Technical Manual

A830 J2ME™ Developer
Guide

CSR00-KJAVA-A830-DGUI-02090309

Version 1.0.2

MOTOROLA

intelligence everywhere”

Table of Contents

1 INTRODUCTION

REVISION HISTORYoiiitiiiiiiieiit ettt ettt e ettt e e et ee et e e e taeesabeeeataeeeaseeessssesasesensesensssenssesensseesnseeanns
DEFINITIONS, ACRONYMS, AND ABBREVIATIONS.......cccotitriieeiiirieeeieiteeeeeeiireeeeeeisreeeeeisreeeeesssreeesessseeeesnnnnes
DOCUMENT OVERVIEWootiiiiieiitieeeeeieeeeeeetteeeeeeitaeeeeeeitseeeeeeitseeeesesssseeeeesseeeseeassseeseesssseeseeessseeseessseeenarnes

2 2ME™ INTRODUCTION

THE JAVA™ 2 PLATFORM, MICRO EDITION (J2ZME™) ctiiiiiiiiiiiiieieeiteieeseteete et
THE MOTOROLA J2METM PLATFORMccciiiutiieeiiueeeeeeiteeeeeeeiteeeeeeeiteeeeeeeteeeseessseeseessssesesesssreessesseseeseninnes
RESOURCES AVAILABLE ON THE MOTOROLA A830 HANDSETccoviuviieeiirreeeeeiieeeeeeineeeeeeeinreeeeevveeeeennnes

3 DEVELOPING AND PACKAGING J2ME™ APPLICATIONS

MDP - MOTOROLA DEVELOPER PROGRAMcoiuiiiiiininiiitiiieieiietcstcte et
DEVELOPING — TOOLS AND EMULATION ENVIRONMENTSc.uttttieiiiieteeniiieeeeserreesennnreessnnseeesssssseeessnnnes
FeQIUPES 10 LOOK FOF ..ottt eae e ae e beeaeene
PACKAGING — PUTTING THE PIECES TOGETHER........cctttitieeriiieiiieesreesieeesireeseeeessseeasneensseessssessnsesssssessnnes
Compiling .java Files t0 .ClaSS FilesSccccioiioiiiiiiieii ettt
Preverifying .ClASS FIlEsc.ccocooiiiioiiieiieieeet ettt ettt be et a s st ns b eaeene
Creating a Manifest File with J2ME Specific AHFIDULESccoccviveoieiiiiiiiiiiiciiiteeeeeceenes
J2ME Application Naming CONVENIION.c.ccueieiieieeeaieeeee sttt ettt ettt ee e eee e eeeenes
JARiIng .class Files and OtRer RESOUFCESc..ccceiiiiaieiie ettt
CreQting the JAD file.........c..ccouoeuieieiii ettt ettt ettt et e s e st e s taeesbeesseesseessaennsenene s
DOWNLOAD TO DEVICE ...ccutviiiiiiiiiieeeeciiieeeesitteeeestteeeeetveeeeesasaeeessssaseesssssaeeesssssseessssssseessssssseesssssseeessssses

4 APPLICATION MANAGEMENT

MIDLET LIFECYCLEutttiiieititeeeeeiteeeeeiteeeeestteeeeestveesessaaseeeeaassseeessssaseesassaseesssssseeesassseeesasssseessssssneesassnes
MIDLET SUITE INSTALLATIONuutiiiitiiiitieeteeeereeeetteeeteeeeaseeesesesaseeasseessssessssessssasssesssesesssesenssesssesannns
MIDLET SUITE DE-INSTALLATIONc..cecttmttiitetentiettententenieentetesueestentesueessensesueemeensessesssensensesseensensesseensensennes
MIDLET SUITE UPDATINGeeeutetiiieieetenteeitetenteettestestesutessentesueessessesueessensesseemeessessesssensenseeneensensesseennensennes
STARTING, PAUSING, AND EXITINGccieiiuiiiiiiiiiieeeeciiee e eette e e eette e e eetae e e e eeataeeeeeaaaeeeeesaaeeeeebeseeeeeaseeeeennns

