Device Configuration

FDI Flash Data Integrator. The memory used to store the applications.
GPS Global Positioning System

IDE Integrated Development Environment

ITU International Telecommunication Union

JAD Java Application Descriptor
JAID Java Application Installer/De-Installer

1–Introduction

9

Acronym Description

JAL Java Application Loader

JAR Java Archive. Used by J2ME applications for compression and
packaging.

J2ME Java 2 Micro Edition

JSR 120 Java Specification Request 120 defines a set of optional APIs that
provides standard access to wireless communication resources.

JVM Java Virtual Machine
KVM KJava Virtual Machine

LCC Licensee Close Classes

LWT Lightweight Window Toolkit
MDP Motorola Developers Program

MIDP Mobile Information Device Profile

OEM Original Equipment Manufacturer

OTA Over The Air
RMS Record Management System

RTOS Real Time Operating System

SC Service Center
SDK Software Development Kit

SMS Short Message Service

SU Subscribe Unit

UI User Interface
URI Location Services Unified Resource Identifier

VM Virtual Machine

10

Document Overview
This document is organized in the following sections:

• Chapter 1 – Introduction: this chapter has general information about this document. It
includes document purpose, scope, references, some definitions and location.

• Chapter 2 – J2ME Introduction: this chapter describes some tips of J2ME platform,
and the available resources on the Motorola A835 handset.

• Chapter 3 – Developing and Packaging J2ME Applications: this chapter describes
some important features to look for when selecting tools and emulation environments.
It also describes how to package a J2ME application, and generate JAR and JAD
files properly.

• Chapter 4 – Application Management: this chapter describes the lifecycle,
installation/de-installation and updating process for a MIDlet suite. It is also described
the MIDlet state machine and how to use the Java System feature option on A835.

• Chapter 5 – LCDUI: this chapter describes the Limited Connected Device User
Interface API, including the KJava Telephony API.

• Chapter 6 – LWT: this chapter describes the Lightweight Window Toolkit API.

• Chapter 7 – RMS: this chapter describes the Record Management System API.

• Chapter 8 – Networking: this chapter describes the Java Networking API.

• Chapter 9 – Gaming: this chapter describes the Gaming API.

• Chapter 10 – Location API: this chapter describes the Location API

• Appendix A – Key Mapping of Motorola A835 handset: this appendix describes the
key mapping of Motorola A835 handset including the key name, key code and game
action of all Motorola A835 keys.

• Appendix B – How to: this appendix describes the downloading, installing, removing,
starting and exiting of a MIDlet using the Motorola A835 resources.

• Appendix C – FAQ: this appendix provides a link to the dynamic FAQ.

• Appendix D – Sun’s J2ME wireless toolkit: this appendix briefly describes Sun’s
J2ME wireless toolkit documentation and the use of stubbed-out classes.

2–J2ME™ Introduction

11

2–J2ME™ Introduction

The Motorola A835 handset includes the Java™ 2 Platform, Micro Edition, also known as
the J2ME platform. The J2ME platform enables developers to easily create a variety of
Java applications ranging from business applications to games. Prior to its inclusion,
services, or applications, residing on small, consumer devices like cell phones could not
be upgraded or added without significant effort. By implementing the J2ME platform on
devices like the Motorola A835 handset, service providers as well as customers can easily
add and remove applications, allowing for quick and easy personalization of each device.
This section of the guide provides a quick overview of the J2ME environment and the
tools that can used to develop applications for the Motorola A835 handset.

The Java™ 2 Platform, Micro Edition (J2ME™)
The J2ME platform is a new, very small application environment. It is a framework for the
deployment and use of Java technology in small devices such as cell phones and pagers.
It includes a set of APIs and a virtual machine that is designed in a modular fashion
allowing for scalability among a wide range of devices.
The J2ME architecture contains three layers consisting of the Java Virtual Machine, a
Configuration Layer, and a Profile Layer. The Virtual Machine (VM) supports the
Configuration Layer by providing an interface to the host operating system. Above the VM
is the Configuration Layer, which can be thought of as the lowest common denominator of
the Java Platform available across devices of the same “horizontal market.” Built upon this
Configuration Layer is the Profile Layer, typically encompassing the presentation layer of
the Java Platform.

Profiles (MIDP)
Configurations
(CLDC)
Java VM

Host OS
Figure 1. The J2ME Platform Architecture

The Configuration Layer used in the Motorola A835 handset is the Connected Limited
Device Configuration 1.0 (CLDC 1.0) and the Profile Layer used is the Mobile Information
Device Profile 1.0 (MIDP 1.0). Together, the CLDC and MIDP provide common APIs for
I/O, simple math functionality, UI, and more.
For more information on J2ME, see the Sun™ J2ME documentation.

12

The Motorola J2ME™ Platform
Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to
implement and support. By adding to the standard APIs, manufacturers can allow
developers to access and take advantage of the unique functionality of their devices.
The Motorola A835 handset contains OEM APIs for a wide variety of extended
functionality ranging from enhanced UI to advanced data security. While the Motorola
A835 handset can run any application written in standard MIDP, it can also run
applications that take advantage of the unique functionality provided by these APIs. These
OEM APIs are described in this document.

2–J2ME™ Introduction

13

Resources Available on the Motorola A835 handset
The Motorola A835 handset allows access to a richer set of resources than our previous
Java™ capable phones. The changes range from a larger heap for Java applications to
the presence of a color display. All of the enhancements allow for more compelling and
advanced Java applications to be created. In addition to increasing resources present on
the device, new APIs to access other device resources were added. These new APIs
allow a Java application to leverage other capabilities of the device that are currently not
accessible through standard MIDP and CLDC APIs.

Display

Resolution 176 x 220

Color Depth 16 bit

Networking

Max HTTP, UDP and TCP Socket connections* 4 with any combinations

File & RMS

Max number of Files/RMS* 500

Java VM

Heap Size 512 KB

Program Space 1.2 MB

Max Resource Space* 450 KB

Recommended Maximum JAR Size 100 KB

*: These resources are shared with the rest of the phone and there could be less
available to Java at any given time.

14

3–Developing and Packaging
J2ME™ Applications

MDP - Motorola Developer Program
Motorola developed the MDP to support developers in their efforts to create and market
wireless applications. The program provides access to a wealth of services and support,
including assistance in getting application ideas to market, training classes that range
from overviews to in-depth courses, instantly accessible online technical support,
application certification and industry-leading development software.
A tiered-membership structure enables Motorola Developer Program members to join the
program at whatever level is appropriate for them, based on the level of services and
support they require. Developers in the early stages of application development, for
example, can take advantage of basic development assistance in the form of online
downloads and training materials. Those with fully mature applications, on the other hand,
can join at a higher level that provides opportunities for certification, exposure to potential
markets and other later-stage benefits.
For more information, see the Motorola Developer Program site at
www.motorola.com/developers/wireless.

Developing – Tools and Emulation Environments
In order to develop applications for a J2ME enabled device, a developer needs some
specialized tools to improve development time and prepare the application for distribution.
There are several tools available, so this overview is included to help enable developers
to make an informed decision on these tools.

Features to Look For
Numerous tools for developing J2ME applications are readily and freely available on the
market. Some of their functionalities include:

3–Developing and Packaging J2ME™ Applications

15

Class Libraries
J2ME tools include class files for the standard CLDC/MIDP specifications and may also
contain class files required to compile device specific code.
One of the main issues with the MIDP 1.0 standard is the lack of device specific
functionality. As a stopgap solution, many MIDP 1.0 device manufacturers have
implemented Licensee Open Classes that provide the features requested by developers.
In order to take advantage of these APIs, choose an SDK that natively supports them or
one that can be upgraded to support them.
API Documentation
In addition to providing the class files, most SDKs include reference documentation for the
supported APIs. These documents, typically found in either HTML or PDF format, cover
the standard CLDC/MIDP specifications as well as the device specific APIs.
Emulation Environment
Although not an absolute necessity if the device is available, most toolkits provide this
functionality for multiple devices. The main benefits of an emulation environment are the
reduction in development time as well as the ability to develop for devices not yet on the
market. The extent to which the toolkits emulate the device can vary greatly.
An emulation environment that accurately reflects how the application will look and feel on
the target device, will reduce both your development time and your frustration level. If
most of the development is going to take place on the device, then this may not be a big
consideration, but if access to the target device is limited or unavailable, accurate
emulation is a must. Look for accuracy in the font representation, display dimensions, and
pixel aspect ratio, as many wireless devices do not have square pixels.
Along the same lines as accurate look and feel, the tool should also provide accurate
performance emulation. A comprehensive tool should provide individual adjustments for
performance aspects such as network throughput, network latency, persistent file system
access time, and graphics performance. Ideally, these attributes should not only match
the target device, but also have the ability to be manually adjusted.
Application Packaging Utility
Most SDKs automatically package the application for deployment onto the target device.
Although many tools include this feature, flexibility varies widely. Look for a tool that
generates both the manifest and JAD files with the required tags as well as custom tags.
The packaging steps required to deploy an application on the Motorola A835 handset are
described in a subsequent section.
Is the SDK free?
There are numerous feature rich SDKs freely available on the market. These are not
disabled or time limited versions but rather full-blown development environments and
tools.

Packaging – Putting the Pieces Together
Once an application has been tested on an emulator and is ready for testing on the actual
device, the next step is to package the application and associated components into a

16

JAD/JAR file pair. The files contain both the MIDlet’s executable byte code along with the
required resources. Although this process is automatically performed by most SDKs and
IDEs supporting J2ME, the steps are explained and outlined here.

Compiling .java Files to .class Files
Compiling a J2ME application is no different than any other J2SE/J2EE application. By
adding the CLDC/MIDP files (whether functional or stubbed out) to the classpath, any
standard Java compiler that is JDK1.3 compliant or greater is sufficient to produce .class
files suitable for the preverification step.

Preverifying .class Files
Class files destined for the KVM must undergo a modified verification step before
deployment to the actual device. In the standard JVM found in J2SE, the class verifier is
responsible for rejecting invalid classes, classes that are not compatible, or have been
modified manually. Since this verification step is processor and time intensive, it is not
ideal to perform verification on the device. In order to preserve the low-level security
model offered by the standard JVM, the bulk of the verification step is performed on a
desktop/workstation before loading the class files onto the device. This step is known as
preverification.
During the preverification step, the class file is analyzed and a stack map is appended to
the front of the file. Although this may increase the class file size by approximately 5%, it
is necessary to ensure the class file is still valid when it reaches the target device. The
standard J2SE class verifier ignores these attributes, so they are still valid J2SE classes.

Creating a Manifest File with J2ME Specific Attributes
In addition to the class files, a manifest file for the HelloWorld MIDlet needs to be created.
Although most J2ME tools will auto generate the manifest file, it can also be created
manually using a plain text editor. The following is a sample manifest file:

MIDlet-Name: HelloWorld
MIDlet-Version: 1.0.0
MIDlet-Vendor: Motorola, Inc.
MIDlet-1: HelloWorld, , com.motorola.midlets.helloworld.HelloWorld
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0

The device’s AMS uses the manifest file to determine the number of MIDlets present
within the suite as well as the entry point to each MIDlet. Additionally, the manifest files
may contain optional tags that are accessible by the MIDlets within the MIDlet suite. For
more information, refer to the MIDP 1.0a specification �.
Notes:

3–Developing and Packaging J2ME™ Applications

17

The following attributes are mandatory and must be duplicated in both the JAR file
manifest and the JAD file. If the attributes are not identical, the application will not install.

• MIDlet-Name

• MIDlet-Version

• MIDlet-Vendor
The manifest contains MIDlet-<n> arbitrary attributes each describing a MIDlet in an
application suite.
The MIDlet-1 attribute contains three comma separated fields, the application name, the
application icon, and the application class file (entry point). The name is displayed in the
AMS user interface to represent the nth application. The application icon is currently not
used on the Motorola A835 handset and thus is ignored. To omit the icon field, simply
place a <space> in place of the icon name. The application class file is the class
extending the javax.microedition.midlet.MIDlet class for the nth
MIDlet in the suite.
The manifest file is case sensitive.
The manifest must be saved in a file called MANIFEST.MF (case sensitive) within the
meta-inf directory.

J2ME Application Naming Convention
According to Motorola MDP procedures for software development teams, you should
follow this file naming convention for applications:
<App_name>_<Phone_name>_<Type_Demo_or_Full>_<Languages_supp
orted>_VER_<version_number>

• Application name: Name of application without any specific designation

• Phone Name: Product name that this application is designed for: E.g. A835

• Type_ Demo_or_Full: D for Demo version, F for Full version.

• Languages supported: Append list of languages abbreviated by the ISO naming
convention in two letter words.
Example:
TETRIS_A835_D_FREN_VER_01_01_02.JAR
SNOOD_A835_F_DEEN_VER_03_03_01.JAD

Notes:

• The Maximum length of MIDlet suite file name is 32 characters, not including the file
extension.

• There is a limitation to length of JAD/JAR including URL used in OTA (Over-The-Air
Download) of the application. The maximum character length is 256 (JAR file name
characters plus OTA site link characters). So, for example:
MIDlet-jar-URL: http://www.handango.com/entertainment/
applicatons/720/TESTAPP_T720_F_DEEN_VER_01_01_01.JAR

18

The MIDlet-Jar-URL in this example has 90 characters, which is less than 256 and is
acceptable.

• Language Notation – For each language, appended to each other. e.g. FREN ==
French , English. Refer to http://www.geo-guide.de/
nfo/tools/languagecode.html for codes.

• Language Exceptions – No distinctions exist in the ISO guidelines for a few of the
languages. They are defined here:

− Canadian French - CF (Regular French - 'FR');

− Complex Chinese - CC (Simple Chinese - ZH);

− Brazilian Portuguese - BP (Regular "Portuguese - PT)

− Latin American (Columbian) Spanish - LS (Regular Spanish – ES)

• J2ME Application versioning convention –

• Version number: xx.yy.zz.

− xx - This is commonly referred to as Major revision number;

− yy – This is commonly referred to as Minor revision number;

− zz – This is commonly referred to as Build number

• For Preloaded (Demonstration or “Demo”) application version numbering to be:

− xx = 1 through (and including) 4 (first “x” is lead with a “0”, i.e., xx = 01, 02, 03, or
04)

• For OTA application version (Full version) numbering to be:

− xx = 5 through (and including) 9 (first “x” is lead with a “0”, i.e., xx = 05, 06, 07,
08, 09)

− The leading “0” as in the above example (01.02.02) is required;

− J2ME Application versioning convention: The complete name (all characters)
shall be in uppercase letters;

− Application shall end with .JAD or .JAR;

− Underscore ("_") must be used to separate the components of the file name,
including the version. Periods/Dots (except for those used to indicate the file
extension, i.e., “.jad”) cause issues when posted to host OTA site.

JARing .class Files and Other Resources
Once the application is ready to be packaged for the device, its class files and associated
resources must be bundled in a Java Archive (JAR) file. The JAR file format enables a
developer to bundle multiple class files and auxiliary resources into a single compressed
file format. The JAR file format provides the following benefits to the developer and end-
user:

• Portability – The file format is platform independent.

3–Developing and Packaging J2ME™ Applications

19

• Package Sealing – All classes in a package must be found in the same JAR file.

• Compression – Files in the JAR may be compressed, reducing the amount of
storage space required. Additionally, the download time of an application or
application suite is reduced.

MIDlet suite cannot be installed successfully if the JAR content has:

• Corrupted JAR file (extraction/decompression failure);

• Corrupted .class file (verification failure);

• .class file bigger than 20k ;

• Resources greater than 20K each;

• Total resources for MIDlet suite greater than 64K.

Creating the JAD file
Although the Java Application Descriptor (also known as an Application Descriptor File) is
optional in the MIDP 1.0a specification �, J2ME applications targeted for Motorola devices
must include a JAD/JAR pair. The following is a sample JAD file for a simple HelloWorld
application.

Required:
MIDlet-Name: HelloWorld
MIDlet-Version: 1.0.0
MIDlet-Vendor: Motorola, Inc.
MIDlet-Jar-URL: http://www.motorola.com
MIDlet-Jar-Size: 1939
MIDlet-Language*: EN
Mot-Program-Space-Requirement:
Mot-Data-Space-Requirement:

Optional:
MIDlet-Description: A sample HelloWorld application.
MIDlet-Info-URL:
MIDlet-Data-Size:

The JAD file may be created with any text editor and saved with the same file name prefix
as the JAR file. The mandatory MIDlet-Name, MIDlet-Version, MIDlet-Vendor must be
duplicated from the JAR file manifest. JAR files containing manifests that do not match the
JAD file will not be installed. The MIDlet-Jar-URL attribute must be described properly;
otherwise the MIDlet suite cannot be installed successfully.
Mot-Program-Space-Requirement defines the space required by the application code
once the JAR file is installed on the device.

20

Mot-Data-Space-Requirement defines the data space required by the application that
includes resources, application descriptors, and images once the JAR is installed on the
device. These are attributes in the JAD file that indicate space required in kilobytes for the
application installation. The idea is to use these custom fields to specify the actual amount
of memory required when the application is installed on a specific device. When these
attributes are present in the JAD file, the device will use this information to check against
the available memory to determine if there is sufficient memory for a successful
installation.
When using these attributes, developers should first install the application on the actual
device to get these values. The installed memory sizes are accessed by selection details
on the application menu. Once the actual values are available, the custom fields can be
entered in the JAD file to enable successful installation.
Notes:
• The file names of the JAD and JAR are not required to be identical.

• The JAD file is case sensitive. All required attributes in the JAD file must start with
“MIDlet-“, followed by the attribute name.

• The total file name length is limited to 32 characters, excluding the .jad and .jar
extensions. For example, HELWD_A835_F_DEEN_VER_03_03_01.jad occupies 30
characters.

• The MIDlet-Jar-Size must contain the accurate size of the associated JAR file. The
number is in bytes.

• It’s also important to note that these fields must have associated values with them.
Example: “MIDlet-Name: ” is not valid but “MIDlet-Name: Snake” is valid.

• One other note, in the “MIDlet-Name”, if the MIDlet is a demonstration version (demo
version) it should indicate that here. For example, “Breakout” would indicate that the
application is a full application. “Breakout Demo” would indicate a demonstration
version of the game.

• The new Space fields (Mot-Program-Space-Requirement and Mot-Data-Space-
Requirement) should be listed in KB (but without the alpha characters). In addition,
regardless of the fraction, the value should always be rounded up. So for instance, if
the Mot-Program-Space-Requirement is found to be 124.1 KB it should be listed in
the JAD file as 125.

• The MIDlet-Language field: ISO codes, see J2ME Application Naming Convention
for details. This field is for informational purposes to verify naming convention of the
JAD/JAR files. It does not invoke the language used on the phone, etc. This
information should reside in the JAR file.

One other note, for developers working on “Preloaded” (also known as “Demonstration” or
“Demo” versions) versions of applications: the “MIDlet-Name” in the JAD file must be
identical in both the Preload and Full versions of the application so that the OTA (over-
the-air) overwrite/download will work properly.
For more information regarding the JAD file, please refer to the MIDP 1.0a specification �.

3–Developing and Packaging J2ME™ Applications

21

Download to Device
After creating the JAR and JAD files, the MIDlet can be downloaded to A835 device
through Motorola WAP Browser, or through PC. Motorola distributes MIDway tool (see
Downloading to the Device) to download MIDlets through PC, and it is available at:
www.motorola.com/develoeprs/wireless/.
The download using Motorola WAP Browser does not require any additional software
resources.

22

4–Application Management

MIDlet Lifecycle
A MIDlet’s lifecycle begins once its MIDlet Suite is downloaded to the device. From that
point, the Application Management Software (AMS) manages the MIDlet Suite and its
MIDlets. The user’s primary user interface for the AMS is the Java Apps feature built into
the device’s firmware.
From the Games & Apps feature, the user can see each MIDlet Suite on the device. If a
MIDlet Suite has only a single MIDlet, then the MIDlet’s name is displayed in the Games &
Apps menu for that MIDlet Suite. Otherwise, the MIDlet Suite name is displayed. Then
when that MIDlet Suite is highlighted, the user has the option of opening the MIDlet Suite
and viewing the MIDlets in that MIDlet Suite.

Figure 2. The Games & Apps Menu

From the Games & Apps menu, the user can highlight a MIDlet Suite, selecting the Menu
soft key, and bring up the Details dialog for that MIDlet Suite. The Details dialog contains:

• MIDlet Suite Name

• MIDlet Suite Vendor

• MIDlet Suite Version

• The number of MIDlets in the MIDlet Suite

• The Data Space (MIDlet suite resources).