AMS Control of MIDIet State TrANSTIIONS...........cccoivuereiieeieee ettt ettt aeee e aaeens

MIDlet Control of MIDIet State TramSItiONSc..cccveeveecueeciieiieeieetesieereesseestee e sseesseesseessaesssenenes
JAVA SYSTEM...ciiiiiiiiiiiitictiiet ettt ettt ettt e b bt ae st sae et ebe b nnens

5 LIMITED CONNECTED DEVICE USER INTERFACE (LCDUI)

Table of Contents

DGAUIE FONLS ...ttt ettt ettt et et e et e e st e eabe e st e e beesseeeseesabeenseenseenseenseensaannnennnenn 32
KJAVA TELEPHONY ...coooviiiiiiiiiiiiiiiiiiiieictet ettt sttt ea s n e ene 32
FURCHONALILY ...ttt ettt ettt ene s 33
CODE EXAMPLES......cutiiiiiiiteitete ettt sttt ettt ettt ettt ae st et e bt e s e e e saeeas e s et e eueesaesaesueeanenseeueeneennenaenn 33
TIPS ettt ettt ettt ettt ettt et et a e ae et et et et e ea e et e eRe R e ea s ekt eaeen e e eRe st en s e et eneeneeteebeeneeneeaes 34
CAVEATS ..ot 34
6 LIGHTWEIGHT WINDOW TOOLKIT (LWT) 35
OVERVIEW.......uuttiiiiiiitiee e eeitee e ettt e e e eetteeeeeeeateeeeeaateeeeeassaeeaeaasbssaeeaastaseeeassaseseasssssesaassaseeesastsseeeassseeseassseeaean 35
EXAMPLE OF A MIDLET USING LWT PACKAGE..........oiiiiiiiiieeieiieee e ettt e eeiteeeeeeateeeeeesvareeeseaavseeesnnsaneeesnnnnes 35
CLASS HIERARCHY AND OVERVIEWccuiiiiiiiiiiiiieieiieteniesteeetteteetetestent et stessess e saessesneseenesaesaesensesessenaens 37
COMPONEIESCIEON ...ttt ettt e st st ettt et e st et e st e s abeenbeeabeenbeenseesseenteesneasnnenanean 37
COMPORCHL ...ttt et et ettt she e e et e e et e et e bt et e bt e s tteestesetesebeenbeenbe e beeseeeeneesanean 37
COMPONCIELISTENET ...t eee ettt ettt ettt e et e et e s b e e beebe e baessbeestessbeesbeesseeseesseesssenssensseas 38
INEETACIADICCOMPONEHL ...t ettt ettt e e ate e e e bt asbeebeesseestbeesaeenseesseenseeseeseenes 38
BUTTON. ... et 38
TMAGELADEL ...ttt bttt a et eae e te et beeneenes 38
CRECKDOX ...ttt ettt ettt e et e et e et e et e bt ete e ae e eat e e abe e teete e teeeabeeareeare s 39
CRECKDOXGTOUP ...ttt ettt ae ettt ee ettt eaeeneeeae st e s e seeneenes 39
TEXTCOMPOIENL ...t e et e ettt e e it e ettt e ettt e e ab e e e tbeeenteeeeaseeantbeeensbeenseaaenseeensaeennneas 39
TOXIFTEIA ...ttt ettt 40
TOXIAFOA ...ttt ettt ettt 40