4–Application Management

23

• Program Space (Unpacked JAR)

Figure 3. Details Properties for a MIDlet

MIDlet Suite Installation
From the Java Tools menu, the user can install MIDlet Suites. Figure 4 shows the Java
Tools screen. A MIDlet Suite must be installed before any of its MIDlets can be executed.
Installation involves extracting the classes from the JAR file and creating an image that
will be placed into Program Space. The resources are then extracted from the JAR file
and placed into Data Space. The JAR file is then removed from the device, thus freeing
up some Data Space where it was originally downloaded.
The space savings from removing the JAR file is one advantage of installation. However,
an even greater advantage is that class loading is not done during run time. This means
that a MIDlet won’t experience slow-down when a new class is accessed. Further the
MIDlet will not have to share the heap with what has been loaded from the JAR file.

Figure 4. Java Application Loader on Java Tools

24

MIDlet Suite De-installation
An installed MIDlet can only be removed from the device by de-installing it from the Java
Apps menu. De-installing a MIDlet Suite will remove the installed image from Program
Space. The resources are then removed from Data Space along with the JAD file.
From the Games & Apps menu, the user can highlight a MIDlet Suite, selecting the menu
soft key, and bring up the Delete dialog for that MIDlet Suite (Figure 5).

Figure 5. MIDlet Suite de-installation

MIDlet Suite Updating
When a MIDlet Suite is de-installed, all of its resources are removed including any
resources that were created by the MIDlets in the suite, such as RMS databases. If a user
gets a new version of a MIDlet Suite, then the user can simply download that new version
to the device that has the older version installed. Once that new version is downloaded,
the user will have the option to update the MIDlet Suite. This will cause the old version to
be de-installed, followed by the immediate installation of the new MIDlet Suite. The only
difference is that the device will prompt the user to see if resources such as RMS
databases should be preserved while de-installing the old version. This prompt will only
occur if such resources exist.
With such a scheme, it places the burden of compatibility on the developer. A newer
version of the MIDlet Suite should know how to use, upgrade, or remove the data in the
RMS databases created by older versions. This idea of forward compatibility should not
be extended to backward compatibility, because the A835 device will not allow a user to
update a version of a MIDlet Suite with an older or equal version of that MIDlet Suite. If
the developer tries to install an older or equal version, the A835 will ignore the installation
and launch the current version of the MIDlet suite.

4–Application Management

25

Starting, Pausing, and Exiting

AMS Control of MIDlet State Transitions
A MIDlet has three different states: Destroyed, Active, and Paused. A MIDlet’s natural
state is destroyed. The AMS typically controls the transition through these states. When a
user decides to launch a MIDlet, the device puts up a screen indicating that the MIDlet is
transitioning through these states. The AMS controls the MIDlets through those states by
calling the MIDlet’s methods, startApp(), pauseApp(), and
destroyApp().

Figure 6. MIDlet Starting Screen

The constructor of the MIDlet’s class that extends MIDlet is first invoked. Then its
startApp() method is called to indicate that it’s being started. The MIDlet will have
focus when its startApp() method finishes execution. If a MIDlet takes too long
initializing state variables and preparing to be run in its constructor or startApp()
methods, it may appear to be stalled to users.

26

Starting
Application

Constructor

startApp()

Running
Application

Paused
Application

Exit
Application

pauseApp()

destroyApp()

notifyDestroyed()

Starting
Application

Constructor

startApp()

Running
Application

Paused
Application

Exit
Application

pauseApp()

destroyApp()

notifyDestroyed()

Figure 7. MIDlet State Transitions

Table 1 - State Transition Methods

Method Caller Purpose
Constructor AMS Initializes the MIDlet – should return quickly
startApp() AMS The startApp() method is called to start the

application either from a newly constructed state or
from a paused state.
If the startApp() is called from a paused
state, the MIDlet should not re-initialize the
instance variables(unless it is the desired
behavior).
The startApp() method may be called
multiple times during the lifespan of the MIDlet.
The MIDlet may set the current display to its own
Displayable from the startApp() method, but
is shown only after the startApp() returns.

When exiting a paused application, the KVM calls
startApp() first followed by a call to
destroyApp()

pauseApp() AMS,
MIDlet

The pauseApp() method is called from either

4–Application Management

27

Method Caller Purpose
AMS or from within the MIDlet.
The pauseApp() should pause active threads,
and prepare for startApp() to be called.

If the application is to be resumed with a screen
other than the present, then the Displayable should
be set current in the pauseApp().

destroyApp() AMS The destroyApp() method is called from
AMS and signals the MIDlet to clean up any
resources to prepare for termination. For example,
open RMS records should be closed, threads
should be stopped, and any other housekeeping
chores should be performed.
The MIDlet should not call destroyApp().

notifyDestroy
ed()

MIDlet The notifyDestroyed() method is called
by the MIDlet to exit and terminate itself.
All housekeeping such as stopping active threads
and closing RMS records should be performed
before calling notifyDestroyed().

notifyDestroyed() notifies AMS to
terminate the calling MIDlet.

Focus is an important concept. On a device without a windowing system, only one
application can have focus at a time. When an application has focus, it receives keypad
input, and has access to the display, speakers, LED lights, vibrator, etc. The A835 device
can only run one MIDlet at a time, but that MIDlet has to share focus with the system user
interface. That user interface is a higher priority than the MIDlet, so the MIDlet will
immediately lose focus when the system needs to handle a phone call or some other
interrupt.
The concept of focus correlates directly with the MIDlet state. i.e. when a MIDlet loses
focus because of a phone call, the MIDlet is immediately paused. Conversely to the
example of starting the MIDlet, the MIDlet loses focus immediately, then its
pauseApp() method is called.

The paused state is not clearly defined by MIDP. The only requirement placed on the
device manufacturer is that a paused MIDlet must be able to respond to network events
and timer events. On Motorola devices, the paused state simply implies that the MIDlet is
in the background as mentioned above, but it doesn’t force any of the threads to stop
execution. Essentially, a paused MIDlet is a MIDlet without focus whose pauseApp()
method has been called. It’s up to the developer to control their threads, such as making
them sleep for longer periods, completely pausing game threads, or terminating threads
that can be restarted when the MIDlet is made active again.
Similarly to the example of losing focus immediately before the pauseApp() method is
called, a MIDlet’s focus is also lost immediately before its destroyApp() method is

28

called. It’s interesting to note how a Motorola device manages the transition to the
destroyed state.
As described above, it is the MIDlet writer’s responsibility to properly implement all
methods in the javax.microedition.midlet package, especially startApp() and
pauseApp(). A common error is to implement startApp() to execute instructions
that are only intended to be executed once during MIDlet execution. The correct
implementation is to include in startApp() those instructions which can and should be
executed each time the MIDlet changes from the Paused state to the Active state. The
same logic should be applied to pauseApp().

The sample MIDlet below demonstrates one way of using startApp(). startApp()
performs operations for the initial launch of the MIDlet as well as any operations that need
to take place each time the MIDlet changes state from Paused to Active. Booleans are
used to determine whether the MIDlet has started and whether it’s in the Active state.
These Booleans can also be used by other MIDlet threads to determine state.

package midp.demo;
import javax.microedition.midlet.MIDlet;

public class Demo extends MIDlet {
// The MIDlet has been started already
private boolean isStarted = false;

// The MIDlet is in active state
public boolean isActive = false;
// (in most cases these booleans are used by other threads)

protected void destroyApp(boolean unconditional){
 isActive = false;
}
protected void pauseApp(){
 isActive = false;
}
protected void startApp(){
 isActive = true;
 if (!isStarted){
 //...Use getDisplay(), setCurrent(),
 // and other initial actions
 isStarted = true;
 }
}

}

MIDlet developers should be aware that not all MIDlets found on the World Wide Web or
elsewhere will necessarily execute flawlessly on all J2ME devices. This is certainly true for

4–Application Management

29

MIDlet state transitioning. The MIDP specification of
javax.microedition.midlet allows for some latitude in the implementation.
Therefore, it cannot be assumed that all MIDlets are perfectly compatible with all devices.
Also, some MIDlets may execute flawlessly on desktop simulators such as Sun’s Wireless
Toolkit [see item 4]. However, these simulators in general have no way of loosing and
gaining focus such that the MIDlet transitions between the Paused and Active states and
startApp() and pauseApp() are called.

MIDlet Control of MIDlet State Transitions
A MIDlet has a lot of flexibility to control its own state. A MIDlet can call its own
startApp(), pauseApp(), and destroyApp() methods. However those
are the methods that the AMS uses to indicate a state transition to the MIDlet, so this
won’t actually cause the state transition. The MIDlet can simply call those methods if it
wishes to perform the work that it would typically do during that state transition.
There are another set of methods that the MIDlet can use to cause state transitions. They
are resumeRequest(), notifyPaused(), and
notifyDestroyed(). Since the system user interface has priority, a MIDlet
cannot force itself into the active state, but it can request that it be resumed via a
resumeRequest(). If the system is not busy, then it will automatically grant the
request. However if the device wasn’t in the idle screen, then it displays an alert dialog to
ask the user if they’d like to resume the MIDlet. If the user denies the request, then the
MIDlet is not notified. However if the user grants the request, the MIDlet’s
startApp() method is called, and it gains focus when that finishes.

The MIDlet does have more control when it decides that it wants to be paused or
destroyed. It simply performs the necessary work by calling its own pauseApp() or
destroyApp() method, then it notify the AMS of its intentions by calling
notifyPaused() and notifyDestroyed() appropriately. Once notified, the
AMS transition the MIDlet’s state and revoke focus.

30

Java System
Besides managing MIDlet Suites from the Java Tools Menu, you can also perform system
maintenance. The Java System feature gives statistics about the system such as:

• CLDC Version

• MIDP Version

• Data Space (Free space)

• Program Space (Free space)

• Total Heap Size

Figure 8. Java System Menu

5–Limited Connected Device
User Interface (LCDUI)

31

5–Limited Connected Device
User Interface (LCDUI)

Overview
The default user interface package for MIDP is LCDUI. It provides several UI components
that a developer can use to build an application quickly. If more control over the UI is
needed, the LCDUI Canvas class can be used to draw images, basic primitive shapes,
and receive raw key presses.
The Motorola A835 handset currently supports the PNG with Transparency image type.

Class Description
The API for the LCDUI is located in the package:
javax.microedition.lcdui

Available Fonts
As MIDP states the Font class represents fonts and font metrics. Fonts cannot be created
by applications. Instead, applications query for fonts based on font attributes and the
system will attempt to provide a font that matches the requested attributes as closely as
possible. A Font's attributes are style, size, and face. The style value may be combined
using the OR operator whereas the size and face attributes cannot be combined.

Fonts
The Motorola A835 handset offers different sizes, styles, and faces. The following table
describes these fonts:

32

Font Faces
FACE_PROPORTIONAL Each font has a variable width and a fixed height.
FACE_MONOSPACE Each font has a fixed width and height.
FACE_SYSTEM Each font has a variable width and a fixed height. These

fonts are used in the ergonomics of the Motorola A835
handset.

Font Sizes
SIZE_SMALL The Motorola A835 handset offers small size fonts for all 3

font faces.
SIZE_MEDIUM The Motorola A835 handset offers medium size fonts for all

3 font faces.
SIZE_LARGE The Motorola A835 handset offers large size fonts for all 3

font faces.

Font Styles
STYLE_PLAIN The Motorola A835 handset offers plain style fonts for all 3

font faces and sizes.
STYLE_UNDERLINED The Motorola A835 handset offers underlined style fonts for

all 3 font faces and sizes.
STYLE_BOLD The Motorola A835 handset offers bold style fonts for all 3

font faces and sizes.
STYLE_ITALIC The Motorola A835 handset does not offer any italic font

styles.

Default Fonts
The default font is set to FACE_SYSTEM, SIZE_MEDIUM, and STYLE_PLAIN for all
LCDUI components.

kJava Telephony
This feature allows the user to have ability to press SEND key and make a call using
phone number from current selected TextField with PHONENUMBER attribute (see
Sun™ MIDP Specification [2], javax.microedition.lcdui.TextField class).
The user is asked to confirm the action before any voice call is made. This feature asks
the user to confirm the return to the application after completion of the call.

5–Limited Connected Device
User Interface (LCDUI)

33

Functionality
The MIDlet application can specify a special attribute for TextField of MIDP to
indicate it is a phone number. The application shows the TextField on the screen
and the user should select this field before making a call.
The user presses the send key to set up a call from the TextField and the product
shows a confirmation dialog and asks the user permission to setup a voice call to the
number indicated in the TextField.

After user's confirmation, the Calling Application API (implemented on KVM) provides a
voice call on the A835 device.
After call termination, the A835 shows a confirmation dialog and asks the user to abort or
to return to the MIDlet application execution.
Selecting the return to the application, the execution of the KVM is suspended to
guarantee return to current state of the application.
The current implementation of TextField supports only digits in a field with
PHONENUMBER attribute. The following characters can be added to a phone number
digit string and are stored in Motorola A835 handsetbook:

• Pause character to create a timed delay during call setup. It is represented by a lower
case 'p'.

• Wait character to create an untimed delay during call setup. It is represented by a
lower case 'w'.

• A 'n' character is used to represent a variable phone number to be selected during
call setup.

• An international dialing prefix for GSM, it is represented as '+' character.

Code Examples
Below is a simple example on how to create a simple traversable list using standard
LCDUI widgets. In this example, we create a simple menu that allows the selection of
multiple food items.

/* Our list of foods */

String foodList[] = {“Apple”, ”Cookies”, ”Cake”, ”Oranges”, ”Cheese
Burger”, ”Ice Cream”};

/* create a form with a title List Form */

Form myForm = new Form(“Food Menu”);

/**

 * Create a choice group with the foodList.

 * Also make the choice group be able to accept multiple

34

 * Choices from the list.

 */

ChoiceGroup foodChoice = new

 ChoiceGroup(“Lunch”,Choice.MULTIPLE,foodList,null);

/* append the list to our form */

myForm.append(foodChoice);

/* now display the menu */

display.setCurrent(myForm);

Tips
Although the Canvas class provides a high level of control over a display, using a canvas
for every screen produces larger classes and more of them. Developers can save a lot of
space in the MIDlet Suites, if they make use of standard LCDUI components when
possible.

Caveats
When using Canvas’s getWidth() and getHeight() methods, the available screen
area is returned. The available screen area is the full screen area excluding the command
soft key area. If your Canvas possesses LCDUI Command objects, that area will be used
uniquely for rendering of the commands. This will cause the total available space for
drawing to be reduced by the amount of space the commands take up. The amount of
space required for the command area is equal to the font height plus two pixels for
borders.

6–Lightweight Window
Toolkit (LWT)

35

6–Lightweight Window
Toolkit (LWT)

Overview
The Lightweight Window Toolkit (LWT) is an extension of the Java 2 Platform, Micro
Edition (J2ME) MIDP specification. LWT addresses the limitations of the MIDP user
interface APIs known as LCDUI. Specifically, LCDUI does not provide a developer with
complete control over screen layouts, nor does it permit using custom components or
extending existing components. LWT solves these problems. Designed to enhance user
interface capabilities, LWT is a key enabler for the development of full-featured
applications on mobile devices. It is especially valuable for delivering a rich user
experience on more capable mobile devices otherwise constrained by LCDUI’s limited
capabilities.
The Motorola LWT API is described in more details on LWT Programmer’s Guide �.

Example of a MIDlet using LWT package
The following example illustrates the creation of the classical “Hello World” program using
the LWT package.

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import com.motorola.lwt.*;
import java.io.IOException;

public class HelloLWTWorld extends MIDlet {

Display display;
ComponentScreen scr;
ImageLabel label;

public HelloLWTWorld() {

// get display

36

display = Display.getDisplay(this);

// create the ComponentScreen
scr = new ComponentScreen();

// create ImageLabel
label = new ImageLabel(null, null, "Hello LWT World!");

// place the ImageLabel in the center of the screen
label.setLeftEdge(Component.SCREEN_HCENTER,
 -label.getPreferredWidth()/2);
label.setTopEdge(Component.SCREEN_TOP,
 (scr.getHeight()-label.getPreferredHeight())/2);

// add ImageLabel to the ComponentScreen
scr.add(label);

}

public void startApp() {
 display.setCurrent(scr);
}

public void pauseApp() {

}

public void destroyApp(boolean b) {

}

}

The main concept illustrated in the example is the creation of a container, the
ComponentScreen, and the addition of a Component, the ImageLabel. This example will
be revisited later to cover the details regarding the location and dimension of the
Component.

6–Lightweight Window
Toolkit (LWT)

37

Class hierarchy and Overview
The following diagram shows the class hierarchy of LWT.

Canvas
(from javax.microedition.lcdui)

ComponentScreen

Component TextComponent

TextFieldTextArea

ComponentListener
<<Interface>>

Slider

ButtonImageLabel Checkbox Checkbox
Group

Interactable
Component

javax.microedition.lcdui com.motorola.lwt

Canvas
(from javax.microedition.lcdui)

ComponentScreen

Component TextComponent

TextFieldTextArea

ComponentListener
<<Interface>>

Slider

ButtonImageLabel Checkbox Checkbox
Group

Interactable
Component

javax.microedition.lcdui com.motorola.lwt

Figure 9. LWT class hierarchy

ComponentScreen
The ComponentScreen class is the top-level container in an LWT user
interface. As a subclass of LCDUI’s Canvas, it can be interchanged with other
LCDUI screens such as Canvas, Form, and Alert.
ComponentScreen inherits several methods from Canvas that provide the
mechanisms for handling input events and repainting; thus, the interface to LCDUI is
accomplished using the published APIs, and LWT can be integrated with any MIDP-
compliant implementation.

Component
Component is the abstract base class of all LWT user interface entities that can be
added to a ComponentScreen.

38

ComponentListener
The ComponentListener interface is implemented by any class that
receives events from a Component. The ComponentListener is notified
of an event by calling its processComponentEvent method with the source
Component reference and an integer identifying the event type.

InteractableComponent
InteractableComponent is the abstract base class of the components that a
user can ‘press’ and ‘release’. Such components include buttons, checkboxes, and icons.
This class serves to reduce code size and complexity of its subclasses by providing the
basic interaction functionality. An InteractableComponent is actuated by
tapping and releasing within its bounds, or by pressing and releasing the Enter key when
the component has focus.

Button
Button is a basic button that a user can actuate. A button can display text to convey
its meaning. The text font is the only customizable attribute of the Button class.

ImageLabel
An ImageLabel is a general-purpose component that can display an image and/or a
text label; it can be an interactive or a read-only component.

Image

If an image is displayed, a developer can use either a single image or multiple images to
reflect a component’s different states (such as pressed, disabled, etc.).

Text

If text is displayed, a developer can specify the text, its color, and its font.

Label Location

If both text and an image are displayed, the location of the text relative to the image can
be specified as:

• Above: The label is displayed centered above the image

• Below: The label is displayed centered below the image

6–Lightweight Window
Toolkit (LWT)

39

• Left: The label is displayed centered to the left of the image

• Right: The label is displayed centered to the right of the image

• Centered: The label is displayed centered on the image

Alignment

Regardless of what is displayed (text, image, or both), the collective alignment of the
image and/or text within the bounds of the ImageLabel may be specified as:

• North: The image and label both are displayed in the top half of the ImageLabel

• South: The image and label both are displayed in the bottom half of the
ImageLabel

• East: The image and label both are displayed in the right half of the ImageLabel

• West: The image and label both are displayed in the left half of the Imagelabel

• Centered: The image and label both are displayed centered on the ImageLabel

Checkbox
Used as is, Checkbox provides a single, independent boolean choice. A Checkbox
displays text to convey its meaning. For example, a series of Checkboxes can allow
a user to select toppings for a burger.

CheckboxGroup
A CheckboxGroup is a non-UI object that manages one or more Checkboxes. It
can be configured to enforce multiple selection or exclusive selection rules, and can be
used to query the current values of the checkboxes. When used in conjunction with a
CheckboxGroup, Checkboxes can provide a list of exclusive choices in the form
of radio buttons or a list. To continue the above example, a user can select how a burger
is cooked using several Checkboxes and a CheckboxGroup, either as a series
of radio buttons or a list. Checkboxes can be added to or removed from a
CheckboxGroup as needed. Checkboxes must still be added to the
ComponentScreen; adding them to the CheckboxGroup only impacts their
behavior.

TextComponent
TextComponent is the abstract base class for components that can display and edit
text. It provides common functionality such as text manipulation, constraints, and input
event handling.

40

TextField
TextField is a single-line TextComponent designed to display and edit text.
TextField supports horizontal scrolling only.

TextArea
TextArea is a multi-line TextComponent designed for displaying and editing
text. TextArea supports vertical scrolling only.