Y 77 2 TSP STPR 40
FUNDAMENTAL COMPONENT BEHAVIORSoooiiiiiiiiieeeiiiieeeeeiteeeeeeieeeeeeataeeeeeataeeseessaseesennassesesensseeeeennnnes 40
COMPONENTE MANAZEMENL..........cceeeeeeeeeeeeee ettt stee st e ete ettt e teesteestaestbeesaessbeesbeanseeseesseenssenssensnens 40
COMPONEIE REZIONSoe ettt ettt ettt et e ettt e bt et e st e s abeesteenbeenteeseenstesseessaennsenanen 41
COMPONEIE SEALES ...ttt ettt ettt et e et e s et st et e bt et e s teeeatesateenbeenbeenbeenteesaaaeneesane s 42
COMPONENE LAYOUL. ...ttt ettt 43
VALIAQIION CYCIE ...ttt ettt ettt e at et et et e et e ee st naesaeeneens 48
FOCUS MANGZGEMENT ...ttt ettt ettt et 50
Ky EVENt HANAIING..........ccooeeeiiiiiieieeeee ettt ettt ettt et et e et e b e e beesaesseestbessbeanseenseesaenssanssensnens 50
Pointer EVEnt HANAIING............cc..cccuovuieeiieeieeieseeeie ettt ettt et e staesae st asteeseessaestaessaeenseenseenseenseenseenes 51
REIACHING. ...ttt ettt ettt ettt s et e bt a et et st b eneenes 51
SO OIIIIG. ...ttt et ettt et ekt e e et e et e m et e et e e et e e e eaeene et e teeneeneeeaeenean 52
THE COMPONENTSCREEN CLASSoiiitiiieitee et et et e et e eaee e et eeeteeeeaee e eaeeeeaeeeeaeseeaeeeeseseesseeeeseeeensesennes 53
ComponentScreen Definition and CORSIFUCTOTc..ccueeeeeeeesiesieeeeeieesieesieesiee e ssesseeseessaesseesenees 53
COMPONENESCTEEN MEINOUSc..oocueeiieeee ettt ettt sttt ettt e steeseeesaaeeneesane s 53
THE COMPONENT CLASS.....coiiiiiiiiiiiiiiiiiitct ettt s et a st ene 55
Component Definition and CORSIFUCIOFc..ccoouriiiriioiiiiiinieneetet ettt ettt 56
COMPORENE FTOIAS ...ttt ettt ettt see et ee e ens 56
COMPONEIE MEIROAS ...ttt et te et st e st e e s e e abe e sbeebeestaesteesssannsenane s 57
USING COMPONGHLS......c..oeeeeeei ettt ettt e et ettt et e bt esate s et e e ab e e bt e bt e sbeeentesaseenbeenteanseenseenes 59
THE COMPONENTLISTENER INTERFACE........ccuiciiiiiiiiiiiiiiiiiiiiiieieeiteeece ettt s 60
ComponentListener INterface DEfiRitiON..............cccccoioueuiiiiiaiiie ettt 60
ComponentListener INterface MEtROCSccocuioiiiiiiieeee ettt 60
THE INTERACTABLECOMPONENT CLASSooviiiiiiiiiiiiietiieiiei ittt 60
InteractableComponent Definition and CONSIFUCIOTcc.eecieveeeieeieiiiiesieesieeeee e ese e siaeeae e eaes 60
InteractableComponent MEtROAScccccoovviiieciiiieieieee ettt eae s 61
THE BUTTON CLASS......viiiiiiiiiiiiiitet ettt ettt sttt s st s e enene e 62
Button Class Definition and CONSIFUCIOTScoererueciioiiinienieieitetaeie ettt bttt 62
BUION CIASS FIOIAS ...ttt ettt ettt ettt e e et e e e e enes 62
BUtton Class MEROTSc..cccocuiiiiiieiii ittt ettt ettt sttt ettt ene s 62
THE IMAGELABEL CLASS......ciiiiiiiiiiiiiiitit ettt ettt s s enene 63
ImageLabel Class Definition and CONSIFUCIOFS...........c..cccciicirineniiitiiiinieeet ettt 63
TmageLabel CIass FIEIAScccoooiiiiiiieeee ettt ettt ettt eeeenee 64
ImageLabel Class MEtNOUSccccuoviiiiieeie ettt ettt enee 64

CHECKBOX CLASS....tititeiieiiett sttt sttt b et e b ettt ettt sa e st eaesaesae e eneebesbennens
Checkbox Class Definition and CONSIFUCIOFSc..cc.ccueeueiieieesieeieeeneeeeese e eieese s esaesse e essessesseens
CRECRDOX CIASS FTEIAS ..ottt ettt ettt e easeeare s
CheCkBOX ClaSS MEIROUS.............c..ccveeueieieeieeii ettt ettt ettt ettt e be e be bt ste e easeeaseeane s
GFOUPING CRECKDOXES ...ttt ettt eneens

THE CHECKBOXGROUP CLASS.....c.itiiiiiiiiiiiiieieiieie ettt sttt ettt ettt s s saen
CheckboxGroup Class Definition and CORSIFUCIOTc..ccccoueeeeeeieienee et ens
CheckboXGroup ClASS FIEISccooioiioiiiiiiiiiiiiiiiit ettt ettt et
CheckboxGroup CIASS MEIROASco.cooeiiieieiee ettt

THE TEXTCOMPONENT CLASSutttiieeitiieeeeiitteeeeeiteeeeeetveeeeeetsaeseesessaseesassasesaasssseseasssseessasssseessnsssnseeassees
TextComponent Class Definition and CORSIFUCIOTccoecueeueiieeeieeeiiiesieeieeieeseesieesseesesesseasseessne e
TextCompoOnent CLASS FIQLASc..cccoovueieeiieii ettt ettt ettt e saesnaesabeebeeseesnee e
TextCOMPONEHE MEIROTSccooeeeieieiieiieieeie ettt ettt ae ettt eaeese s seeneens

THE TEXTFIELD CLASS ..ottt st s
TextField Class Definition and CONSITUCIOFccoccuioueiiiiiieeeeieeee ettt
TextField CIass MetROCSccoccooieoiiiiiiiiii it

THE TEXTAREA CLASS ..ottt sttt et st s
TextArea Class Definition and CONSIFUCIOFccc.coueeuiciiiiniiieiitiisieee ettt
TextArea Class MEIROGS..............c.ccoeeeieaieiee ettt ettt et nae et eae e enes

THE SLIDER CLASS.....uutttiteeititeeeeiteeeeeeitteeeeeetteeeeeetteeeeaetaaeeaeaassaseeeastasesaasssseeaasssseeeaassasaeeaasteseseaassseeeeansenes
Slider Class Definition Qnd CORSIFUCIOTc.ocueecueeiriesieeiesieeeieesseesieesaessseesseestaesaessseesseessaesseesseenes
SUAEEr ClASS FTOICS ... ettt et
STAEr Class METROGSoceeueiiiiiiieeeee ettt ettt

RECORD MANAGEMENT SYSTEM (RMS)

UDDP SOCKETS. .. cuttettestteettesitt et et ete e bt e sttesttesatesabeesbe e bt e beesbtesbeesaeesabeeabeeabeenbeesbtesatesateeabeenbeeabeenbeesbtesaeenaees
SERTAL PORT ACCESS....c.uiteiiiiiiieiieieitetietesteteit ettt ettt et sttt et s st ae st b e sa et ebe et nenee
COMMUNICATING ON A POV ...ttt ettt st ettt et e saaeeneeeane s
Example using StreamQCORNECTIONc.cccoocveeeeiiiieiieeeiee ettt ettt es et sae st se e enes
IMPLEMENTATION INOTEScttiutieieiieenteenitesite sttt et et et e bt e sitesbte sttt sateesbeeabeebeesbtesatesatesabeenbeenbeenbeesasenaeesanes