Slider
The Slider is a gauge-type component that provides a graphical representation of a
numeric value. A Slider can be read-only or adjustable. A read-only Slider might
be used to indicate memory usage or battery level; an adjustable Slider might be
used to adjust a volume level. The current value of a Slider represents the current
setting or level of the Slider, which can be between 0 and the maximum value,
inclusive. The maximum value of a Slider may be set programmatically to any non-
negative integer value. A Slider does not include a label. A developer can add
labels and icons to the ComponentScreen to indicate meanings, endpoint values,
etc.

Fundamental Component Behaviors
At the heart of LWT are the ComponentScreen and Component classes;
together, they provide the bulk of LWT’s basic functionality. This section describes the
fundamental behaviors exhibited by ComponentScreen and Component. There
are compelling reasons for describing these behaviors and their mechanisms in detail.
First, it allows developers to fully exploit the APIs and minimize redundant code. Second,
it enables developers to customize behavior without the risk of side effects.

Component Management

Containership Rules

Components can be added and removed from a ComponentScreen. A
ComponentScreen cannot be added to another ComponentScreen, and a
Component cannot be added to another Component. A Component can have
only one parent ComponentScreen at a time, and it can be added to a given
ComponentScreen only once. Whenever a Component is added to a

6–Lightweight Window
Toolkit (LWT)

41

ComponentScreen, it is first removed from the current parent if one exists, thereby
ensuring that these two rules are enforced.

Component Indices

A ComponentScreen maintains an ordered list of its child components and assigns
each one a unique index. The index of a component indicates its position in the list where
0 is the first component, and the highest index is the last component. Indices are always
consecutive, so the index for a given component may change if other components are
added or removed from the same ComponentScreen. For example, if a component
is added in the middle of the list, the indices of the subsequent components will be
incremented to account for the inserted component.
A component may be inserted at a specific valid index, or it may be simply appended at
the end of the list and automatically assigned the next index. A component’s index is
significant since it implies Z-order and dictates the order in which layout and focus
traversal are performed.

Z-Order

The component with the highest index is considered closest to the user, as shown below.

Figure 10. Z-Order

Component Regions
Each component occupies a rectangular region of its parent ComponentScreen. A
component receives pointer events that occur within its rectangular region, and is
responsible for rendering the pixels within its region. A component may render itself as an
ellipse, a triangle, a cloud, etc., but its bounding region is always rectangular.

42

Region Parameters

The region is fully described by the location of the upper-left corner of the component and
by the component’s width and height. The location of the upper-left corner is relative to
the ComponentScreen’s origin and is based on the MIDP coordinate system. Width and
height are expressed in terms of pixels. A developer can query the bounds of a
component by calling getX(), getY(), getWidth(), and getHeight() on
the component.

Figure 11. Region Parameters

Preferred Size

Each Component subclass must implement the methods
getPreferredWidth() and getPreferredHeight(). Together, these
two methods specify the ideal dimensions of a given component instance. Even for the
same class, different instances may specify different preferred sizes to reflect the length
of a text label, size of an image, etc. The preferredWidthChanged() method
must be called whenever the preferred width of the component changes. Similarly, the
preferredHeightChanged() method must be called whenever the preferred
height of the component changes. For standard LWT components, these methods are
automatically called when a relevant parameter is changed; for custom components, it is a
developer’s responsibility to call these methods whenever a change is made that impacts
the preferred width or height of the component.

Component States
Each Component instance carries state information. Subclasses may introduce
additional state information as needed. The pre-defined states are:

• Visibility

• Enabling

6–Lightweight Window
Toolkit (LWT)

43

Visibility

A visible component is shown to a user, whereas an invisible component is not.
Components may be hidden to conceal portions of the user interface that are not relevant,
thereby simplifying the user interface. By default, all components are initially visible.

Enabling

Enabling indicates whether or not a component is currently available to a user. Enabling
and disabling is useful for conveying the availability of certain features that may be
temporarily unavailable based on the current context. For example, a View button should
be disabled if the corresponding list contains no items. By default, all components are
initially enabled.

Component Layout
To meet LWT’s design goals, the layout model is designed to provide a developer with
complete control over component placement and size. Although this approach provides
the greatest flexibility, it can result in fairly large applications, especially if the application
must automatically adjust its layout to account for different display and component sizes.
Therefore, the LWT layout model also incorporates several features that enable the
creation of adaptable complex layouts with very little code; furthermore, the execution of
these layouts is inherently efficient.

Layout Model

A component’s region is specified in terms of its left, right, top, and bottom edges.

Figure 12. Component Layout

A developer can independently specify the location of each edge using one of several
schemes. An accompanying value controls the location of the edge according to the
scheme selected.

44

Offset Conventions

For all schemes that use an offset, the offset values extend down and to the right. That is,
a horizontal offset extends to the right for positive values and to the left for negative
values. Similarly, a vertical offset extends down for positive values and up for negative
values.

Centering

Whenever components are centered, the location is obtained by truncating the mean of
the two endpoints. This convention permits the use of a bit shift rather than a more
complex division operation to determine the center. Mathematically, the center point
between A and B is defined as (A + B) >> 1.

Left Edge

The following schemes may be used for specifying the location of a component’s left
edge:

Scheme Behavior
SCREEN_LEFT (default) The accompanying value describes the

edge’s offset from the left edge of the
screen.

SCREEN_HCENTER The accompanying value describes the
edge’s offset from the center of the
screen.

SCREEN_RIGHT The accompanying value describes the
edge’s offset from the right edge of the
screen.

PREVIOUS_COMPONENT_LEFT * The accompanying value describes the
edge’s offset from the left edge of the
previous component.

PREVIOUS_COMPONENT_HCENTER * The accompanying value describes the
edge’s offset from the center of the
previous component;

PREVIOUS_COMPONENT_RIGHT * The accompanying value describes the
edge’s offset from the right edge of the
previous component.

* Interpreted as SCREEN_LEFT if there is no previous component.

6–Lightweight Window
Toolkit (LWT)

45

SCREEN_LEFT SCREEN_HCENTER SCREEN_RIGHT

PREVIOUS_

COMPONENT_LEFT
PREVIOUS_
COMPONENT_
HCENTER

PREVIOUS_
COMPONENT_RIGHT

Figure 13. Left edge

Right Edge

The following schemes may be used for specifying the location of a component’s right
edge. Developers should use PREFERRED_WIDTH wherever feasible to maximize
application portability across different devices.

Scheme Behavior
SCREEN_LEFT The accompanying value describes the

edge’s offset from the left edge of the screen
SCREEN_HCENTER The accompanying value describes the

edge’s offset from the center of the screen
SCREEN_RIGHT The accompanying value describes the

edge’s offset from the right edge of the
screen

PREVIOUS_COMPONENT_LEFT * The accompanying value describes the
edge’s offset from the left edge of the
previous component

PREVIOUS_COMPONENT_HCENTER
*

The accompanying value describes the
edge’s offset from the center of the previous
component

PREVIOUS_COMPONENT_RIGHT * The accompanying value describes the
edge’s offset from the right edge of the
previous component

46

Scheme Behavior
WIDTH The right edge is located such that the

component’s width is equal the
accompanying value

PREFERRED_WIDTH (default) The right edge is located such that the
component’s width is equal to its preferred
width plus the accompanying value

* The component is set to its preferred width if there is no previous component.

SCREEN_LEFT SCREEN_HCENTER SCREEN_RIGHT

PREVIOUS_

COMPONENT_LEFT
PREVIOUS_
COMPONENT_
HCENTER

PREVIOUS_
COMPONENT_RIGHT

WIDTH PREFERRED_WIDTH

Figure 14. Right Edge

Top Edge

The following schemes may be used for specifying the location of a component’s top
edge:

Scheme Behavior

6–Lightweight Window
Toolkit (LWT)

47

SCREEN_TOP The accompanying value describes the
edge’s offset from the top edge of the screen.

PREVIOUS_COMPONENT_TOP * The accompanying value describes the
edge’s offset from the top edge of the
previous component.

PREVIOUS_COMPONENT_VCENTER
*

The accompanying value describes the
edge’s offset from the center of the previous
component.

PREVIOUS_COMPONENT_BOTTOM
*(default)

The accompanying value describes the
edge’s offset from the bottom edge of the
previous component.

* Interpreted as SCREEN_TOP if there is no previous component.

SCREEN_TOP PREVIOUS_COMPONENT_TOP

PREVIOUS_COMPONENT_VCENTER PREVIOUS_COMPONENT_BOTTOM

Figure 15. Top Edge

Bottom Edge

The following schemes may be used for specifying the location of a component’s
bottom edge. Developers should use PREFERRED_HEIGHT wherever feasible
to maximize application portability across different devices.

Scheme Behavior
SCREEN_TOP The accompanying value describes the

edge’s offset from the top edge of the
screen

PREVIOUS_COMPONENT_TOP *

The accompanying value describes the
edge’s offset from the top edge of the
previous component

48

Scheme Behavior
PREVIOUS_COMPONENT_VCENTER * The accompanying value describes the

edge’s offset from the center of the
previous component

PREVIOUS_COMPONENT_BOTTOM * The accompanying value describes the
edge’s offset from the bottom edge of
the previous component

HEIGHT The bottom edge is located such that
the component’s height is equal the
accompanying value

PREFERRED_HEIGHT (default) The bottom edge is located such that
the component’s height is equal to its
preferred height plus the
accompanying value

* The component is set to its preferred height if there is no previous component.

SCREEN_TOP PREVIOUS_

COMPONENT_TOP
PREVIOUS_
COMPONENT_
VCENTER

PREVIOUS_
COMPONENT_
BOTTOM

HEIGHT PREFERRED_
HEIGHT

Figure 16. Bottom Edge

Validation Cycle
To minimize redundant layout computations, the ComponentScreen tracks the
state of its layout and computes its layout only when necessary. This mechanism
effectively consolidates requests for layout computation and defers the layout process
until updated component bounds are actually needed.

6–Lightweight Window
Toolkit (LWT)

49

Invalidation

A ComponentScreen becomes invalid when a change is made that could
potentially alter the layout of its components. Such changes include adding or removing
components and changing the edge specifications or visibility of a child component. When
such a change is made, the affected ComponentScreen automatically becomes
invalid. A ComponentScreen can be programmatically made invalid by calling
invalidate().

Changes to Preferred Width and Height

For some components, the preferred size is dependent on component-specific attributes
such as label width, image size, font, etc. In such cases, a change to one of these
attributes may result in a change to the preferred width or height. When such a change
occurs, the component must call preferredWidthChanged() or
preferredHeightChanged(), respectively. These methods invalidate the
parent if the preferred dimension is currently being used for the component’s layout;
otherwise the change is irrelevant and invalidation is not required.

Validation Process

An invalid ComponentScreen becomes valid by ensuring that the layout of its
children is up to date. The process of validation involves checking whether or not the
ComponentScreen is invalid; if so, the doLayout() method is called and the
ComponentScreen then becomes valid.

Layout Process

The doLayout() method computes the location of left, right, top, and bottom edges
for each component based on their schemes and accompanying values. The components
are processed in ascending index order. Invisible components are ignored by the layout
process; their edges are not computed and they never become the previous component.

Validation Triggers

Validation automatically occurs prior to any operation that relies on accurate component
layout information, specifically rendering and pointer event dispatching. A developer can
programmatically force validation to occur by calling validate().

Focus Management
Each ComponentScreen instance keeps track of its current focus owner. The
focus owner is the component within the ComponentScreen that receives key
events. By default, the focus owner is null indicating that no component is currently
receiving key events; in this case, the ComponentScreen continues to receive key

50

events but does not dispatch them to a component. The focus owner may also become
null if the current focus owner is removed or is no longer eligible to maintain focus.

Focus Acceptance

A component may indicate whether or not it is interested in ever becoming the focus
owner by setting the Boolean field acceptsKeyFocus to the appropriate value. If this field
is set to true, the component may gain focus; if false, the component will never gain focus.

Focus Eligibility

In order to be eligible to gain focus, the component must be visible, enabled, and have its
acceptsKeyFocus field set to true.

Focus Traversal

The user may traverse focus by the appropriate keys on the device. Focus traversal
occurs in component index order and skips any components that are not eligible to
receive focus. Focus traversal wraps from the last component to the first component and
vice versa. Focus traversal can also be triggered programmatically by calling
focusNext(), focusPrevious(), focusFirst(), and
focusLast().

Requesting Focus

A component may programmatically request focus by calling requestFocus().

Focus Notifications

Whenever a component gains key focus, its gainedFocus method is called.
Similarly, its lostFocus method is called whenever it loses focus. A component can
query whether or not it has focus by calling hasFocus().

Key Event Handling
Key events are dispatched to the current ComponentScreen through the three
methods defined in LCDUI’s Canvas. The default implementations of these methods in
ComponentScreen check if there is a current focus owner and dispatch the event
to that component, if any. Subclasses may override these methods to implement custom
key event handling.
Key events are dispatched to the component through these three methods:
keyPressed, keyRepeated, and keyReleased. These methods return a
Boolean to indicate if the component consumed the key event, thereby allowing

6–Lightweight Window
Toolkit (LWT)

51

ComponentScreen subclasses to implement default behaviors for unconsumed key
events.

Pointer Event Handling
Pointer events are dispatched to the current ComponentScreen by means of the
three methods defined in LCDUI’s Canvas. The default implementations of these
methods in ComponentScreen dispatch these events to the appropriate target
component. Subclasses may override these methods to implement custom pointer event
handling.

Pointer Event Targeting

A component becomes the target when a pointer-pressed event occurs within its bounds.
The search for the component is performed in descending index order to implement the
correct Zorder; in the event that components overlap, the component with the highest
index (i.e., closest to the user) becomes the target. Invisible and disabled components are
ignored when searching for the target.
Once it becomes the target, a component continues to be the target until the pointer is
released. Therefore, a component may receive pointer-drag and release events outside of
its bounds.

Rendering

Component Screen Rendering

The ComponentScreen is rendered by a call to its paint() method. By default,
this method first clears the background (i.e., fills it with white pixels) and then renders its
components by calling paintComponents. ComponentScreen subclasses
may override the default paint() method to implement special backgrounds or to
render other artifacts on the screen.
The paintComponents method renders the components in ascending index order.
If the components overlap, the component with the highest index is rendered last and
appears to be closest to the user, thereby implementing the correct Z-order. Invisible
components are not rendered.

Component Rendering

A component is rendered by a call to its paint method. The provided Graphics object
is translated such that its origin is located at the upper-left corner of the component. Also,
the clip region of the Graphics object is intersected with the bounds of the component.

52

Components Are Transparent

Since the ComponentScreen is responsible for rendering the background,
Component does not clear the background prior to rendering. Rendering of the
background by Component is redundant and reduces performance.

States That Impact Appearance

A component must render itself in a manner that conveys its current state to the user. All
components must render themselves to reflect the following mutually exclusive states:

• Normal – Normal appearance

• Disabled – Should be grayed out or drawn with dotted lines instead of solid lines.

• Focus Owner – Normal appearance with a thick border (a component needs to
support this state only if it accepts key focus)

Component subclasses may include additional states or attributes that affect their
appearance; these should also be accounted for by the rendering code.

Scrolling
ComponentScreen supports vertical scrolling, but does not support horizontal
scrolling.

Enabling and Disabling Scrolling

Scrolling is automatically enabled by the native user interface if the bottom edge of the
last component extends past the bottom of the screen. In other words, scrolling support is
provided when it is needed, and may be removed when it is not needed.

Focus-Driven Scrolling

Whenever a component receives key event focus, the screen is automatically scrolled
when necessary to ensure that the component is visible to the user.

User Interface Scrolling

It is the responsibility of the implementation and native user interface to provide the user
with the ability to control the scroll position.

Programmatic Scrolling

A developer can query and set the scroll position programmatically. However, a developer
is not permitted to explicitly enable or disable scrolling since that functionality is implicitly
provided by the device.

6–Lightweight Window
Toolkit (LWT)

53

The ComponentScreen Class
The ComponentScreen class extends the Canvas class, and forms the basis for
all LWT screen layouts. An application defines a user interface screen by creating a
ComponentScreen and then adding the desired LWT components to it. With this
class, a developer can create a screen from an arbitrary mix of components, including
special component subclasses. It also provides the developer with complete control over
the screen layout.

ComponentScreen Definition and Constructor
The ComponentScreen class is defined by: public class
ComponentScreen extends
javax.microedition.lcdui.Canvas

Its only constructor is:

• public ComponentScreen()

ComponentScreen Methods
In addition to the methods described in this section, a ComponentScreen inherits
many methods from the javax.microedition.lcdui.Canvas,
java.lang.Object and
javax.microedition.lcdui.Displayable classes. These inherited
methods are listed in the LWT API documentation.
The methods specifically defined by ComponentScreen are:

• void add (Component w) – adds a Component to the
ComponentScreen;

• protected void doLayout () – recomputes the layout of the
Components according to the edge specifications for each component;

• Component getComponent (int index) – gets the Component at the
specified index;

• int getComponentCount () – gets the number of Components currently
contained in this screen;

• Component getFocusOwner () – gets the Component that currently has
key event focus;

• int getScrollOffset() - gets the current vertical scroll offset;

• int getWidth() - gets the width of the ComponentScreen;

• void insert(Component comp, int index) - inserts a Component
to the screen at the specified index;

54

• void invalidate() - invalidates this ComponentScreen, indicating that
its component layouts need to be recalculated;

• protected void keyPressed(int keyCode) - called when a key is
pressed;

• protected void keyReleased(int keyCode) - called when a key is
released;

• protected void keyRepeated(int keyCode) - called when a key is
repeated (held down);

• void paint(javax.microedition.lcdui.Graphics g) - renders the
screen;

• protected void
paintComponents(javax.microedition.lcdui.Graphics g) –
renders the Components;

• protected void pointerDragged(int x, int y) - called when the
pointer is dragged;

• protected void pointerPressed(int x, int y) - called when the
pointer is pressed;

• protected void pointerReleased(int x, int y) - called when the
pointer is released;

• void remove(Component comp) - removes the specified Component
from the screen;

• void remove(int index) - removes the Component at the specified
index from the screen;

• void removeAll() - removes all Components from this screen;

• void scrollTo(Component comp) – scrolls to the specified Component.
This method ensures that the screen’s scroll position is adjusted to show as much as
possible of the specified Component;

• void setFocusFirst() - moves key event focus to the first Component
that accepts focus;

• void setFocusLast() - moves key event focus to the last Component that
accepts focus;

• void setFocusNext() - moves key event focus to the next Component
that accepts focus;

• void setFocusPrevious() - moves key event focus to the previous
Component that accepts focus;

• void setScrollOffset(int offset) - sets the vertical scroll offset;

• protected void showNotify() - called when the ComponentScreen
is shown;

• void validate() - validates this ComponentScreen;

6–Lightweight Window
Toolkit (LWT)

55

Detailed information about using these methods is available in the LWT API
documentation [3].
The first LWT class you should instantiate is a ComponentScreen, which will form
the basis for laying out the LWT components to be displayed. If your application will use
several screens, it may be worth creating a subclass that all of the screens can inherit
from. For example:

/**
* Superclass for all of the demo screens, provides the
next/previous commands
**/

class DemoScreen extends ComponentScreen {

public DemoScreen() {
Command next = new Command("Next", Command.OK, 1);
Command prev = new Command("Previous", Command.BACK, 1);
addCommand(next);
addCommand(prev);

}
}

This class allows you to build a number of screens which have ‘Previous’ and ‘Next’
command buttons in addition to whatever components you decide to place on the
individual screens.

The Component Class
The Component class is the abstract base class from which the various LWT
components are descended. Each subclass descended from the Component class
must implement methods to render the Component, provide preferred width and
height, and optionally, to handle events.
A Component is a single user interface object that occupies a rectangular region of its
parent ComponentScreen. A Component can belong only to a single screen. If
a program attempts to add a Component to a second screen, it will first be removed
from its current screen (which could be the screen that it is being added to) before it is
added to the second screen.
The location and size of a Component is determined by specifying where the left,
right, top and bottom edges are located. The location of each edge can be specified using
one of several schemes, including offsets relative to the preceding Component, as
defined in Section 3.4 of this document. By default, a Component will be set to its
preferred size, and will be aligned with the left edge of the screen directly beneath the
preceding Component.

A Component must provide a paint method to render itself. The Graphics object
passed to the Component's paint() method is translated so that the origin is
located at the upper left corner of the Component.

56

If desired, a Component can respond to key and pointer events by overriding the
appropriate methods (keyPressed(), pointerDragged(), etc.) In order to
receive key event focus, a Component must have acceptsKeyFocus set to
true, and it must be visible and enabled. Provided the parent screen is shown, the
Component with key event focus will receive all key events.

Component Definition and Constructor
The Component class is defined by:

public abstract class Component extends java.lang.Object

Its only constructor is:

• public Component()

Component Fields
These constants define the values used by the programmer to define where the
Component code should place and size the Component on the screen, as well as
to define its ability to interact with the user. These constants are typically passed to some
of the methods defined below to indicate from where the Component location value
is to be measured.

• protected boolean acceptsKeyFocus – indicates if this Component
accepts key focus (that is, it uses key events)

• static int HEIGHT – the bottom edge is located such that the Component's
height is equal to the accompanying value

• static int PREFERRED_HEIGHT – the bottom edge is located such that
the Component’s height is equal to its preferred height plus the accompanying value

• static int PREFERRED_WIDTH – the right edge is located such that the
Component’s width is equal to its preferred width plus the accompanying value

• static int PREVIOUS_COMPONENT_BOTTOM – the value describes
the edge's offset from the bottom edge of the previous Component

• static int PREVIOUS_COMPONENT_HCENTER – the value describes
the edge's offset from the horizontal center of the previous Component

• static int PREVIOUS_COMPONENT_LEFT – the value describes the
edge's offset from the left edge of the previous Component

• static int PREVIOUS_COMPONENT_RIGHT – the value describes the
edge's offset from the right edge of the previous Component

• static int PREVIOUS_COMPONENT_TOP – the value describes the
edge's offset from the top edge of the previous Component

• static int PREVIOUS_COMPONENT_VCENTER - the value describes
the edge's offset from the vertical center of the previous Component

6–Lightweight Window
Toolkit (LWT)

57

• static int SCREEN_HCENTER - the value describes the edge's offset from
the center of the screen

• static int SCREEN_LEFT - the value describes the edge's offset from the
left edge of the screen

• static int SCREEN_RIGHT - the value describes the edge's offset from the
right edge of the screen

• static int SCREEN_TOP - the value describes the edge's offset from the
top edge of the screen

• static int WIDTH - the right edge is located such that the Component's
width is equal to the accompanying value

Component Methods
In addition to the methods defined directly by the Component class, this class inherits
several methods from the java.lang.Object class. See the LWT API
documentation for details on these inherited methods. The methods defined by the
Component class are:

• boolean acceptsFocus() - checks if this Component currently accepts key
focus

• void gainedFocus() - called when this Component gains key focus

• int getHeight() - gets the height of the Component, in pixels

• ComponentScreen getParent() - obtains a reference to the Component's
parent screen

• abstract int getPreferredHeight() - gets the preferred height of this
Component

• abstract int getPreferredWidth() - gets the preferred width of this
Component

• int getWidth() - gets the width of the Component, in pixels

• int getX() - gets the x coordinate of the Component's left edge within the parent

• int getY() - gets the y coordinate of the Component's top edge within the parent

• boolean hasFocus() – checks if this Component currently has key focus (that
is, it is receiving key events). For a given screen, no more than one Component can
have key focus

• protected void invalidateParent() - invalidates this Component's
parent screen, if any

• boolean isEnabled() - checks if this Component is currently enabled (can be
interacted with by the user)

• boolean isVisible() - checks if this Component is visible (can be seen by the
user)

58

• protected boolean keyPressed(int keyCode) - called when a key
is pressed

• protected boolean keyReleased(int keyCode) - called when a key is
released

• protected boolean keyRepeated(int keyCode) - called when a key is
repeated (held down)

• void lostFocus() - called when this Component loses key focus

• abstract void paint(javax.microedition.lcdui.Graphics g) -
renders the Component

• protected void pointerDragged(int x, int y) - called when the
pointer is dragged

• protected void pointerPressed(int x, int y) - called when the
pointer is pressed within this Component

• protected void pointerReleased(int x, int y) - called when the
pointer is released

• protected void preferredHeightChanged() - notifies the system that
the preferred height of this Component has changed

• protected void preferredWidthChanged() - notifies the system that
the preferred width of this Component has changed

• void repaint() - requests a repaint for the entire Component

• void repaint(int x, int y, int width, int height) - requests
a repaint for the specified portion of this Component

• void requestFocus() - requests key focus for this Component

• void setBottomEdge(int scheme, int value) - specifies the location
of the Component's bottom edge. The scheme parameter is one of the constants
defined above, specifying from where the value is to be measured.

• void setEnabled(boolean b) - sets this Component as enabled or disabled

• void setLeftEdge(int scheme, int value) - specifies the location of
the Component's left edge. The scheme parameter is one of the constants defined
above, specifying from where the value is to be measured.

• void setRightEdge(int scheme, int value) - specifies the location of
the Component's right edge. The scheme parameter is one of the constants defined
above, specifying from where the value is to be measured.

• void setTopEdge(int scheme, int value) - specifies the location of
the Component's top edge. The scheme parameter is one of the constants defined
above, specifying from where the value is to be measured.

• void setVisible(boolean visible) - shows or hides the
Component

Detailed information about using these methods is available in the LWT API
documentation.

6–Lightweight Window
Toolkit (LWT)

59

Using Components
Once you have your ComponentScreen defined, you can now start adding LWT
components to it. All of the components defined by LWT are used alike, so the methods
shown here are applicable to all of the LWT components. This example creates a screen
with three buttons on it:

/**
* Demo Screen for the Button Component
**/

class ButtonScreen extends ComponentScreen {

public ButtonScreen() {
Button b1 = new Button("Button");
add(b1);

Button b2 = new Button("Large Button");
b2.setRightEdge(Component.SCREEN_RIGHT, 0);
b2.setBottomEdge(Component.HEIGHT, b2.getPreferredHeight() * 2);
add(b2);

Button b3 = new Button("Disabled Button");
b3.setEnabled(false);
add(b3);

}
}

This code also shows how to modify the defaults when creating a new component. Since
buttons are automatically created as ‘Enabled’, button b3 has specific code to initialize it
as disabled. The code for button b2 demonstrates a method for changing the default size
of the button.

The ComponentListener Interface
The ComponentListener interface is implemented by any class that wishes to
receive events from a Component. The events vary depending on the object that
originates the event, but can include events such as button actuation, checkbox selection,
etc.

ComponentListener Interface Definition
This interface is defined as

• public interface ComponentListener

60

ComponentListener Interface Methods
The ComponentListener interface defines a single method:

• ProcessComponentEvent() – It processes an event received by a
Component. It is defined as public void processComponentEvent(java.lang.Object
source, int eventType) where source is the object which originated the event, and
eventType is the type of event that occurred. EventType is defined by the originating
object’s class, and is only defined to be unique within that class. A listener should call
the appropriate methods in the originating object to determine information about the
event that occurred.

The InteractableComponent Class
The InteractableComponent class is a subclass of Component. This class
adds functionality to allow it to interact with the user, i.e. the user can ‘press’ and ‘release’
objects created from this class. It provides the basic pointer and key event handling
required by checkboxes, buttons, image labels, etc. It also provides methods for setting
and getting the text and font associated with the component.
An InteractableComponent may be actuated by tapping and releasing within
its bounds. It may also be actuated by pressing and releasing the devices 'Enter' key
when it has key focus. Button, Checkbox, and ImageLabel are all subclasses
of InteractableComponent.

InteractableComponent Definition and Constructor
The InteractableComponent class is defined by:

public abstract class InteractableComponent extends
Component

Its only constructor is:

• InteractableComponent(java.lang.String label) – This
constructs a new InteractableComponent with the specified label. It also sets
acceptsKeyFocus to true so that this Component can accept focus and key events.

InteractableComponent Methods
Since this class extends the Component class, it inherits many fields and methods
from that class. In addition, it defines the following methods:

• abstract void componentActuated() - called when the Component is
actuated (tapped and released). Subclasses must define this method to perform the
appropriate actions when they are actuated.

6–Lightweight Window
Toolkit (LWT)

61

• protected void dispatchComponentEvent(int event) - dispatches
the specified event to this InteractableComponent's listener, if any

• javax.microedition.lcdui.Font getFont() - gets the Font
associated with this label

• java.lang.String getLabel() - gets the label for this Component

• boolean isPressed() - checks if this InteractableComponent is currently
pressed

• protected boolean keyPressed(int keyCode) - called when a key is
pressed

• protected boolean keyReleased(int keyCode) - called when a
key is released

• abstract void paint(javax.microedition.lcdui.Graphics g)
- renders the Component

• protected void pointerDragged(int x, int y) - called when the
pointer is dragged

• protected void pointerPressed(int x, int y) - called when the
pointer is pressed

• protected void pointerReleased(int x, int y) - called when the
pointer is released

• void setComponentListener(ComponentListener l) - sets this
InteractableComponent's listener

• void setFont(javax.microedition.lcdui.Font font) - sets the
Font object for rendering the label, if any

• void setLabel(java.lang.String label) - sets the label for this
InteractableComponent

• void setPressed(boolean b) - sets the pressed/released state of this
Component

The Button Class
A Button is a subclass of InteractableComponent. As such, it can interact
with the user. Optionally, it can display a label to convey its function.

Button Class Definition and Constructors
The Button class is a subclass of InteractableComponent and is defined
by:

62

public class Button extends InteractableComponent

It has two constructors:

• Button() – Construct a Button with no label

• Button(java.lang.String label) – Construct a Button with the given text string as a label

Button Class Fields
The Button class has a single constant, which is used to send an event to a
Button’s listener, if any, when the Button is pressed.

• public static int BUTTON_ACTION_EVENT

Button Class Methods
The Button class inherits methods from InteractableComponent and
Component. In addition, it defines these methods:

• void componentActuated() – called when this Button is actuated. This
implementation dispatches a BUTTON_ACTION_EVENT to the Button’s listener, if
any.

• int getPreferredHeight() – gets the preferred height for this Button

• int getPreferredWidth() – gets the preferred width for this Button

• void paint(javax.microedition.lcdui.Graphics g) – renders the
Button

An example of the Button class is described in Using Components.

The ImageLabel Class
ImageLabel is a Component that can display an image and/or a text label. The
image and/or text label, referred to as the ImageLabel's contents, can be
collectively placed North, South, East, West, or centered within the bounds of the
ImageLabel. See ImageLabel for more information.

The relative layout of the contents can be controlled by specifying the location of the text
label relative to the image. The text label can be placed either above the image, below the
image, to the left of the image, to the right of the image, or in the center of the image.
An ImageLabel may be either “interactable” or non-“interactable”. An “interactable”
ImageLabel may be actuated by the user and its state can be normal, disabled or
pressed. Separate images may be provided for each of these states; the normal image is
used by default if a specific image is not provided for a given state.

6–Lightweight Window
Toolkit (LWT)

63

A non-interactable ImageLabel cannot be actuated by the user; its state can be
either normal or disabled.
The separation between the text and the image when the LABEL_RIGHT or
LABEL_LEFT position is selected is 3 pixels. The separation between the text and the
image when the LABEL_ABOVE or LABEL_BELOW position is selected is 2
pixels. In the absence of either text or image, the separation will be zero.

ImageLabel Class Definition and Constructors
The ImageLabel class is a subclass of InteractableComponent and is
defined by:

public class ImageLabel extends InteractableComponent

This class has two constructors:

• ImageLabel(javax.microedition.lcdui.Image normal,
javax.microedition.lcdui.Image disabled,
javax.microedition.lcdui.Image pressed, java.lang.String
label) – constructs a new interactable ImageLabel with the specified images for
the three states (normal, disabled and pressed) and the specified label.

• ImageLabel(javax.microedition.lcdui.Image normal,
javax.microedition.lcdui.Image disabled,
java.lang.String label) – constructs a new non-interactable ImageLabel
with the specified images for the two states (normal and disabled).

ImageLabel Class Fields
The fields defined for the ImageLabel class are mainly used to indicate the relative
positions of the image and text items within the object. One event is defined for use by
any listeners.

• static int ALIGN_CENTER - the image and label should be horizontally
and vertically centered within the ImageLabel

• static int ALIGN_EAST – The image and label should be vertically
centered and aligned with the right edge of the ImageLabel

• static int ALIGN_NORTH – The image and label should be horizontally
centered and aligned with the top edge of the ImageLabel

• static int ALIGN_SOUTH – The image and label should be horizontally
centered and aligned with the bottom edge of the ImageLabel

• static int ALIGN_WEST – The image and label should be vertically
centered and aligned with the left edge of the ImageLabel

• static int HORIZONTAL_GAP - the horizontal gap between image and the
text

64

• static int IMAGE_LABEL_ACTION_EVENT – event indicating that the
ImageLabel was actuated by the user (for interactable ImageLabels only)

• static int LABEL_ABOVE – the label, if any, should be placed above the
image and horizontally centered relative to the image

• static int LABEL_BELOW – the label, if any, should be placed below the
image and horizontally centered relative to the image

• static int LABEL_CENTER – the label, if any, should be centered on the
image

• static int LABEL_LEFT – the label, if any, should be placed to the left of
the image and vertically centered relative to the image

• static int LABEL_RIGHT – the label, if any, should be placed to the right
of the image and vertically centered relative to the image

• static int TRANSPARENT - transparent background color

• static int VERTICAL_GAP - the vertical gap between image and text

ImageLabel Class Methods
The ImageLabel class inherits many methods from
InteractableComponent and Component. In addition, it defines the
following methods:

• void componentActuated() - called when this ImageLabel is
actuated by the user.

• int getBackgroundColor() - gets the current background color.

• int getForegroundColor() - gets the current foreground color.

• int getPreferredHeight() - gets the preferred height of the
ImageLabel.

• int getPreferredWidth() - gets the preferred width of the
ImageLabel.

• void paint(javax.microedition.lcdui.Graphics g) -
paints this ImageLabel.

• void setAlignment(int alignment) - sets the desired alignment for
this ImageLabel.

• void setBackgroundColor(int color) - sets the background color.

• void
setDisabledImage(javax.microedition.lcdui.Image i) –
sets the image for the disabled state.

• void setForegroundColor(int color) - sets the foreground color

6–Lightweight Window
Toolkit (LWT)

65

• void setLabelLocation(int location) - sets the location of the
label, if any, relative to the ImageLabel's image.

• void setNormalImage(javax.microedition.lcdui.Image
i) - sets the image for the normal state.

• void setPressedImage(javax.microedition.lcdui.Image
i) – sets the image for the pressed state.

Checkbox Class
The Checkbox is a component that represents a boolean value. A Checkbox can
be used as-is to provide a single, independent choice for the user. A Checkbox can
also be added to a CheckboxGroup to provide more extensive functionality.

Checkbox Class Definition and Constructors
The Checkbox class is a subclass of InteractableComponent and is
defined by:

public class Checkbox extends InteractableComponent

It has two constructors:

• Checkbox() - creates a new Checkbox with an empty (null) label

• Checkbox(java.lang.String label) - creates a new Checkbox with
the specified label

Checkbox Class Fields
These constants are used to pass events to a listener, if any, or to define the appearance
of the Checkbox:

• static int CHECKBOX_CHECKED_EVENT - event indicating that this
Checkbox was checked

• static int CHECKBOX_UNCHECKED_EVENT - event indicating that this
Checkbox was unchecked

• static int STYLE_CHECKBOX - indicates that this Checkbox should
look like a checkbox

• static int STYLE_LIST_ITEM - indicates that this Checkbox should
look like a list item

• static int STYLE_RADIO_BUTTON - indicates that this Checkbox
should look like a radiobutton

66

Checkbox Class Methods
Checkbox inherits several methods from InteractableComponent and
Component.

In addition, it defines the following methods:

• void componentActuated() - called when this Checkbox is actuated
by the user

• void gainedFocus() - called when this Checkbox gains key focus

• int getPreferredHeight() - gets the preferred height of this
Checkbox

• int getPreferredWidth() - gets the preferred width of this Checkbox

• boolean getValue() - gets the current value of this Checkbox

• void lostFocus() - called when this Checkbox loses key focus

• void paint(javax.microedition.lcdui.Graphics g) -
renders the Checkbox

• void setValue(boolean value) - sets the current value of this
Checkbox.

Grouping Checkboxes
The Checkbox components are designed to be used together with other ones.
Although individual Checkboxes have many uses, it’s also nice to be able to combine
them to provide a multiple-choice grouping. The CheckboxGroup class is designed
to make that possible. Here’s how to use it:

/* Demo Screen for the RadioButton Component (Checkbox with a
CheckboxGroup)
**/

class RadiobuttonScreen extends ComponentScreen {
 public RadiobuttonScreen() {

CheckboxGroup g = new CheckboxGroup
(Checkbox.STYLE_RADIO_BUTTON);

Checkbox c1 = new Checkbox("Radio Button A");
add(c1);
g.add(c1);

c1 = new Checkbox("Radio Button B");
add(c1);
g.add(c1);
c1 = new Checkbox("Radio Button C");
add(c1);

6–Lightweight Window
Toolkit (LWT)

67

g.add(c1);

Checkbox c2 = new Checkbox("Large Radio Button");
c2.setRightEdge(Component.SCREEN_RIGHT, 0);
c2.setBottomEdge(Component.HEIGHT, c2.getPreferredHeight() * 2);
add(c2);
g.add(c2);

Checkbox c3 = new Checkbox("Small Radio Button");
c3.setRightEdge(Component.SCREEN_RIGHT, 0);
c3.setBottomEdge(Component.HEIGHT, c3.getPreferredHeight() - 8);
add(c3);
g.add(c3);

Checkbox c4 = new Checkbox("Disabled Radio Button");
c4.setEnabled(false);
add(c4);
g.add(c4);

 }
}

Note in this example that each Component is added not only to the
ComponentScreen, but also to the CheckboxGroup. The type of
CheckboxGroup is specified when the CheckboxGroup is instantiated (in this
case it’s a radio button group), and the Checkboxes themselves are created and
customized just as the Buttons in the earlier Button example.

The CheckboxGroup Class
The CheckboxGroup manages a group of Checkboxes. Unlike the AWT class of
the same name, the use of a CheckboxGroup does not imply an exclusive list. A
CheckboxGroup can be constructed for both exclusive and multiple selection modes.
In LWT, the CheckboxGroup serves as a single reference point for several
Checkboxes, eliminating the need to deal with each Checkbox individually. The
CheckboxGroup supports a ComponentListener, so the interested object
can listen to just the CheckboxGroup, rather than having to add itself as a listener to
each of the Checkboxes individually.

CheckboxGroup Class Definition and Constructor
The CheckboxGroup class is a subclass of Object, and is defined by:

public class CheckboxGroup extends java.lang.Object

68

It has the following constructor:

• public CheckboxGroup(int style) throws
IllegalArgumentException – creates a new CheckboxGroup with the
given style. The argument style can be one of the following options:
Checkbox.STYLE_CHECKBOX, Checkbox.STYLE_RADIO_BUTTON, or
Checkbox.STYLE_LIST_ITEM.

CheckboxGroup Class Fields
The CheckboxGroup class defines the following constant:

• public static final int
CHECKBOXGROUP_SELECTION_CHANGED – Event indicating that the value
of one or more Checkboxes in this CheckboxGroup has changed. This constant has
a value of 0x01.

6–Lightweight Window
Toolkit (LWT)

69

CheckboxGroup Class methods
The CheckboxGroup class defines the following methods:

• public int getSelectedIndex() – Gets the index of the selected
element. It returns the index of the selected element (or -1 if style is
Checkbox.STYLE_CHECKBOX or the group has no Checkboxes);

• public void
setComponentListener(ComponentListener l) – Sets this
Component's listener. A Component can have only one listener at a time. The
parameter l is a ComponentListener, or null if no listener is desired;

• public int add(Checkbox b) – Adds a Checkbox to this group and
returns the index assigned to it. The parameter b is a non-null Checkbox to add;

• public void insert(Checkbox b, int index) – Inserts a
Checkbox into this group at the specified index. If the index is less than 0, the
Checkbox is inserted at the beginning of the list (index = 0). If the index is greater
than the number of Checkboxes in this group, the Checkbox is appended at the end
of the list. The parameter b is a non-null Checkbox to add, and the parameter index
is the index where the Checkbox is to be inserted;

• public void remove(Checkbox b) – Removes the specified Checkbox
from this group. This method does nothing if the specified Checkbox is null or not
currently added to this CheckboxGroup. For single select groups, the selected
Checkbox defaults to index 0 if the Checkbox to be removed is currently selected.
The parameter b is the Checkbox to be removed from this list;

• public Checkbox getCheckbox(int index) throws
IndexOutOfBoundsException – Gets the Checkbox with the specified
index. The parameter index is the index of the Checkbox.