GAMING

FUNCTIONAL DESCRIPTIONccceiutiieiiittieeeeeitteeeeeeitteeeeeeitaeeeeeetseeeeeesseeeeeeesseeeeeeassseeseesssseeeeessseeesessseeeessnes
CLASS HIERARCHY ..ottt e e e e e e e e e e e e e e e e e et et e e e eeeaeeeeeeeeeaeaeeteeeeas s eeeaeeeans
BACKGROUNDIMUSIC CLASS ...ttt e e e et e e e e e e e e e et ettt seeeeeseeeeeaaeeeetaeeas s aaa e asesseeeeeeeaaeneenanes
BackgroundMusSic MEEROAScoocueiieiiieiieee ettt ettt ettt taessaeensesnneenbaeseensee e
USING BACKGTOUNAMUSICcc.oeieieieeie ettt ettt et ettt e st e ssaesntesabeenbeanseensee e
GAMESCREEN CLASSeiittiieitteiteeestteestteastreeatesessseaassssassseeesssasssesassseessesassseeasseessseaassssesssssessseessssessses
GAMESCIEON FUEIUS ... ettt et e ettt e e
GAMESCIEEN MEIROUS ...ttt et e ettt e e e
USTNG GAMESCIOON ...ttt ettt ettt sttt et enbee e
IMAGEUTIL CLASS ...ttt ettt ettt et e e et e e et e e aae e eaeeeetteeetaeeeaaeeeeteseeaseseenseeenteseessesesseeanseeennes