• public int getCheckboxCount() – Gets the number of Checkboxes
that belong to this CheckboxGroup;

• public void remove(int index) throws
IndexOutOfBoundsException – Removes the Checkbox with the
specified index from this group. For single select groups, the selected Checkbox
defaults to index 0 if the Checkbox to be removed is currently selected;

• public boolean isSelected(int index) throws
IndexOutOfBoundsException – Gets the value of the Checkbox with the
specified index. The parameter index is the index of the Checkbox. It returns true
if the Checkbox is selected, otherwise false;

• public void
setSelectedFlags(boolean[] selectedArray) throws
llegalArgumentException, NullPointerException – Sets the
values of the group's Checkboxes to the values of the provided array. The number of
elements in the array must be greater than or equal to the number of Checkboxes.
For multiple-select CheckboxGroups (Checkbox.STYLE_CHECKBOX), this method

70

sets the value of every Checkbox; an arbitrary number of elements may be selected.
For single-select CheckboxGroups (Checkbox.STYLE_RADIO_BUTTON or
Checkbox.STYLE_LIST_ITEM), exactly one array element must have the value
true. If no element is true, the first Checkbox will be set to true. If two or more
elements are true, only the first true element will be recognized; the other
elements will be ignored. This method has no effect if the CheckboxGroup contains
no Checkboxes.

• public void setSelectedIndex(int index,
boolean value) throws IndexOutOfBoundsException – Sets the
selection for this CheckboxGroup. For multiple-select CheckboxGroups
(Checkbox.STYLE_CHECKBOX), this method simply sets the value of the specified
Checkbox to the specified value. For single-select CheckboxGroups
(Checkbox.STYLE_RADIO_BUTTON or Checkbox.STYLE_LIST_ITEM), this method
sets the specified Checkbox provided the specified value is true; otherwise, the call is
ignored. The parameter index is the index of the checkbox to set or select, and
value is false for a new value of the checkbox for multi-select lists, or true for
single-select lists.

The TextComponent Class
The TextComponent class is the base class for TextArea and TextField.
It provides common functionality such as text manipulation, font control, length limiting,
constraints, justification and echo character support. The native implementation of
TextComponents may include support for selection, cut/copy/paste, handwriting
recognition, keypad prediction, etc.; however, these features are not exposed in the API
since they are not guaranteed to be supported by all devices.

TextComponent Class Definition and Constructor
The TextComponent class is a subclass of Component, and is defined by:

public abstract class TextComponent extends Component

There is no constructor for this class. Use a TextArea or TextField class to
define a text-handling object.

TextComponent Class Fields
The TextComponent class defines the following constants:

• static int JUSTIFY_CENTER - constant for center justification

• static int JUSTIFY_LEFT - constant for left justification

• static int JUSTIFY_RIGHT - constant for right justification

6–Lightweight Window
Toolkit (LWT)

71

• static int NO_LIMIT - constant for no length limit

TextComponent Methods
The TextComponent inherits several methods from Component. In addition, it
defines these methods:

• void appendChar(char c) - appends the specified character at the end of
the current text

• void appendText(java.lang.String text) - appends the
specified text at the end of the current text

• int getConstraint() - gets the text entry constraint for this
TextComponent

• char getEchoChar() - obtains the echo character used by this
TextComponent, or 0 if the actual characters are displayed.

• javax.microedition.lcdui.Font getFont() - gets the font
currently used by this TextComponent

• int getLengthLimit() - gets the length limit

• int getPreferredHeight() - gets the preferred height of this
TextComponent

• int getPreferredWidth() - gets the preferred width of this
TextComponent

• java.lang.String getText() - obtains the text contained in this
TextComponent

• void insertChar(char c, int index) - inserts the specified
character at the specified index in the current text

• void insertText(java.lang.String newText, int
index) – inserts the specified text at the specified index in the current text

• boolean isEditable() - checks whether or not the contents of this
TextComponent may be edited by the user

• boolean keyPressed(int keyCode) - called when a key is pressed

• boolean keyRepeated(int keyCode) - called when a key is repeated
(held down)

• void paint(javax.microedition.lcdui.Graphics g) -
renders the Component

• void pointerPressed(int x, int y) - called when the pointer is
pressed within this Component

• void setConstraint(int constraint) - sets the text entry
constraint for the contents of this TextComponent

72

• void setEchoChar(char c) - sets the echo character to be displayed by
this TextComponent. Use 0 to display the actual characters typed.

• void setEditable(boolean editable) - sets whether or not the
TextComponent can be edited by the user

• void setFont(javax.microedition.lcdui.Font newFont)
- sets the current font of the TextComponent

• void setJustification(int justification) - sets the
justification of this TextComponent

• void setLengthLimit(int maxChars) - sets the length limit

• void setText(java.lang.String newText) - sets the contents of
the TextComponent to the specified String

• protected void textChanged(int start, int end,
boolean user) - called whenever the contents of this TextComponent
are changed, either by the user or programmatically

The TextField Class
The TextField class defines a single line TextComponent that scrolls
horizontally as needed.

TextField Class Definition and Constructor
This class is defined by

public class TextField extends TextComponent

The only constructor is:

• TextField(java.lang.String text, int columns)

This constructor constructs a new TextField with the given text and number of
columns. The number of columns is used only to establish the preferred width for layout
purposes; it does not restrict the length of text that can be entered into the TextField.

TextField Class Methods
The TextField class inherits all of its methods from the TextComponent and
Component classes. There are no additional methods defined in the TextField
class.

6–Lightweight Window
Toolkit (LWT)

73

The TextArea Class
The TextArea class is a multi-line TextComponent that scrolls vertically as
needed. Scrolling is automatically provided by the platform. A scrollbar (or other similar
mechanism) is provided by the native UI as needed so that the user can adjust the scroll
offset.

TextArea Class Definition and Constructor
This class is defined by

public class TextArea extends TextComponent

The only constructor is:

• TextArea(java.lang.String text, int rows, int
columns)

It constructs a new TextArea with the given text, number of rows, and number of
columns. The number of rows and columns is used only to establish the preferred height
and width for layout purposes; it does not restrict the length of text that can be entered
into the TextArea.

TextArea Class Methods
The TextArea class inherits all of its methods from the TextComponent and
Component classes. There are no additional methods defined in the TextArea
class.

The Slider Class
The Slider component represents a variable (and possibly adjustable) numeric value.

The Slider can either be a read-only device to display a value, or it can be an
interactable device that allows the user to view and adjust a value.
Only horizontal Slider is supported since the vertical direction keys are reserved for
changing key focus.
A Slider's value can range from 0 to its maximum value, inclusive. The maximum
value must be at least 0. There is no upper limit on the maximum value; however, the
resolution of a Slider will be reduced if its maximum value exceeds its width.

74

Slider Class Definition and Constructor
The Slider class is a subclass of Component, and is defined by:

public class Slider extends Component

The constructor for a Slider is:

• Slider(boolean interactive, int maxValue, int
value)

Slider Class Fields
The Slider class defines two fields which are passed as events to any listeners that
may be active on the class. These fields are:

• static int SLIDER_DRAGGED - event indicating that the Slider's
value has been changed and that it is still being interacted with by the user. Since this
event may happen repeatedly and quickly, the code that deals with it should execute
quickly.

• static int SLIDER_SET - event indicating that the Slider's value
has been changed and that the user is no longer interacting with it.

Slider Class Methods
The Slider class inherits many methods from Component. In addition, it
defines the following methods:

• int getMaxValue() - gets the maximum value of the Slider

• int getPreferredHeight() - gets the preferred height of the Slider

• int getPreferredWidth() - gets the preferred width of the Slider

• int getValue() - gets the current value of the Slider

• protected boolean keyPressed(int keyCode) - called when a
key is pressed

• protected boolean keyReleased(int keyCode) - called when a
key is released

• protected boolean keyRepeated(int keyCode) - called when a
key is repeated (held down)

• void paint(javax.microedition.lcdui.Graphics g) -
renders the Component

6–Lightweight Window
Toolkit (LWT)

75

• protected void pointerDragged(int x, int y) - called when
the pointer is dragged

• protected void pointerPressed(int x, int y) - called when
the pointer is pressed

• protected void pointerReleased(int x, int y) - called
when the pointer is released

• void setComponentListener(ComponentListener l) - sets
this Slider's listener

• void setMaxValue(int maxValue) - sets the maximum value of the
Slider

• void setValue(int value) - sets the current value of the Slider

76

7–Record Management
System (RMS)

Overview
The most common mechanism for persistently storing data on a MIDP device is through
RMS. RMS provides the capability to store variable length records on the device. Those
records are accessible to any MIDlet in the MIDlet Suite, but not to MIDlets outside of the
MIDlet Suite. The RMS implementation of the Motorola A835 handset is MIDP compliant,
so there are no significant additions or changes to the MIDP specification.

Class Description
The API for the RecordStore is located in the package javax.microedition.rms.

Code Examples
The following simple code example will open the RecordStore. If any exception
occurs it will be caught.

try {
System.out.println("Opening RecordStore " + rsName + " ...");
//try to open a record Store
recordStore = RecordStore.openRecordStore(rsName, true);
//keep a note for the last modified time for record store
Date d = new Date(recordStore.getLastModified());
System.out.println(recordStore.getName()+"modified last time: " +
 d.toString());
}
catch (RecordStoreException rse) {
//process the IOException

}

7–Record Management
System (RMS)

77

Tips
It is much faster to read and write in big chunks than it is to do so in small chunks.
Whenever you close a RecordStore, the close command will not return until all the
pending writes have been written. A successful call to close a RecordStore
guarantees that the data got written. It is then safe to power off the phone; a side effect to
this is that the close command may take a while to return. Therefore, if a
RecordStore is opened and closed for every write performance will be greatly
affected.

Caveats
The maximum number of RecordStores that the Motorola A835 handset supports
depends on the number of files installed. Once the phone has 500 RecordStores (that
includes resource files, wall papers, ring tones, and other files), then it will not be able to
make more.
Therefore, if a MIDlet is to have many images, such as sprites used in animations, it may
be advantageous to have them all in one image file and use clipping to display only what
you need.
RecordStore can be of any size as long as there is file space available. A zero byte
RecordStore is also allowed.

78

8–J2ME™ Networking

Overview
The J2ME platform on the Motorola A835 handset provides a variety of networking
functionalities beyond those specified in MIDP. The additional networking protocols are
added through the Generic Connection Interface in order to simplify the interface to the
application as well as to reduce the need for additional classes. Most of the additional
network connections are invoked using a runtime parameter similar to HTTP, reducing the
learning curve for developers as well as the reducing potential application porting efforts.
The following is a list of networking features for the Motorola A835 handset:

• HTTP

• HTTPS

• TCP Sockets

• SSL Secure Sockets

• UDP Sockets

• Serial Port Access
The standard networking protocol specified in MIDP 1.0 is HTTP. Although HTTP is
useful and flexible for most data exchanges, many of the applications fall outside the
standard request/response models of most browsers. Applications such as games and
stock tickers require networking protocols with different characteristics. In order to
accommodate these types of applications with reasonable efficiency, additional protocol
stacks including UDP, TCP Sockets, SSL, and HTTPS have been added. These added
networking functionalities not only provide the application developer with more
communication options, it alleviates the need to perform inefficient workarounds for a
strict HTTP environment. Other applications may also choose to take advantage of the
bottom connector on the devices. The bottom connector is a serial port enabling
communication with a variety of other devices. The Motorola A835 handset also provides
serial port access through the Generic Connection Framework in order to provide
applications a means to communicate to external devices such as GPS, OBD, PCs, etc.

8–J2ME™ Networking

79

Class Descriptions

Connection
<<Interface>>

DatagramConnection
<<Interface>>

InputConnection
<<Interface>>

OutputConnection
<<Interface>>

StreamConnection
<<Interface>>

ContentConnection
<<Interface>>

HttpConnection
<<Interface>>

StreamConnectionNotifier
<<Interface>>

Figure 17. The Connection Framework

Since all the additional communication protocols have been added to the Generic
Connection Framework, the access methods and parameters are very similar. The main
calls are to the Connector class, which provides three static methods that accept
different compile time parameters. The commonality between the three static methods is
the first parameter in their signatures. This particular runtime parameter accepts
Strings formatted in the standard Uniform Resource Locator format. The following is
the list of method signatures:
• Connector.open(String URL) – default READ_WRITE, no timeout.

• Connector.open(String URL, int mode) - defaults to no timeout.
• Connector.open(String URL, int mode, Boolean timeout)

80

- String URL – parameter string describing the target conforms to the URL format
as described in RFC 2396 for all networking protocols except for Serial Port.
- int mode – READ/WRITE/READ_WRITE
- boolean timeout – An optional third parameter,
protocol may throw an IOException when it detects
a timeout condition.

The timeout period for the TCP implementation on the Motorola A835 handset is 20
seconds on read operation and about 45 seconds on write operation if the timeout flag is
set to true. If the timeout flag is set to false, the timeout time is indefinite. The lingering
time for closing sockets is 0 second (if the socket closed by the server the lingering time
will be less than 100 ms). If a new socket is requested within this time frame and the
maximum number of sockets opened has been reached (4 sockets), then an IOException
is thrown.
Applications requesting a network resource for any protocol must use one of the three
methods above. The URL is the distinguishing argument that determines the difference
between HTTP, Serial, etc. The following chart details the prefixes that should be used
for the supported protocols.
Table 2 - Supported Protocols on the Motorola A835 handset

Protocol URL Format

HTTP http://

HTTPS https://

TCP Sockets socket://

SSL Secure Sockets securesocket://

UDP Sockets datagram://

Serial Port comm:<Port_Name>;

• <Port_Name> - should be derived from the return string of System.get
Property("serialport.name").

HTTP
The HTTP implementation follows the MIDP 1.0 standard. The Connector.open()
methods return a HttpConnection object that is then used to open streams for
reading and writing. The following is a code example:

HttpConnection hc = (HttpConnection)Connector.open(
“http://www.motorola.com”);

In this particular example, the standard port 80 is used, but this parameter can be
specified as shown in the following example:

8–J2ME™ Networking

81

HttpConnection hc = (HttpConnection)Connector.open(
“http://www.motorola.com:8080”);

The other static Connector methods work in the same manner, but they provide the
application additional control in dealing with the properties of the connection. By default,
HTTP 1.1 persistency is used to increase efficiency while requesting multiple pieces of
data from the same server. In order to disable persistency, set the “Connection” property
of the HTTP header to “close”.

HTTPS
The HTTPS implementation follows the MIDP 1.0 standard, save for the security aspects.
The Connector.open() methods return a HttpConnection object that is then
used to open streams for reading and writing. The following is a code example:

HttpConnection hc = (HttpConnection)Connector.open(
“https://www.motorola.com”);

In this particular example, the standard port 443 is used, but this parameter can be
specified as shown in the following example:

HttpConnection hc = (HttpConnection)Connector.open(
“https://www.motorola.com:8888”);

The other static Connector methods work in the same manner, but they provide the
application additional control in dealing with the properties of the connection.
Due to memory constrain, Motorola A835 handset can support only one secure session
(i.e. if other application like Browser already opened a secure socket, a MIDlet application
will get an IOException when it tries to open only one connection which is HTTPS
connection).
Note – Only Verisign Certificates are supported in the Motorola A835 handset. The
following is a list of supported features:

• SSL 3.0 (Secure Socket Layer)

• TLS 1.0 (Transport Layer Security)

• Server Authentication

TCP Sockets
The low-level socket used to implement the higher-level HTTP protocol is exposed to
applications via the Generic Connection Framework. The usage is similar to the

82

examples above, however, a StreamConnection is returned by the
Connection.open() method, as shown in the following example:

StreamConnection sc =

(StreamConnection)Connector.open(
“socket://www.motorola.com:8000”);

Although similar to HTTP, notice the required port number at the end of the remote
address. In the previous protocols, those ports are well known and registered so they are
not required, but in the case of low level sockets, this value is not defined. The port
number is a required parameter for this protocol stack.

SSL Secure Sockets
The low-level socket used to implement the higher-level HTTPS protocol is also exposed
to applications via the Generic Connection Framework. The usage is similar to the
examples above.

StreamConnection sc = (StreamConnection)Connector.open(
“securesocket://www.motorola.com:8000”);

As with non-secure sockets, the port number is a required parameter for this protocol
stack.

UDP Sockets
If networking efficiency is of greater importance than reliability, datagrams (UDP) sockets
are also available to the application in much the same manner as other networking
protocols. The Connector object in this case returns a DatagramConnection
object, as is shown in the following example:

DatagramConnection dc = (DatagramConnection)Connector.open(
“datagram://170.169.168.167:8000”);

Much like low-level sockets, accessing UDP requires both a target address and a port
number. The Motorola A835 handset supports a maximum outgoing and incoming
payload of 1472 bytes and 2944 bytes, respectively.

Serial Port Access
Applications utilizing the bottom connector (serial port) to communicate with a variety of
devices are given exclusive access to the port until either the application voluntarily

8–J2ME™ Networking

83

releases the port or is terminated. Much like any other networking connection, opening a
serial port is not guaranteed and an exception can be thrown. If another application
native or Java is using the port, or a cable is not attached to the device, an IOException
may be thrown. In the normal usage scenario, the Connector object in this instance
returns a StreamConnection, as is shown in the following example:

String port_name= System.getProperty("serialport.name");
String max_baudrate= System.getProperty("serialport.maxbaudrate");
if(baudrate > max_baudrate) baudrate= max_baudrate;
StreamConnection sc = (StreamConnection)Connector.open(“comm:” +
”port_name” + ”;baudrate=” + baudrate +
”;parity=n;databits=8;stopbits=1;flowcontrol=n/n”);

Although serial port access is integrated into the Generic Connection Framework, the
URL parameters passed in deviates from the other networking protocols. The optional
parameters, such as baud rate, parity, etc are appended to the base parameter of
“comm:0”. Optional parameters are listed below along with the default values when not
explicitly specified:
Table 3 - Connection Optional Parameters

Parameter Syntax Options Default
baudrate baudrate = x [300, 1200, 2400, 4800,

9600, 19200, 38400,
57600, 115200]

192000

databits databits = x [8,7] 8

stopbits stopbits = x 1, 1,5 and 2 1

parity with
mapping

parity = x [n,o,e,s,m] n=none,
o=odd, e=even, s=space,
m=mark

n

Flow control flowcontrol =
outflow/inflow

[n, s, h] / [n, s, h]
n=none,
s=software,h=hardware

N/n

autocts autocts= x on or off off

autorts autorts= x on or off off

blocking blocking = x on or off off

84

Note - The following combinations of properties are not supported.

− 7 databits with none parity

− 8 databits with mark parity

− 8 databits with space parity

− 8 databits with odd parity

− 8 databits with even parity
IOException will be thrown while trying to use any of the unsupported combinations in
Connector.open().

All properties must be semicolon separated. If not all properties are passed; the remaining
properties will be taken as default values. The order of properties in the argument does
not matter.

name = "comm:0;baudrate=38400;"

Here, the flow control, parity, data bits and stop bits will use the default values.
For mode and timeout refer to the CLDC API specification for the Connector class.

Communicating on a Port
The open method of the Connector class returns a StreamConnection object
for the serial port. StreamConnection has methods for obtaining input and output
streams from a port. The base interface, Connection, has a method to close the port.
(Refer to the class hierarchy from StreamConnection from J2ME CLDC API
specification).
There are five basic steps to communicating with a port:

• Open the port using the open() method of Connector. If the port is available,
this returns a StreamConnection object for Comm port. Otherwise, an
IOException is thrown.

• Get the output stream using the openOutputStream() method of
OutputConnection.

• Get the input stream using the openInputStream() method of
InputConnection.

• Read and write data onto those streams.

• Close the port using the close() method of both the Connection and open
Streams.

Once the connection has been established, simply use the normal methods of any input
or output stream to read and write data. The openInputStream and openOutputStream
methods of StreamConnection are similar to the methods of the socket
StreamConnection.

8–J2ME™ Networking

85

Example using StreamConnection
Connector.open is used to open the serial port and a StreamConnection is
returned. From the StreamConnection the InputStream and
OutputStream are opened. It is used to read and write every character until the
connection is closed(-1). If an exception is thrown the connection and stream are closed.

StreamConnection sc = null;
InputStream is = null;
OutputStream os = null;

/*
 * Create the parameter String with options specified
 */
String parameter =
"comm:0;baudrate=19200;parity=n;databits=8;stopbits=1;
flowcontrol=n/n”;

try{
 sc = (StreamConnection)Connector.open(parameter,
 Connector.READ_WRITE, false);
 os = sc.openOutputStream();
 is = sc.openInputStream();
 int ch;
 while ((ch = is.read()) != -1) {
 os.write(ch);
 }
} finally {
 if (sc != null)
 sc.close();
 if(is != null)
 is.close();
 if(os != null)
 os.close();
}

Implementation Notes
As stated in the previous sections, the Motorola A835 handset supports some networking
options. The networking options however are limited by both memory and bandwidth,
which place hard restrictions on the applications. These limitations manifest themselves
mainly in the number of simultaneous connections that can be opened.