Table of Contents

TIAGEUIIL FTOIAS ...ttt ettt et e bt e st esabeenbeenbeenseensaesanenenen 92
IMAGEUILIL MEIROUSoccoieieeeieeeee ettt ettt a et eb ettt e s eaeesaebeeseensenseeseenees 92
USING TMAGEUIL ...ttt e ettt ettt 94
PALLETEIMAGE CLASS ...ttt ettt ettt ettt ettt ettt ettt sttt et ae b e e asesa e aeeaeenesbesueennenesaee 94
Palletelmage CORSIIUCIONueoeiieiee sttt ettt ettt e e st ae st eee e eeeeeanean 95
Palletelmage MEIROTSc.cccoovueieiieeiieieeeeeie ettt ettt ettt et sae bt e e eseeaeeaesbeeteensenseeseenees 95
USING PAIICIEIMAZE ...ttt ettt b e bttt eae et e b e ebeentenseeneeneas 96
PLAYFIELD CLASS. ...ttt ettt ettt ettt et ettt sttt e st a e et e s e s b et esaesaeeaee s e besaeennenesaee 96
Using Static and ARIMAted TILESc..c.ccooioiioeeiiii ettt 97
LR 78 g 27 1= SRS STP 97
DefiNing VIEW WIHAOWSc.ccccveiieiieeieeie et ettt stesteeae ettt e s taesteesebessbeesbeeseessaessaesssessseenseenseeseees 97
PLAYFTELA CONSIFUCTOT ...ttt ettt ettt st et e ettt et e bt e s atesabeenbeenseenseessaasnnenesen 98
PlAYFTEld MEIROUS.............ccooeieieiieiieiieeee ettt ettt ettt e s e eae s e sbeebeensenseeneenees 99
USING PIAYFTEIA. ...ttt ettt ettt 103
SOUNDEFFECT CLASS .. .euttieeeeeteee e ettt e ettt e e e e ettt e e eeteeeeeeetaaeeeeeetaeeeeeetaeeeeeatssaeseeaasseeaeeastaeeeseasteseeeensreneas 103
SOURAESFECE MEIROAS ...ttt ettt ettt ettt e e aaesatestaeenseenseensen 103
USING SOURAELTECE ...ttt ettt b ettt ebe et e e ebeeaeeseesseeneeseenes 104
SPRITE CLASS ...ttt st st sa et sa et enenes 104
ARTIMALION FFAMES ...ttt ettt e ettt e e et e et e e s e e s st e e ensbeesasaeeetseeensseenasaeensseann 104
SPVIEE DFAWIRG ...ttt ettt ettt e b et s e sae e sttt en 104
SPVIEE CONSIIUCLOF ..ottt et eite ettt e bt ekt estaeetaeesbeesbeeseesseestbeasbeesseesseessaessaesasesssenssensseenseas 105
SPFILE MEINOUS ...ttt ettt ettt et ettt e et e st e s taeesaeeabesaseenseenseeseenees 106
USTNG SPFITE ...ttt ettt ettt ettt e et e et e e st et e bt et e st b e emteenb e enb e e bt e saeesseessneenseenneensean 108
FILEFORMATNOTSUPPORTEDEXCEPTION.......cccuiuiiiiiiiiiiiiiiiiiiiiieieiite ettt s e 109
FileFormatNotSupportedEXception CONSIIUCIOTScc.eeveerueiceeeereesiiesiiesreeieeseesseesseesisessseenseenseenses 109
APPENDIX A: KEY MAPPING OF MOTOROLA A830 HANDSET 110
KEY MAPPING ..ottt bbbt 110
APPENDIX B: HOW TO 112
DOWNLOADING TO THE DEVICE.......c..coiiiiiiiiiiiiiiiiinictcieseet ettt s e 112
Serial port download ProCedUIec.cocivioiiciiiiiiiiiiic ittt 112
OTA PPOCEAUFE ..ottt ettt ettt ettt at et ae ekt et et e eee st et e st enseeteeneenees 113
INSTALLATION . ..ottt iiiiiie ettt eett e e ettt e e e ettt e e eeetbeeeeeetbeeeeesasaeeseeassseeeeeassaseeesssasseaansseseeaassseeeeeasteseeeasres 113
STARTING APPLICATIONS.......ceutiuirieteutetintentententettetestessentettstesessesteseseessesseuesaesaesaeseesesbesaeneeneesessensenseneesenen 115
EXITING APPLICATIONS ...ttt sttt ettt sttt ettt s et et ese e b s et est et ete st esesae s e s eatenesaesaeneeneene e 115
APPENDIX C: FREQUENTLY ASKED QUESTIONS 116
APPENDIX D: SUN MICROSYSTEM’S J2ME™ WIRELESS TOOLKIT 119
OVERVIEW ...ttt s h et ettt et sttt ae s n e 119
CUSTOMIZING THE WIRELESS TOOLKIT TO THE MOTOROLA A830 HANDSETcoceevuirieriiereiirceeenienieens 120
USING STUBBED-OUT CLASSES ... uttitiieiitieeeeiiteeeeeittteeeeeitteeeeeeaveeseesaaeeeesessaseeeaesteseeeaasseseeeassseeeeeeseseeeansees 121
PACKAGING APPLICATIONS.....cciiittieeeeiitteeeeeitteeeeeisteeeeeitreeseasssesseassssseeaasssseeesassasseesasseseseasseeessaseseesansees 121

1
Introduction

Purpose

This document describes the application program interfaces used to develop Motorola
compliant Java™ 2 Platform, Micro Edition (J2ME™) applications for the A830 handset
device, and a description of how to package and deploy those same J2ME applications.

Scope
This document is for all developers involved with the development of J2ME applications
for the A830 handset device.
Document Conventions
Convention Definition
<install-dir> Refers to the directory in which the Motorola SDK

components are installed.

| Either-or choice. [a | b]

1
Introduction

Disclaimer

Motorola reserves the right to make changes without notice to any products or services
described herein. “Typical” parameters, which may be provided in Motorola Data sheets
and/or specifications can and do vary in different applications and actual performance
may vary. Customer’s technical experts must validate all “Typicals” for each customer
application.

Motorola makes no warranty with regard to the products or services contained herein.
Implied warranties, including without limitation, the implied warranties of merchantability
and fitness for a particular purpose, are given only if specifically required by applicable
law. Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the
products or services, whether through a service provider or otherwise.