86

Maximum number of sockets is 4 of any combinations of HTTP, HTTPS, socket,
securesocket and UDP. Due to memory constrain A835 can support only one secure
session (i.e. if other application like Browser already opened a secure socket, a KJava
midlet will get an IOException when it tries to open only one connection which is HTTPS
connection). If the maximum number of sockets is concurrently opened by the application
and a fiveth socket is requested, an exception is thrown to the calling application.
Only one serial port is available. Any attempts to open 2 concurrent serial port
connections results in a thrown exception.

Tips
A factor to take into consideration while developing networked applications is the blocking
nature of many javax.microedition.io and java.io object methods. It is advisable to spawn
another thread specifically dedicated to retrieving data in order to keep the user interface
interactive. If a single thread is used to retrieve data on a blocking call, the user interface
becomes inactive with the end-user perceiving the application as “dead”.
Reading from an InputStream using an array is faster then reading byte by byte,
when the length of the data is known. For example, if the content length is provided in the
header of the HttpConnection, then an array of the specified size can be used to
read the data.
The InputStream and OutputStream as well as the Connection object
need to be completely closed.
An application in the paused state can still continue to actively use the networking
facilities of the Motorola A835 handset.
The platform does not support simultaneous voice and data transmissions.

9–Motorola Gaming API

87

9–Motorola Gaming API

Functional Description
The Gaming API provides gaming related functionality to J2ME MIDlet writers. This
functionality includes the ability and support for transparent images, the ability to play
simple sounds and sound effects during a game, the ability to detect simultaneous key
presses, support for sprites, and support for dynamically changing the palette color
associated with an image.

Class Hierarchy

ImageUtil

FileFormatNotSupported
Exception

Canvas
(from javax.microedition.lcdui)

PlayField

PaletteImage

Sprite

Image
(from javax.microedition.lcdui)

Graphics
(from javax.microedition.lcdui) GameScreen SoundEffect

BackGroundMusic

javax.microedition.lcdui com.motorola.game

ImageUtil

FileFormatNotSupported
Exception

Canvas
(from javax.microedition.lcdui)

PlayField

PaletteImage

Sprite

Image
(from javax.microedition.lcdui)

Graphics
(from javax.microedition.lcdui) GameScreen SoundEffectSoundEffect

BackGroundMusicBackGroundMusic

javax.microedition.lcdui com.motorola.game

Figure 18. Gaming API class hierarchy

88

BackgroundMusic Class
The BackgroundMusic class encapsulates the data for a game's background
music. A game may create several BackgroundMusic objects, but only one may be
playing at any one time. The sound data may be stored on the device as a named
resource in the application JAR file, or it can be stored on a server and retrieved via the
network. BackgroundMusic is played by a GameScreen.

BackgroundMusic Methods
The BackgroundMusic class defines the following methods:

• public static BackgroundMusic
createBackgroundMusic(java.lang.String name) throws
FileFormatNotSupportedException – Creates a BackgroundMusic for
the sound data stored in the specified named resource or URL. This method currently
supports the use of MIDI format 0 and format 1 only.

Using BackgroundMusic
Example:

BackgroundMusic bgm1 =
BackgroundMusic.createBackgroundMusic("/FunkyTunes.mid");
BackgroundMusic bgm2 =
BackgroundMusic.createBackgroundMusic("http://www.motorola.com/sounds/Ja
zzyTunes.mid");

GameScreen Class
The GameScreen class provides the basis for a game user interface. In addition to the
features inherited from MIDP's Canvas (commands, input events, etc.) it also provides
game-specific capabilities such as an off-screen buffer with synchronized flushing and key
status polling. A game may provide its own thread to run the game loop. A typical loop will
check for input, implement the game logic, and then render the updated user interface.

GameScreen Fields
The GameScreen class defines the following fields:

• public static final int DOWN_KEY - The bit representing the
DOWN key. This constant has a value of 0x02.

9–Motorola Gaming API

89

• public static final int FIRE_KEY - The bit representing the FIRE
key. This constant has a value of 0x10.

• public static final int GAME_A_KEY - The bit representing the
GAME_A key (may not be supported on all devices). This constant has a value of
0x20.

• public static final int GAME_B_KEY - The bit representing the
GAME_B key (may not be supported on all devices). This constant has a value of
0x40.

• public static final int GAME_C_KEY - The bit representing the
GAME_C key (may not be supported on all devices). This constant has a value of
0x80.

• public static final int GAME_D_KEY - The bit representing the
GAME_D key (may not be supported on all devices). This constant has a value of
0x100.

• public static final int LEFT_KEY - The bit representing the LEFT
key. This constant has a value of 0x04.

• public static final int RIGHT_KEY - The bit representing the
RIGHT key. This constant has a value of 0x08.

• public static final int UP_KEY - The bit representing the UP key.
This constant has a value of 0x01.

• public static final int PRIORITY_MAX - The maximum priority
for playing sound effects. This constant has a value of 100.

• public static final int PRIORITY_MIN - The minimum priority
for playing sound effects. This constant has a value of 0.

• public static final int VOLUME_MAX - The maximum volume for
playing sound effects. This constant has a value of 100.

• public static final int VOLUME_MIN - The minimum volume for
playing sound effects. This constant has a value of 0.

GameScreen Methods
The GameScreen class defines the following methods:

• protected Graphics getGraphics() - Obtains the Graphics object
for rendering GameScreens. The Graphics object renders to an off-screen buffer
whose size is equal to that of the GameScreen (use getWidth() and getHeight() to
determine the size of the GameScreen). The buffer is initially filled with white pixels.
Rendering operations do not appear on the display until flushGraphics() is called;
flushing the buffer does not change its contents (that is, the pixels are not cleared as
a result of the flushing operation). Only one image buffer is supported because
without a vertical sync blanking period or its equivalent, there is little or no benefit
from having multiple image buffers. Only one Graphics object exists for each
GameScreen instance.

90

• public int getKeyStates() - Gets the states of the physical keys.
Each bit in the returned integer represents a specific key on the device. A key's bit
will be set if the key is currently pressed or was pressed at least once since the last
time this method was called. The bit will be 0 if the key is not currently pressed and
was not pressed at all since the last time this method was called. This latching
behavior ensures that a rapid key press and release will always be caught by the
game loop, regardless of how slowly the loop runs. This method may be called twice
to check if a key is currently pressed; that is, calling this method twice effectively
disables the latching behavior. The lower bits are defined by UP_KEY, DOWN_KEY,
LEFT_KEY, etc.; the remaining bits may be mapped to device-specific keys.
For example:

// Get the key state and store it
int keyState = gameScreenObject.getKeyStates();
if ((keyState & LEFT_KEY) != 0) {

positionX--;
} else if ((keyState & RIGHT_KEY) != 0) {

positionX++;
 }

• public void enableKeyEvents(boolean enabled) - Enables or
disables key event calls to this GameScreen. If disabled, the Canvas key event
methods (keyPressed, keyRepeated, keyReleased) are not called when keys are
pressed or released; however, the developer can still call getKeyStates to query the
state of the keys. For games that poll key state and do not need event-driven key
information, disabling key events can improve performance.
Note that this setting is unique to each GameScreen instance; other GameScreens,
when shown, are subject to their own setting for key events.

• public void
paint(javax.microedition.lcdui.Graphics g) - Paints this
GameScreen. By default, this method does nothing. It can be overridden according to
application needs.

• public void flushGraphics(int x, int y, int width,
int height) – Waits until the end of the current screen refresh cycle and then
flushes the specified region of the off-screen buffer to the display driver. This method
does not return until that region of the buffer has been completely flushed. The pixels
of the off-screen buffer are not changed as a result of the flush operation. Upon
returning from this method, the application may immediately begin to render the next
frame using the same buffer.

• public void flushGraphics() - Waits until the end of the current
screen refresh cycle and then flushes all of the off-screen buffer to the display driver.
This method does not return until the entire buffer has been completely flushed. The
pixels of the off-screen buffer are not changed as a result of the flush operation. Upon
returning from this method, the app may immediately begin to render the next frame
using the same buffer.

• public static int getDisplayColor(int color) throws
IllegalArgumentException – Gets the color that will be displayed if the
specified color is requested. This method enables the developer to check the manner
in which RGB values are mapped to the set of distinct colors that the device can

9–Motorola Gaming API

91

actually display. For example, with a monochrome device, this method will return
either 0xFFFFFF (white) or 0x000000 (black) depending on the brightness of the
specified color.

• public void playSoundEffect(SoundEffect se, int
volume, int priority) - Plays the specified SoundEffect. A
GameScreen's sound effects are heard only while it is the visible screen. A device
capability of playing SoundEffects can be found by using the method
soundEffectsSupported(). The platform's ability to play several SoundEffects
simultaneously can be found by using the method getMaxSoundsSupported(). The
priority specified for each request determines which sound(s) are heard when the
number of simultaneous sound requests exceeds the capabilities of the device.

• public boolean soundEffectsSupported() - Checks whether
the underlying platform supports SoundEffects. It returns true if SoundEffects are
supported.

• public boolean backgroundMusicSupported() - Checks
whether the underlying platform supports BackgroundMusic. It returns true if
BackgroundMusic is supported.

• public int getMaxSoundsSupported() - Queries the underlying
platform's capability to play multiple SoundEffects simultaneously.

• public void stopAllSoundEffects() - Stops all the SoundEffects
that are playing. Note that this method does not affect background music.

• public void playBackgroundMusic (BackgroundMusic bgm,
boolean loop) - Plays the specified BackgroundMusic object from the beginning.
This method first stops the current BackgroundMusic if any. Thus, this method may
be used to start background music (by specifying a non-null BackgroundMusic
object), restart the current background music (by specifying the same
BackgroundMusic object), change the background music, or end the background
music (by specifying null). The loop parameter is set to true if the BackgroundMusic
is to repeat indefinitely. Otherwise, set to false.

Using GameScreen
The GameDemoScreen class uses the GameScreen class to provide a UI screen for a
hypothetic game. GameDemoScreen is a subclass of GameScreen that implements
runnable for running the main game loop thread.

class GameDemoScreen extends GameScreen implements Runnable{
 // ...
 public void run() {

 // Get the Graphics object for the
 // off-screen buffer
 Graphics g = getGraphics();
 while (true) {
 // Check user input and update

92

 // positions if necessary
 int keyState = getKeyStates();
 if ((keyState & LEFT_KEY) != 0) {
 sprite.move(-1, 0);
 }
 else if ((keyState & RIGHT_KEY) != 0) {
 sprite.move(1, 0);
 }
 // Draw the background
 g.drawImage(backgroundImage,0,0, Graphics.TOP
 + Graphics.LEFT);
 // Draw the sprite on top of the background
 sprite.draw(g);
 // Flush the off-screen buffer
 flushGraphics();
 }
 }
 // ...
}

ImageUtil Class
ImageUtil provides static methods useful to the manipulation of Image objects.
Specifically, it provides methods for setting and getting RGB values, and also provides the
ability to create a scaled instance of an existing Image.

ImageUtil Fields
The ImageUtil class defines the following fields:

• public static final int SCALE_AREA - Area scaling method.

• public static final int SCALE_REPLICATE - Replicate scaling
method.

• public static final int SCALE_SMOOTH - Smooth scaling
method.

ImageUtil Methods
The ImageUtil class defines the following methods:

• public static void getPixels(Image src, int x, int
y, int width, int height, int[] rgbData) throws
ArrayIndexOutOfBoundsException – Gets RGB pixel data from the

9–Motorola Gaming API

93

specified region of the source image. The data is stored in the provided int array in
row-major order using the standard 24-bit color format (0xRRGGBB). Note that the
color information stored in the image may be subject to the capabilities of the device's
display. The rgbData must be instantiated previously calling this method, according
to pixel amount that the user is requiring to the method. The parameters are the
following: src - the source Image to retrieve the pixel data from; x - the horizontal
location of left edge of the region; y - the vertical location of the top edge of the
region; width - the width of the region; height - the height of the region; height
- the height of the region; and rgbData - the array in which the pixel data is to be
stored.

• public static void getPixels(Image src,
int[] rgbData) throws ArrayIndexOutOfBoundsException –
Gets RGB pixel data from the entirety of the source image. The data is stored in the
provided int array in row-major order using the standard 24-bit color format
(0xRRGGBB). Note that the color information stored in the image may be subject to
the capabilities of the device's display. The rgbData must be instantiated previously
calling this method, according to pixel amount that the user is requiring to the
method. The parameters are the following: src - the source Image to retrieve the
pixel data from; and rgbData - the array in which the pixel data is to be stored.

• public static void
setPixels(javax.microedition.lcdui.Image dest, int
x, int y, int width, int height, int[] rgbData) throws
ArrayIndexOutOfBoundsException,
IllegalArgumentException – Sets RGB pixel data in specified region of
the destination image. The data must be stored in the int array in row-major order
using the standard 24-bit color format (0xRRGGBB). The method parameters are the
following: dest - The mutable destination Image whose pixels will be set; x - The
horizontal location of left edge of the region; y - The vertical location of the top edge
of the region; width - The width of the region; height - The height of the region;
and rgbData - The array of RGB pixel values.

• public static void
setPixels(javax.microedition.lcdui.Image dest,
int[] rgbData) throws ArrayIndexOutOfBoundsException,
IllegalArgumentException – Sets RGB pixel data in the entirety of the
destination image. The data must be stored in the int array in row-major order using
the standard 24-bit color format (0xRRGGBB). The method parameters are dest -
The mutable destination Image whose pixels will be set, and rgbData - The array of
RGB pixel values.

• public static Image
getScaleImage(javax.microedition.lcdui.Image src,
int width, int height, int method) throws
IllegalArgumentException – Creates a scaled version of the source
image using the desired scaling method. All platforms must implement the
SCALE_REPLICATE scaling method; other scaling methods may be optionally
supported. SCALE_REPLICATE is used if the requested scaling method is not
supported by the device. The method parameters are the following: src - the source
Image; width - the width, in pixels, of the new Image, height - the height, in

94

pixels, of the new Image, and method - The desired method to be used to scale the
image data (see the item 0).

Using ImageUtil
This example uses an image (tank.png) to create a data structure (rgbData) to stores
the RGB pixel data. The rgbData is used to draws the same image. Follows the
example:

try {
 Image tank = Image.createImage("tank.png");
} catch(Exception e) {
 // The image can't be loaded
}

// creates a data structure to stores the RGB pixel data from Image
int rgbData[] = new int[tank.getHeight()*tank.getWidth()];
// Stores the RGB pixel data from Image
ImageUtil.getPixels(tank,rgbData);
// Draws the image pixel by pixel with the respective RGB pixel data
for (i=0;i<tank.getHeight();i++) {
 for (j=0;j<tank.getWidth();j++) {
 g.setColor(rgbData[i*tank.getWidth() + j]);
 g.fillRect(j,i,1,1);
 }
}

PalleteImage Class
PaletteImage provides methods for manipulating the color palette data of an image.
PaletteImages can only be created with palette-based image data (PNG color type
3, or other palette image formats that a particular device may support).
The developer can retrieve either a single palette entry or the entire palette as a series of
RGB values in 0xRRGGBB format (MIDP color format). The developer can also update a
single entry or the entire palette by providing a new set of RGB values. The effects of the
palette changes will be visible in the next Image that is generated.
Single color transparency is supported: the entire palette may be fully opaque, or a single
palette entry may be designated as being fully transparent. Alpha channels are not
supported.
Once the palette entries have been set to the desired values, a MIDP Image object is
retrieved that reflects the new palette settings.

9–Motorola Gaming API

95

PalleteImage Constructor
The PalleteImage class defines the following constructors:

• PalleteImage(byte[] data, int offset, int length) throws
IOException - Creates a new PalleteImage using the provided image data.

• PalleteImage (java.lang.String name) throws IOException -
Creates a new PaletteImage using the provided image data in a named resource.

PalleteImage Methods
The PalleteImage class defines the following methods:

• public Image getImage() - Creates and returns a new Image object
using this PaletteImage. The Image returned will reflect the PaletteImage’s original
pixel data and current palette data. This method enables the developer to easily
generate a series of differently colored images by adjusting palette data.

• public int getTransparentIndex() – Gets the current transparent
index. Pixels that reference the transparent index in the palette are not drawn when
the image is rendered. By default, the transparent index is -1 even if a transparent
color is specified in the original image data.

• public void setTransparentIndex(int index) throws
IndexOutOfBoundsException – Sets the current transparent index. Pixels
that reference the transparent index in the palette are not drawn when the image is
rendered. The effects of the new transparent index will be reflected in the next Image
object that is created by calling getImage().

• public int getPaletteSize() - Gets the number of entries in the
palette.

• public int getPaletteEntry(int index) throws
IndexOutOfBoundsException - Gets the specified entry in the palette. The
method returns the current color value of the entry (0xRRGGBB format).

• public void setPaletteEntry(int index, int color)
throws IndexOutOfBoundsException – Sets the specified entry in the
palette. The color must be specified using the MIDP color format (0xRRGGBB, the
upper 8 bits are ignored). The effects of the new palette will be reflected in the next
Image object that is created by calling getImage().

• public int[] getPalette() – Gets the entire palette as an array of
ints, each one representing a 24-bit RGB value. The method returns a new int array
each time it is called, so this method should be used sparingly to avoid creating
excessive garbage.

• public void setPalette(int[] newPalette) throws
ArrayIndexOutOfBoundsException, NullPointerException,
IllegalArgumentException - Sets the palette data for this image. The palette
data must be specified using MIDP color format (0xRRGGBB, the upper 8 bits are

96

ignored). The size of the new palette must be at least as large as the value returned
by getPaletteSize(); additional palette entries, if present, are ignored. The
effects of the new palette will be reflected in the next Image object that is created by
calling getImage().

Using PalleteImage
PalleteImage enables a developer to adjust the colors of an image to match the
capabilities of the device. It also enables reuse of image data by allowing the developer to
change the color scheme. For example, a racing game may use a single
PaletteImage of a car; the developer may then tweak the palette and generate a
series of Images of differently colored cars:

PaletteImage raceCar = new PaletteImage("car.png");

// Set the car color to red and retrieve the Image
raceCar.setPaletteEntry(0, 0xFF0000);
Image redRaceCar = raceCar.getImage();

// Set the car color to blue and retrieve the Image
raceCar.setPaletteEntry(0, 0x0000FF);
Image blueRaceCar = raceCar.getImage();

// Set the car color to green and retrieve the Image
raceCar.setPaletteEntry(0, 0x00FF00);
Image greenRaceCar = raceCar.getImage();

// The PaletteImage can now be discarded since we have the
// Image objects that we need
raceCar = null;

PlayField Class
A PlayField is a rectangular grid of cells with a set of available tiles to place in those
cells and a set of associated Sprites.
The PlayField grid is made up of (rows * columns) cells, where the number of rows
and columns are defined by parameters to the constructor. The cells are equally sized.
The size of the cells is defined by the size of the tiles, or if the PlayField has no tiles,
by arguments to the constructor. Each cell is either empty or contains a single tile whose
image will be drawn in that cell. An empty cell is fully transparent - Nothing will be drawn
in that area by the PlayField.

9–Motorola Gaming API

97

The tiles used to fill the PlayField cells can be either static tiles or animated tiles.
Tiles are referred to using index numbers. Tile 0 (tile with index 0) refers to the special
empty tile. Any cell assigned the tile 0 will be considered empty and will be effectively
transparent.
The static tile indices are non-negative (>=0) and the animated tiles indices are negative
(<0).

Using Static and Animated Tiles
Static tiles are called static because their image does not often change, i.e., any cell that
contains the static Tile 1 will always be drawn as the unchanging image of Tile 1. Tile 0 is
a special static tile. It represents an empty cell. Any cell containing tile 0 will be
transparent, it will not have a tile image drawn in it.
Animated tiles are called animated because their appearance changes easily over time.
At any given time, each animated tile is associated with a particular static tile. When a cell
containing an animated tile is drawn, the image of the static tile currently referenced by
that animated tile will be drawn in that cell. In effect, the animated tiles provide indirect
references to the set of static tiles, and therefore allow many cells to be animated
simultaneously. For example, cells (0,0) and (0,1) both contain animated Tile -2. Animated
Tile -2 currently references static Tile 1. Cells (0,0) and (0,1) will then be drawn with the
image of static Tile 1. If animated Tile -2 is subsequently set to reference static Tile 2 by
calling setAnimatedTileImage(-2, 2);, cells (0,0) and (0,1) will then be drawn
with the image of static Tile 2.

Using Sprites
In addition to being a grid of cells, a Playfield can have a set of associated
Sprites (see 0 item). When the PlayField is drawn, the grid is considered to
have depth 0. Therefore, Sprites below the grid (Sprites with
Sprite.getDepth() < 0) are drawn first. Then all cells in the grid are drawn.
Then all the Sprites above the grid (Sprite.getDepth() >= 0) are drawn.
The Sprites are drawn according to their location and visibility status as defined in the
Sprite class. The location of Sprites is relative to the top-left corner of the
PlayField.

Defining View Windows
A view window onto the PlayField can be defined using the method
setViewWindow(). This defines the area of the PlayField that will be drawn by
the draw() method. The default viewing window onto a PlayField (at construction
time) is the entire area of the PlayField.

98

PlayField Constructor
The PlayField class defines the following constructors:

• PlayField (int columns, int rows, Image img, int tWidth,
int tHeight) throws NullPointerException, IllegalArgumentException -
Creates a new PlayField with a tile set. The parameter are the following:

− columns - width of the PlayField in number of cells;

− rows - height of the PlayField in number of cells;

− img - Image to use for creating tiles;

− tWidth - width, in pixels, of the individual tiles;

− tHeight - height, in pixels, of the individual tiles.
It creates a new PlayField, rows cells high and columns cells wide. The
static tile set for the PlayField will be created from subsections of the image passed
in. The PlayField grid is initially filled with empty cells (tile 0 - a reserved tile and
represents an empty square) and laying out tiles must be accomplished through the
use of other methods in the class. The creation of the static tile set follows these
standards:
Tiles must be equally sized, all being of the tile width (tWidth) and height
(tHeight) defined in the constructor parameters. They may be laid out in the image
horizontally, vertically, or as a grid. The width of the source image must be an integer
multiple of the tile width. The height of the source image must be an integer multiple
of the tile height.
The tiles in the source image will have indices as follows:
The static tiles are indexed like words are read on a page; left-to-right, then top-to-
bottom. The top-left tile is assigned index 1. If there is a tile to its right, this tile is
assigned index 2, and so on, across the first row of tiles. If there is a second row of
tiles, the index of the left-most tile in this row is one greater than the right-most tile in
the preceding row. Below is is a diagrammatic depiction:

1 2 . . . N

N+1 N + 2 . . . 2N

2N+1 2N + 2 . . .

.

[(M – 1) *
N]+1 [(M-1) * N)] + 2 . . . (M * N)

So the total number of tiles is M * N, where:

− N = (image width) / (tile width);

− M = (image height) / (tile height).
The indices for the static tile set will be non-negative (>=0) and the indices for
animated tiles will be negative (<0). The index sets do not overlap and therefore

9–Motorola Gaming API

99

indices for static and animated tiles can be used interchangeably in the methods that
set or move the contents of the PlayField cells. The static Tile set shall behave
as if the image used in creation were cached. If a mutable image is used to create the
tiles, the tiles' appearances should not reflect changes to the mutable source image.
The appearance of individual static tiles can be changed with
setStaticTileImage(). The entire static tile set can be changed using
setStaticTileSet(). These methods should be used sparingly since they
are both memory and time consuming.

• PlayField (int columns, int rows, int cellWidth,
int cellHeight) throws IllegalArgumentException - Creates a new
PlayField without a tile set. The parameter are the following:

− columns - width of the PlayField in number of cells;

− rows - height of the PlayField in number of cells;

− cellWidth - Pixel width of each cell;

− cellHeight - Pixel height of each cell.
It creates a new PlayField, rows cells high and columns cells wide. A
PlayField created with this constructor will not have any tiles (animated or static)
associated with it. The primary use of a PlayField without tiles is expected to be
as a container for managing sprites. The on-screen pixel dimensions of cells is
defined by the parameters cellWidth and cellHeight. The cells in the
PlayField are all empty (tile 0 - a reserved tile and represents an empty square). A tile
set can later be added using setStaticTileSet().

PlayField Methods
The PlayField class defines the following methods:

• public void addSprite(Sprite s) throws
NullPointerException – Add a Sprite to the PlayField. Ignores the request
if the Sprite is already associated with the PlayField.

• public void removeSprite(Sprite s) throws
RuntimeException, NullPointerException – Remove a Sprite from PlayField.

• public void removeAllSprites() – Remove all Sprites from
PlayField.

• public int createAnimatedTile(int staticTileIdx)
throws IndexOutOfBoundsException – Creates a new animated tile and
initializes it with a static tile index. Returns the index to use when referring to this
animated tile. The indices for animated tiles will be negative (<0) and the indices for
the static tile set will be positive (>=0). The index sets do not overlap and therefore
indices for static and animated tiles can be used interchangeably in the methods that
set or move the contents of the PlayField cells. The first animated tile shall have the
index -1, the second, -2, etc.

100

• public void setAnimatedTileImage(int animTileIdx,
int staticTileIdx) throws IndexOutOfBoundsException –
Sets the static tile that will be displayed in any cell that contains the animated tile.
The method parameters are animTileIdx - index of the animated tile, and
staticTileIdx - index of a static tile to be referenced by the animated tile.

• public int getAnimatedTileImage(int animTileIdx)
throws IndexOutOfBoundsException – Get the static tile referenced by an
animated tile, and returns the index of the static tile that is currently referenced by an
animated tile.

• public void setCell(int celCol, int celRow,
int tileIdx) throws IndexOutOfBoundsException,
ArrayIndexOutOfBoundsException – Sets the tile to be displayed in a
cell. The tile can be either a static or an animated tile. The method parameters are
celCol - column of cell to set, celRow - row of cell to set, and tileIdx - index
of tile to place in cell.

• public int getCell(int celCol, int celRow)
throws.ArrayIndexOutOfBoundsException – Gets the index of the
static or animated tile currently displayed in a cell.

• public void moveTiles(int dstCol, int dstRow,
int srcCol, int srcRow, int width, int height) throws
ArrayIndexOutOfBoundsException – Move a rectangular set of tiles
from a source location to a destination location. Source cells are left empty. If the
source and destination cells overlap, the method shall behave as if the source cells
are first copied to a separate array, the source cells are cleared, and the tiles are
then copied back to the destination cells. The method parameters are the following:
dstCol - column of top-left destination cell; dstRow - row of top-left destination
cell; srcCol - column of top-left source cell; srcRow - row of top-left source cell;
width - width, in rows, of area of tiles to move; and height - height, in rows, of
area of tiles to move.

• public void fillCells(int col, int row, int width,
int height, int tileIdx) throws
IndexOutOfBoundsException,
ArrayIndexOutOfBoundsException – Fill each cell in a rectangular
area with a given animated or static tile. The method parameters are the following:
col - column of top-left cell; row - row of top-left cell; width - width, in rows, of
area of cells to fill; height - height, in rows, of area of cells to fill; and tileIdx -
index of tile to place in fill region.

• public void
draw(javax.microedition.lcdui.Graphics g, int x,
int y) throws NullPointerException – Draw the PlayField to a
Graphics instance, anchoring the top left corner of the PlayField view window at the
position (x, y) on the Graphics instance. The method parameters are the
following: g - Graphics instance on which to draw the PlayField; x - the x coordinate
of the top left corner of the PlayField; and y - the y coordinate of the top left corner of
the PlayField. The PlayField will be drawn as follows:

9–Motorola Gaming API

101

− Draw all the Sprites with depth < 0 in increasing order of depth (depth -2
drawn before or below depth -1);

− Draw the tiles for all cells. Empty cells, those with Tile 0, are considered fully
transparent, so nothing is drawn for them.

− Draw the all the Sprites with depth >= 0 in increasing order of depth (depth 1
drawn before or below depth 2). The location of the Sprites is defined by the
Sprite instance and is relative to the top left corner of the PlayField grid.

• public int getCellWidth() – Get width of a cell, in pixels.

• public int getCellHeight() – Get height of a cell, in pixels.

• public int getGridWidth() – Get width of the PlayField grid, in cells.

• public int getGridHeight() – Get height of the PlayField grid, in cells.

• public boolean anyCollisions() – This method checks whether any
of the PlayField's Sprites collide with any of the PlayField's tiles or other Sprites on
the PlayField. It will return true if any Sprite on the PlayField collides with a tile or
any other Sprite. Like collidesWithSprites(Sprite) and collidesWithAnyTile(Sprite), this
method reports collisions only at a boundary level granularity, not pixel level
granularity.

• public boolean collidesWithSprites(Sprite s) throws
NullPointerException – Check for Sprite collision with any other Sprites
on the PlayField. This method is complemented by Sprite.collidesWith(Sprite,
boolean); If collidesWithSprites(Sprite) returns true, the developer can find the exact
Sprite collision(s) by using Sprite.collidesWith(Sprite, boolean). This is similar to how
collidesWithAnyTile(Sprite) and collidesWithTiles(int, int, int, int, Sprite, boolean)
complement each other. Sprite s does not have to have been added to the PlayField.
The collision detection will proceed as if the Sprite is on the PlayField. That is, its
location will be treated as relative to the origin of the PlayField's coordinate system.

• public boolean collidesWithAnyTile(Sprite s) throws
NullPointerException – Check for Sprite collision with PlayField tiles.
Return true if the Sprite overlaps with a cell that contains a tile (i.e. a cell containing a
non-zero tile index). Sprite s does not have to have been added to the PlayField. The
collision detection will proceed as if the Sprite is on the PlayField. That is, its location
will be treated as relative to the origin of the PlayField's coordinate system.

• public boolean collidesWithTiles(int col, int row,
int width, int height, Sprite s,
boolean pixelLevel) throws NullPointerException,
ArrayIndexOutOfBoundsException – Check for Sprite collision with a
region of PlayField tiles. It returns true if the Sprite overlaps with a cell in the defined
region that contains a tile (i.e. a cell containing a non-zero tile index). If
pixelLevel is true, this method will report a collision only when opaque Sprite
pixels overlap opaque tile pixels. This method complements the
collidesWithAnyTile(Sprite) method by letting the programmer focus their search and
find specific tiles or regions of collision. This is similar to how
Sprite.collidesWith(Sprite, boolean) complements collidesWithSprites(Sprite). The
method parameters are the following: row - Row of top-left cell for collision check

102

region; col - Column of top-left cell for collision check region; height - Height, in
rows, of area for collision check; width - Width, in rows, of area for collision check;
s - Sprite to check for collision; and pixelLevel - Boolean indicating whether
collision detection should be done at a pixel level instead of simply as boundary
checks.

• public void setStaticTileImage(int staticTileIdx,
Image img, int x, int y) throws NullPointerException,
ArrayIndexOutOfBoundsException – Modify the image associated with
a static tile. Replace the image currently associated with a static tile with a new image
of the same size. New static tile image will be extracted from the image passed in,
starting from pixel (x, y) in the new source image and extending for getCellWidth()
pixels horizontally and getCellHeight() pixels vertically. As at tile set creation time, if a
mutable source image is used, behavior of the tile set should be as if the new image
were cached. Updates to the mutable source image will not cause a change in the
appearance of the tile image.

• public void setStaticTileSet(Image img, int tWidth,
int tHeight) throws NullPointerException,
IllegalArgumentException – Replaces the current static tile set with a
new static tile set. See the constructor PlayField(int, int, Image, int, int) for information
on how the tiles are created from the image. If the new static tiles have the same
dimensions as the previous static tiles, the view window will be unchanged. If the new
static tiles have different dimensions than the previous static tiles, the view window
will be reset to the construction default, i.e. the entire grid dimension. If the new static
tile set has as many or more tiles than the previous static tile set, then the animated
tiles will be unchanged, and the contents of the PlayField grid will be unchanged. If
the new static tile set has less tiles than the previous static tile set, then the PlayField
grid will be reset to completely empty, and All animated tiles will be deleted.

• public void setViewWindow(int x, int y, int width,
int height) – Sets the portion of the PlayField that will be drawn when
draw(Graphics, int, int) is called. This will limit the portion of the PlayField that is
drawn to the rectangle defined by the region (x, y) to (x + width, y +
height). The default view window (at construction time) is the entire area of the
PlayField, i.e. the rectangular region bounded by (0, 0) and (getGridWidth() *
getCellWidth(), getGridHeight() * getCellHeight()).The rectangle defined
by the parameters may extend beyond the bounds of the PlayField. If this happens,
the draw(graphics, int, int) method will draw no tiles in the area outside
the grid boundaries. Sprites may still be drawn in this area if their position places
them outside the bounds of the PlayField grid. The view window stays in effect until it
is modified by another call to this method or is reset as a result of calling
setStaticTileSet(Image, int, int). The method parameters are x - x coord of top-left
pixel for the drawing view window, y - y coord of top-left pixel for the drawing view
window, width - width of the drawing view window, and height - height of the
drawing view window.

9–Motorola Gaming API

103

Using PlayField
Follows a PlayField example:

// Creates a playField with 100 columns and 10
// rows and tiles with 24x16 pixels
PlayField foreground = new PlayField(100, 10,
Image.createImage("tiles.png"), 24, 16);
// Sets the first cell in the first line to
// empty(tile with index 0)
foreground.setCell(0, 0, 0);
// Fills the second cell in the first line with tile 1
foreground.setCell(1, 0, 1);
// Fills the third cell in the first line with tile 2
foreground.setCell(2, 0, 2);
// Fills the fourth cell in the first line with tile 3
foreground.setCell(3, 0, 3);
// Gets the Graphics object for this GameScreen
Graphics g = getGraphics();
// Draws the foreground playfield
foreground.draw(g, 0, 0);

SoundEffect Class
The SoundEffect class encapsulates the data for a game sound effect. A game may
create several SoundEffect objects, one for each of the sounds that it needs to play.
The sound data may be stored on the device as a named resource in the application JAR
file, or it can be stored on a server and retrieved via the network. SoundEffect
instances are played by a GameScreen.

SoundEffect Methods
The SoundEffect class implements the following method:

• public static SoundEffect
createSoundEffect(String resource) throws
FileFormatNotSupportedException – Creates a SoundEffect for the
sound data stored in the specified named resource or URL. The data must be in a
sound format that is supported by the device. Though additional formats may be
supported, all devices must support some format yet to be determined.

104

Using SoundEffect
As described above, a game can need several different sound effects. The code below
exemplifies the creation of some SoundEffect objects:

try{
 // Create a SoundEffect using a wave file inside the JAR
 SoundEffect s1 = createSoundEffect("/jump.wav");

 // Create a SoundEffect using a wave located
 // on a web site
 SoundEffect s2=
 createSoundEffect("http://www.motorola.com/sound/mp.wav");

}catch(FileFormatNotSupportedException fe){}

Sprite Class
The Sprite class is used to create graphic images, animated or non-animated, that a
user can interact with and move around.

Animation Frames
An animated sprite is created from an image divided into sections as described in the
constructor Sprite(Image, int, int). The individual sections of the image are considered the
raw frames of the Sprite. The method getNumRawFrames returns the number of raw
frames.

Sprite Drawing
Sprites can be drawn at anytime using the draw(Graphics) method. The sprite
will be drawn on the Graphics object, according to the current state information
maintained by the Sprite (i.e. position, frame, visibility). Some potential uses of Sprites
include:

• Arbitrarily draw the Sprite on a GameScreen.

• A Sprite can be added to a PlayField. Then PlayField.draw(Graphics, int, int) will
automatically draw all the Sprites associated with the PlayField.

• draw(Graphics) could be called from the paint() method in a subclass of Canvas.

9–Motorola Gaming API

105

• draw(Graphics) could be called at any time to draw the Sprite on a MIDP mutable
image. This is virtually identical to the first bullet, drawing on a GameScreen.

Only in the case where a set of Sprites are a part of a container object (i.e. where the
Sprite is associated with a PlayField) is the depth information automatically handled by
the system. In other situations, managing the drawing order is the responsibility of the
developer.

Sprite Constructor
The Sprite class defines the following constructors:

• public Sprite(Image img) – Creates a new non-animated Sprite from
an Image object. All animation operations on a non-animated Sprite behave as if
there is a single raw frame. At construction time, the Sprite's position will be set to
(0,0), the depth will be set to 0, and the Sprite will be visible. The Sprite shall behave
as if the image used in creation were cached. If a mutable image is used to create the
Sprite, the Sprite's appearance should not reflect changes to mutable source image.

• public Sprite(Image img, int fWidth, int fHeight) –
Creates a new animated Sprite from an Image. The constructor parameters are the
following:

− img - Image to use for Sprite;

− fWidth - width, in pixels, of the individual raw frames;

− fHeight - height, in pixels, of the individual raw frames.
The creation of the raw frames follows these standards:

− Frames must be equally sized, all being of the frame width (fWidth) and height
(fHeight) defined in the constructor parameters. They may be laid out in the
image horizontally, vertically, or as a grid. The width of the source image must be
an integer multiple of the frame width. The height of the source image must be
an integer multiple of the frame height.

The frames in the source image will have raw frame numbers as follows:

− The frames are numbered like words are read on a page; left-to-right, then top-
to-bottom. The top-left frame is numbered 0. If there is a frame to its right, this
frame is numbered 1, and so on, across the first row of frames. If there is a
second row of frames, the number of the left-most frame in this row is one
greater than the right-most frame in the preceding row. Below is a diagrammatic
depiction:

0 1 . . . N – 1

N N + 1 . . . 2N – 1

2N 2N + 1 . . .

.

106

(M – 1) * N ((M-1)* N) + 1 . . . (M * N) – 1

So the total number of frames is M * N, where:

− N = (image width) / (frame width)

− M = (image height) / (frame height)
At the time of creation, all Sprites have a default frame sequence corresponding to
the raw frame numbers. This can be modified with setFrameSequence(). At
construction time, the Sprite's position will be set to (0,0), the depth will be set to 0,
and the Sprite will be visible. The Sprite shall behave as if the image used in creation
were cached. If a mutable image is used to create the Sprite, the Sprite's appearance
should not reflect changes to mutable source image.

• public Sprite(Sprite s) – Creates a new Sprite from another Sprite.
Create a copy of a Sprite. All attributes (raw frames, position, frame sequence,
current frame, visibility) of the source Sprite should be reflected in the new Sprite.
Any subsequent updates to the source Sprite after the creation of the second Sprite
should not be reflected in the second Sprite.

Sprite Methods
The Sprite class implements the following methods:

• public void setPosition(int x, int y) – Set Sprite's x,y
position. The x, y position is relative to whatever object the sprite is associated with or
drawn on.

• public void setDepth(int d) – Set Sprite's depth order. The depth
order is relative to other Sprites when multiple Sprites are contained in a container
object, i.e. a PlayField. When Sprites are drawn explicitly instead of implicitly through
the use of a container object, the management of drawing order is the responsibility
of the developer. Integer.MIN_VALUE is the lowest depth, Integer.MAX_VALUE is
the highest depth. So items with depth Integer.MIN_VALUE would be drawn first, or
at the bottom, and items with depth Integer.MAX_VALUE would be drawn last or on
top.

• public void move(int dx, int dy) – Move Sprite. The method
parameters are dx - pixels to move Sprite along horizontal axis, and dy - pixels to
move Sprite along vertical axis.

• public int getX() – Get Sprite's x position.

• public int getY() – Get Sprite's y position.

• public int getDepth() – Get Sprite's depth order.

• public int getHeight() – Get Sprite's height order.

• public int getWidth() – Get Sprite's width in pixels.

9–Motorola Gaming API

107

• public boolean collidesWith(Sprite s,
boolean pixelLevel) throws NullPointerException – Check for
collision between two Sprites. If pixelLevel is false, check for overlap in the
rectangular areas of the two Sprites, using positions (x, y) and extents (width, height).
The two Sprites are treated as if they are in the same coordinate system. For
example, if the two Sprites are on different PlayFields that are drawn at different
locations, this method still behaves as if they are on the same PlayField. If
pixelLevel is true, check for overlap in opaque pixels of the two Sprites.
Overlapping in transparent regions of either Sprite will not be considered a collision.

• public void setFrame(int frame) – Set Sprite's animation frame.
Sets which frame from the frame sequence to draw when draw(Graphics) is called.
All Sprites have a default frame sequence as described in the constructor.

• public int getFrame() – Get Sprite's current animation frame. All Sprites
have a default frame sequence as described in the constructor.

• public int getNumRawFrames() – Get the number of raw frames in
the original frame set for this Sprite.

• public void nextFrame() – Set current animation frame to the next
frame. Advance to next frame in the frame sequence. All Sprites have a default frame
sequence as described in the constructor. Frame list is considered to be circular, i.e.
if nextFrame() is called when the last frame is the current frame, this will advance
to the first frame.

• public void prevFrame() – Set current animation frame to the previous
frame. Advance to previous frame in the frame sequence. All Sprites have a default
frame sequence as described in the constructor. Frame list is considered to be
circular, i.e. if prevFrame() is called when the first frame is the current frame, this
will advance to the last frame.

• public void setVisible(boolean visible) – Set visibility
status. If setVisible(false) is called, the Sprite will not be drawn by
draw(Graphics) until setVisible(true) is called.

• public boolean isVisible() – Get visibility status. The method returns
boolean indicating whether the Sprite will be drawn by draw(Graphics).