No warranty is made that the software will meet your requirements or will work in
combination with any hardware or applications software products provided by third
parties, that the operation of the software products will be uninterrupted or error free, or
that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence) for
any damages resulting form use of a product or service described herein, or for any
indirect, incidental, special or consequential damages of any kind, or loss of revenue or
profits, loss of business, loss of information or data, or other financial loss arising out of or
in connection with the ability or inability to use the Products, to the full extent these
damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, or limitation on the length of an implied warranty, so the above
limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which
vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may
occur.

Should the buyer purchase or use Motorola products or services for any such unintended
or unauthorized application, buyer shall release, indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacture of the product or service.

References

e [1] Sun™ J2ME Documentation, j ava. sun. coni j 2me/
e [2] Sun™ MIDP Specification, j ava. sun. com pr oduct s/ mi dp/

» [3] Lightweight Window Toolkit Programmer’s Guide,
www. ot or ol a. coni devel opers/ wirel ess/

* [4] J2ME Wireless Toolkit homepage,
j ava. sun. com product s/ j 2newt ool ki t / downl oad. ht m

» [5] Motorola Developer Program site,
www. ot or ol a. coni devel opers/ wirel ess/

Revision History

Version Date Name Reason
01.00 Nov 04, 2002 CESAR Final draft
01.01 Nov 18, 2002 MW MDP Reformatted
01.02 Nov 22, 2002 MW MDP Revised on review

Definitions, Acronyms, and Abbreviations

Acronym Description
AMS Application Management Software
API Application Program Interface.
CLDC Connected Limited Device Configuration
FDI Flash Data Integrator. The memory used to store the applications.
GPS Global Positioning System
IDE Integrated Development Environment
ITU International Telecommunication Union
JAD Java Application Descriptor
JAID Java Application Installer/De-Installer
JAL Java Application Loader

1
Introduction

Acronym Description
JAR Java Archive. Used by J2ME applications for compression and
packaging.
J2ME Java 2 Micro Edition
JSR 120 Java Specification Request 120 defines a set of optional APIs that
provides standard access to wireless communication resources.
JUM Java Virtual Machine
KVM KJava Virtual Machine
LCC Licensee Close Classes
LWT Lightweight Window Toolkit
MDP Motorola Developers Program
MIDP Mobile Information Device Profile
OEM Original Equipment Manufacturer
OTA Over The Air
RMS Record Management System
RTOS Real Time Operating System
SC Service Center
SDK Software Development Kit
SMS Short Message Service
SU Subscribe Unit
Ul User Interface
URI Location Services Unified Resource Identifier

VM

Virtual Machine

Document Overview

10

This document is organized in the following sections:

Section 1 - Introduction: this section has general information about this document. It
includes document purpose, scope, references, some definitions and location.

Section 2 - J2ME Introduction: this section describes some tips of J2ME platform,
and the available resources on the Motorola A830 handset.

Section 3 - Developing and Packaging J2ME Applications: this section describes
some important features to look for when selecting tools and emulation environments.
It also describes how to package a J2ME application, and generate JAR and JAD
files properly.

Section 4 - Application Management: this section describes the lifecycle,
installation/de-installation and updating process for a MIDlet suite. It is also described
the MIDlet state machine and how to use the Java System feature option on A830.

Section 5 - LCDUI: this section describes the Limited Connected Device User
Interface API, including the KJava Telephony API.

Section 6 - LWT: this section describes the Lightweight Window Toolkit API.
Section 7 - RMS: this section describes the Record Management System API.
Section 8 — Networking: this section describes the Java Networking API.
Section 9 — Gaming: this section describes the Gaming API.

Appendix A — Key Mapping of Motorola A830 handset: this section describes the key
mapping of Motorola A830 handset including the key name, key code and game
action of all Motorola A830 keys.