• public final void draw(Graphics g) throws
NullPointerException – Draw the Sprite. Draw current frame of Sprite to
Graphics instance g at location currently set in Sprite. Sprite will be drawn only if
isVisible()= true.

• public void setFrameSequence(int[] seq) throws
ArrayIndexOutOfBoundsException – Set the sequence of frames to
cycle through with next/prevFrame. All Sprites have a default sequence as described
in the constructor. This method allows for the creation of an arbitrary sequence from
the original frameset. The methods nextFrame(), prevFrame(), getFrame(), and
setFrame(int) all operate on the frame sequence. Passing in null causes the
sequence to revert to the default sequence defined in the constructor. The parameter
seq is an array of integers, where each integer is a reference to a frame in the
original raw frameset, that is, the frames from left to right on the original image.

108

• public int[] getFrameSequence() – Get the current frame
sequence. Returns the frame sequence set with
setFrameSequence(int[]) or, if none has been set, return the default
frame sequence for this Sprite. Each entry in the array is an index to the original raw
frameset, that is, the frame numbering as described in the constructor.

• public void
setImage(javax.microedition.lcdui.Image img,
int fWidth, int fHeight) throws NullPointerException,
IllegalArgumentException – Change the image used for the Sprite.
Replaces the current raw frames of the Sprite with a new set of raw frames. See the
constructor Sprite(Image, int, int) for information on how the frames are created from
the image. Changing the image for the Sprite could change the number of raw
frames. If the new frame set has as many or more raw frames than the previous
frame set, then:

− The current frame will be unchanged;

− If a custom frame sequence has been defined (using setFrameSequence(int[])),
it will remain unchanged. If no custom frame sequence is defined (i.e. the default
frame sequence is in use), the default frame sequence will be updated to be the
default frame sequence for the new frame set. In other words, the new default
frame sequence will include all of the frames from the new raw frame set, as if
this new image had been used in the constructor.

If the new frame set have less frames than the previous frame set, then:

− The current frame will be reset to frame 0;

− Any custom frame sequence will be deleted and the frame sequence will revert
to the default frame sequence for the new frame set (all frames in the frame set,
left-to-right then top-to-bottom).

Using Sprite
The example below creates two Sprites (bullet and tank) and tests collisions between
them. When there are no lives left, the game finishes.

try {
 Sprite bullet = new Sprite(Image.createImage("bullet.png");
 Sprite tank = new Sprite(Image.createImage("tank.png");
} catch (Exception e) {
// any image can't be loaded
}
Boolean isGameOver= False;
int lifes= 3; // The number of lives is 3
while(!isGameOver) {
 // verifies the collision between the two sprites
 if(tank.collidesWith(bullet,false)) {
 lifes--;

9–Motorola Gaming API

109

 // If there are no more lifes, the game is over
 if(lifes == -1) {
 isGameOver = true;
 }
 }
}

FileFormatNotSupportedException
The FileFormatNotSupportedException is an exception which will be
thrown when a SoundEffect or BackgroundMusic format is not supported by
the platform or the size of the data is larger than the size of the internal buffers. The
FileFormatNotSupportedException extends the
java.lang.RuntimeException class.

FileFormatNotSupportedException Constructors
The FileFormatNotSupportedException class defines the following
constructors:

• public FileFormatNotSupportedException(
java.lang.Exception e) – The parameter e is the underlying exception
that caused the failure.

• public FileFormatNotSupportedException(
java.lang.String info) – The parameter info is a String containing
information about the failure

• public FileFormatNotSupportedException(
java.lang.String info, Exception e) – The parameters are
info a String containing information about the failure, and e - The underlying
exception that caused the failure.

110

10 - Location API

Location API
The Location API describes the interface between the mobile J2ME application (s) and
the GPS Driver. The J2ME application (s) establishes a connection with the AGPS Driver
and will asynchronously query the AGPS Driver for positioning information. The
positioning information will include the following:

• Latitude

• Longitude

• Altitude

• Distance calculation (needed to support turn-by-turn navigation)
The Location API provides the gateway for J2ME applications to receive and transmit
3GPP messages to and from the AGPS driver. The following 3GPP messages are
supported (as defined in 3GPP TS 25.331):

• UE Positioning Measurement
o Reporting Criteria
o Reporting Quantity
o Assistance Data
o GPS Navigation Model
o Ephemeris and Clock Corrections
o GPS Ionospheric Model
o CPS Reference Time
o Reference Position
o GPS Real Time Integrity
o GPS Almanac

• UE Positioning Measurement Event Results (triggered responses):
o Position Estimate Info
o Ellipsoid Point with Altitude and uncertainty ellipsoid

• UE Positioning Error

10 - Location API

111

• GPS additional Assistance Data Request

112

Appendix A: Key Mapping of
Motorola A835 Handset

Key Mapping
The table below maps out the keys available through the javax.microedition
.lcdui.Canvas class. By overriding the Canvas.keyPressed() and
Canvas.keyReleased() methods, the MIDlet can listen for certain key presses
and key releases. The keys available to the MIDlet via the MIDP specs include the ITU-T
keypad (0-9, *, #). In addition to the standard keys, the Motorola A835 handset offers a 4-
way navigational key, two soft keys, a menu key, a send key, an end key, a dedicated
camera key, and a dedicated browser key.

Key Name Assignment
0 NUM0

* ASTERISK

POUND

1 NUM1

2 NUM2

3 NUM3

4 NUM4

5 SELECT, followed by NUM5

6 NUM6

7 NUM7

8 NUM8

9 NUM9

Nav Up Up

Nav Down Down

Appendix A: Key Mapping of Motorola A835 Handset

113

Nav Left Left

Nav Right Right

Nav Center Select/Enter Fire

Left Softkey SOFT1

Right Softkey SOFT2

MENU SOFT3 (MENU)

SEND SELECT,

Also call placed if pressed on LCDUI
TextField or LCDUI. TextBox with
PHONENUMBER constraint set.

END Exit

114

Appendix B: How To

Downloading to the Device

Serial port download procedure
The MIDway utility provides the application developer a means to load an application to
the A835 device through PC. A serial data cable is used to connect to the bottom
connector on the Motorola A835 handset, and the PC serial port.

Figure 19. Serial port download

For instructions on installing the MIDway utility, please consult the user guide.
After loading the JAR and JAD file on the Motorola A835 handset, the friendly name
specified in the MANIFEST.MF file for the MIDlets should appear on the Games & Apps
menu. For the HelloWorld example, the Games & Apps menu will contain an item
“HelloWorld” representing the application. At this point, the application is only “Loaded” on
the Motorola A835 handset and not yet installed. From this point, the application may be
removed from the device.

Appendix B: How To

115

NOTES: The number of MIDlet suites that can be installed on the Motorola A835 handset
is limited to 20. If the number of MIDlets suites installed is more than 20, de-install an
application before proceeding.

The application must be installed before it can be executed. The following steps describe
the installation procedure.

OTA procedure
There is no need of additional software tools, or cables, to downloaded MIDlet suites
through WAP browser. The application developer just has to use the A835 browser and
connect to a WAP server site that contains the desired MIDlet suite to be downloaded.
The application developer should follow the WAP server site instructions to download the
MIDlet properly.
After loading the JAR and JAD file on the Motorola A835 handset, the friendly name
specified in the MANIFEST.MF file for the MIDlets should appear on the Games & Apps
menu.

Installation
The following checklist should be covered before attempting to install a MIDlet Suite.
Failure to verify this checklist could lead to an installation failure.

• Applications supports CLDC-1.0 and MIDP-1.0 (the configuration and profile
supported by the Motorola A835 handset)

• JAD file has been created.

• JAR file contains META-INF/MANIFEST.MF.

• Verify the MIDlet-Name, MIDlet-Version, and MIDlet-Vendor attributes are duplicated
in both the MANIFEST.MF and the JAD file.

• Both the JAD and JAR file have the same name (except for the .JAD and .JAR
extensions).

• File names (JAR and JAD) are less than 32 characters (not including extension).

• Less than 20 MIDlet suites are currently installed.

• Maximum length of class path inside JAR file must be 64 characters.

• Maximum length of URL path must be 256 characters.

• No more than ~500 files are used by installed MIDlet suites.

• JAR size listed in JAD matches actual JAR size.

• MIDlet suite version must be higher than an already installed one.
Even though the Data and Program Space in Java System indicate more available space
than the size of a particular JAR file, it doesn't necessarily mean the JAR will install.

116

Moreover, if it is able to install, there’s no guarantee the MIDlet will execute because quite
often more RAM is required for execution and then installation. In addition, MIDlets that
will not install or execute on the phone because of lack of memory will most certainly
execute on the Sun Wireless Toolkit since the PC has virtually unlimited memory with
respect to the size of MIDlets.
The memory requirements for MIDlet suite installation are the following:

• First, there must be enough Data Space (file system space) to temporarily store the
JAR. If there's not enough Data Space, the browser (in the OTA mechanism) will
display the error "Insufficient Memory".

• Secondly, there must be enough heap memory to uncompress the JAR file. The JAR
size should be a predefined safe proportion of the heap size. The JAR maximum size
recommended is 100K. This means that MIDlet typically will not install if the JAR is
greater than 100K. There are exceptions to this and it depends on how many class
files vs. resource files are contained within the JAR. If there's not enough heap, the
device will typically display the message "Memory Full".

• Third, there must be enough Data Space to store not only the temporary JAR but also
all the resource files needed by the MIDlet. The JAR is essentially a zip file that must
be uncompressed. It contains class files (the actual application) and resource files
that are used by the MIDlet. These resources typically include, png images, database
files and any other data the MIDlet needs. These resource files are stored in the Data
Space during installation. The JAR is deleted after the installation phase completes. If
there's not enough Data Space, the device will typically display the message
"Memory Full". Also, note that total size of the uncompressed resources in the JAR
doesn't necessarily equal the Data Space occupied by that MIDlet once installed.

• Fourth, there needs to be enough Program Space to store the actual MIDlet. The
class files in the JAR are the application files and are converted into a native format
and stored in the Program Space during installation. This native format size will be
greater than the total of the uncompressed class files in the JAR. Once stored in the
Program Space, the MIDlets are referred to as DAV Objects. DAV reserves additional
Program Space equal to the largest DAV Object. This reserved space cannot be used
for additional MIDlets. Its purpose is to provide power loss protection during a DAV
reclaim of the flash memory. The allocation of this reserved Program Space is often a
point of confusion with users. When the largest DAV object is installed, the Program
Space in Java System will be reduced by more than the size of Program Space in
Suite Details. Java System shows the free Program Space. Suite Details shows the
amount of Program Space occupied by that MIDlet.

Program and Data space notes:
• To check Program and Data space from the Java menu, select “Java System” and

press the “Select” soft key.

• Program space is used to store class files.

• Data space is used to store the JAR files before installation and resource files after
installation. After installation, the JAR file is destroyed.

Then to install the MIDlet Suite, highlight the Suite in the Java Tools menu. Select the
“Java Application Loader” option and press the SELECT soft key. A dialogue will be
displayed indicating the serial cable must be connected to the device. Execute the

Appendix B: How To

117

MIDway tool on PC, select and send the desired MIDlet to be installed. The MIDway tool
indicates exactly which steps are being executed.
Java Application Installer/De-Installer (JAID)
• JAID is a component built into the Motorola KVM to handle installation and de-

installation of Java applications to a device. The process of installing an application
is time intensive involving loading of the class files from the JAR file and writing the
image, in a platform-specific manner, to memory. By installing Java applications,
class files do not have to be stored in RAM, allowing more runtime memory for the
application at hand. Additionally, the time required to launch Java applications is
decreased dramatically.

• After successful installation, the class files are placed in the Program space and the
resource files are placed in the Data space. The original JAR file is then destroyed.

• Applications only need to be JAID installed once. If the Motorola A835 handset’s
software is upgraded, Java applications must be re-installed.

Once the application is done installing on the Motorola A835 handset, you need to return
to the Games & Apps menu to launch the downloaded application.
If you leave the installation progress screen while the MIDlet Suite is still being installed,
the installation will fail, and you must repeat all installation procedure again.

Starting Applications
Often times a MIDlet Suite only contains one MIDlet. If so, then that MIDlet can be
launched from the Games & Apps menu simply by highlighting that MIDlet Suite and
pressing the “SELECT” soft key.
If there are multiple MIDlets in the Suite, then a suite content menu will be displayed, and
one of the individual MIDlets can be highlighted. From there, pressing the “RUN” soft key
will launch the selected MIDlet.

Exiting Applications
During the development process, chances are a MIDlet may not exit properly via the
“correct” and “elegant” method. The Motorola A835 handset’s policy on Java applications
is to allow the user to exit an application at anytime, either forcefully or via a menu option.
If an application, during the development process, becomes unstable or fails to respond,
the user/developer may end the application by pressing the END key.

118

Appendix C: FAQ

Online FAQ
The MOTOCODER developer program is online and able to provide access to Frequently
Asked Questions around enabling technologies on Motorola products.
Access to dynamic content based on questions from the Motorola J2ME developer
community is available at the URL listed below:
http://www.motocoder.com

Appendix D: Sun Microsystem’s
J2ME™ Wireless Toolkit

119

Appendix D: Sun Microsystem’s
J2ME™ Wireless Toolkit

Overview
The J2ME Wireless Toolkit is a set of tools that provides developers with the emulation
environment, documentation and examples needed to develop CLDC/MIDP compliant
applications. To obtain detailed information such as the system requirements, installing
and downloading the Wireless Toolkit, please refer to the J2ME Wireless Toolkit
homepage �.
One of the benefits of using the Wireless Toolkit is its flexibility to emulate any new
platform such as the Motorola A835 handset. To customize the Wireless Toolkit for the
Motorola A835 handset, Motorola provides the following items:

• Stubbed out A835 OEM APIs – Used as external class libraries

• Motorola A835 handset images – Skins for Motorola A835 handset

• Motorola A835 handset device property file – Device specific information

• JavaDocs for A835 OEM APIs
After install, to learn how to use the J2ME Wireless Toolkit, please refer to the installed
directory: {Installed dir}\docs\UserGuide.pdf.

Here are some directories that developers should be aware of:

URL Description

lib\midpapi.zip

Archive containing the CLDC and MIDP API classes. These files
are used during the compilation of the application source files
and the byte-code pre-verification of the application classes.

apps\lib Contains external class libraries, in JAR or zip format. All
MIDlets in the apps directory have access to these external
class libraries.

apps\{project
name}\lib

Contains external class libraries, in JAR or zip format. Only
{project name} MIDlet has access to these external class
libraries.

120

Customizing the Wireless Toolkit to the Motorola
A835 handset

Use {installed dir}\docs\BasicCustomizationGuide.pdf to
learn more about how to create a new device in the Wireless Toolkit.

As BasicCustomizationGuide.pdf mentions, there are only three steps to create a new
device in the Wireless Toolkit:
1. Obtain the default J2ME Wireless Toolkit.

The toolkit includes a default development environment and a Default Emulator. The
Default Emulator is supplied with sets of device property files that enable the
emulation of several generic wireless devices.

2. Create new device property files.
A company that wants to have applications developed for a specific device using the
toolkit can modify the device property file and use them with the Default Emulator.
Download A835.zip from
www.motorola.com/developes/wireless/.

3. Add the new device property files to the J2ME Wireless Toolkit.
A set of device property files created for an additional device should be copied to the
folder in the J2ME Wireless Toolkit’s installation that contains device definitions. The
new device is automatically added the device list.

Once the toolkit is installed, and A835.zip is downloaded, follow step 3 above. To add the
Motorola A835 handset to the toolkit device list, unzip A835.zip to the {installed
dir}\ wtklib\devices\A835\ directory. When the toolkit starts again, the
Motorola A835 handset can be selected from the device pull-down menu in KToolbar.
If A835 does not show up in the device list, please make sure that:
1. The toolkit was restarted after unzipping A835.zip.
2. The name of the device directory matches the name of the device property file. For

example, the name of the device should be A835 and the property file name should
be A835.properties.

3. The property files and images should not be in any sub-directories under a device
directory.

If the problem continues, please contact J2MEWTK-comments@sun.com.

Using Stubbed-out Classes
The Motorola A835 handset’s developer support material package includes the A835
OEM classes for the developers to develop and test their application within the Wireless
Toolkit. These classes behave similarly to or the same as in the Motorola A835 handset;
however, some of the functionalities of some classes have been removed because they

Appendix D: Sun Microsystem’s
J2ME™ Wireless Toolkit

121

can not be simulated within the toolkit. A object, such as
com.motorola.location.PositionSource, represents a connection interface on
the Motorola A835 handset*; however, in the emulator, it only allows a MIDlet to compile
and simulate its functionality using the System.out.println() method. Thus,
in the emulator, when a MIDlet requests a connection interface within its application, the
stubbed-out PositionSourcer object will output “The connection was obtained
successfully.” to the console. Similar functionalities have been adapted to the other A835
OEM classes.
These external stubbed-out libraries can be added to the
apps/{project.name}/lib/ or apps/lib/ directories in zipped format.
Refer to item 0 for detailed information on directories within the toolkit. For more
information, please refer to UserGuide.pdf in docs\ directory.

Packaging Applications
One of the downfall of placing external class libraries in the
apps/{project.name}/lib/ or apps/lib/ directory is that when the
MIDlet is packaged using the toolkit, it adds the project’s class files as well as all external
class libraries into the JAR file. Since the KVM is running on the Motorola A835 handset
already, the MIDlet does not require to package stubbed out class files. Please use the
following steps to remove external library classes from the JAR file before downloading
the MIDlet onto the Motorola A835 handset:
1. Open the JAR file using WinZip or any other application that supports JAR.
2. Select and remove all external class libraries from the JAR file.
3. Open the JAD file and change the value of the MIDlet-Jar-Size attribute based on the

new file size of the JAR file.
4. Save and close the JAD file.
5. Now the MIDlet is ready to be downloaded.
For additional information on packing MIDlets, please refer to UserGuide.pdf in the
docs\ directory.

122

Appendix E: Spec Sheet

Spec Sheet
Listed below is the spec sheet for the Motorola A835 handset. The spec sheet contains
information regarding the following areas:

• Technical Specifications

• Key Features

• J2ME Information

• Motorola Developer Information

• Tools

• Other Related Information

Appendix E: Spec Sheet

123

 Motorola A835
Developer Reference Sheet

Band/Frequency WCDMA 2100
GSM 900/1800/1900

Region Global
Technology Bluetooth, MMS, J2ME, EMS

5.0, SyncML, WAP 2.0
Connectivity IrDA, Bluetooth, USB, RS-232
Dimensions 137 x 55.6 x 26.5
Weight 155 g
Display 176 x 220
Operating System Motorola
Chipset i300-22

• Enhanced integrated video camera enabling two-
way video conferencing, video streaming,
capture and playback

• Multimedia Messaging (MMS) capabilities with
3G technology allowing you to send and receive
songs, videos, and pictures

• Bluetooth™ wireless technology allows you to
connect wirelessly to compatible Bluetooth
headset and other compatible devices

• AGPS technology enables for location services
• Polyphonic speaker with MP3
• J2ME™ technology for downloadable games and

productivity applications
• Embedded speakerphone functionality
• 64 Megabytes of embedded user memory
• Motorola Internet browser 2.2
• Full Personal Information Management (PIM)

and synchronization (SyncML)
• Downloadable and embedded ring tones

CLDC v1.0 and MIDP v1.0 compliant
Maximum MIDlet suite size 64Kb
Heap size 800 Kb
Maximum record store size 64Kb
MIDlet storage available Up to 1 MB
Interface connections Serial, HTTPS,

Sockets, UDP
Maximum number of sockets 3
Supported image formats .PNG
Double buffering Supported
Encoding schemes ISO8859_1,

ISO10646
Input methods Multitap, iTAP
Additional API’s JSR 120, JSR 135,

Phonebook
Audio MIDI, WAV

Motorola Developer Information:
Developer Resources at
http://www.motocoder.com

Tools:
CodeWarrior® Wireless Studio v7.0
J2ME™ SDK version v4.0
Motorola Messaging Suite v1.1

Documentation:
Creating Media for the Motorola A835 Handset

References:
J2ME™ specifications:
http://www.java.sun.com/j2me
MIDP v1.0 specifications:
http://www.java.sun.com/products/midp
CLDC v1.0 specifications:
http://www.java.sun.com/products/cldc
WAP forum: http://www.wap.org
MMS standards: http://www.3GPP.org

Purchase:
Visit the Motocoder Shop at
http://www.motocoder.com/
Accessories: http://www.motorola.com/consumer

Technical Specifications

Key Features J2ME™ Information

Related Information

124

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or
service names are the property of their respective owners. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
© Motorola, Inc. 2003.