Appendix B — How to: this section describes the downloading, installing, removing,
starting and exiting of a MIDlet using the Motorola A830 resources.

Appendix C — FAQ: this section describes the more frequently asked questions
about using of MIDlet suite applications on Motorola A830 handsets.

Appendix D — Sun’s J2ME wireless toolkit: this section describes briefly the Sun’s
J2ME wireless toolkit documentation. It also describes how to use the stubbed-out
classes.

2

J2ME™ |Introduction

2
J2ME™ Introduction

The Motorola A830 handset includes the Java™ 2 Platform, Micro Edition, also known as
the J2ME platform. The J2ME platform enables developers to easily create a variety of
Java applications ranging from business applications to games. Prior to its inclusion,
services, or applications, residing on small, consumer devices like cell phones could not
be upgraded or added without significant effort. By implementing the J2ME platform on
devices like the Motorola A830 handset, service providers as well as customers can easily
add and remove applications, allowing for quick and easy personalization of each device.
This section of the guide provides a quick overview of the J2ME environment and the
tools that can used to develop applications for the Motorola A830 handset.

The Java™ 2 Platform, Micro Edition (J2ME™)

The J2ME platform is a new, very small application environment. It is a framework for the
deployment and use of Java technology in small devices such as cell phones and pagers.
It includes a set of APIs and a virtual machine that is designed in a modular fashion
allowing for scalability among a wide range of devices.

The J2ME architecture contains three layers consisting of the Java Virtual Machine, a
Configuration Layer, and a Profile Layer. The Virtual Machine (VM) supports the
Configuration Layer by providing an interface to the host operating system. Above the VM
is the Configuration Layer, which can be thought of as the lowest common denominator of
the Java Platform available across devices of the same “horizontal market.” Built upon this
Configuration Layer is the Profile Layer, typically encompassing the presentation layer of
the Java Platform.

Profiles (MIDP)

Configurations
(CLDC)

Java VM

Host OS
Figure 1. The J2ME Platform Architecture

The Configuration Layer used in the Motorola A830 handset is the Connected Limited
Device Configuration 1.0 (CLDC 1.0) and the Profile Layer used is the Mobile Information

11

Device Profile 1.0 (MIDP 1.0). Together, the CLDC and MIDP provide common APIs for
/0, simple math functionality, Ul, and more.

For more information on J2ME, see the Sun™ J2ME documentation.

The Motorola J2ME™ Platform

Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to
implement and support. By adding to the standard APIs, manufacturers can allow
developers to access and take advantage of the unique functionality of their devices.

The Motorola A830 handset contains OEM APIs for a wide variety of extended
functionality ranging from enhanced Ul to advanced data security. While the Motorola
A830 handset can run any application written in standard MIDP, it can also run
applications that take advantage of the unique functionality provided by these APIs. These
OEM APIs are described in this document.

12

2
J2ME™ |Introduction

Resources Available on the Motorola A830 handset

The Motorola A830 handset allows access to a richer set of resources than our previous
Java™ capable phones. The changes range from a larger heap for Java applications to
the presence of a color display. All of the enhancements allow for more compelling and
advanced Java applications to be created. In addition to increasing resources present on
the device, new APIs to access other device resources were added. These new APIs
allow a Java application to leverage other capabilities of the device that are currently not
accessible through standard MIDP and CLDC APIs.

Display

Resolution 176 x 220

Color Depth 12 bit color (4096 colors)
Networking

Max HTTP, UDP and TCP Socket connections* 4 with any combinations
File & RMS

Max number of Files/RMS* 500

Java VM

Heap Size 512 KB

Program Space 1.2 MB

Max Resource Space* 450 KB

Recommended Maximum JAR Size 100 KB

*: These resources are shared with the rest of the phone and there could be less
available to Java at any given time.

13

3

Developing and Packaging
J2ME™ Applications

MDP - Motorola Developer Program

Motorola developed the MDP to support developers in their efforts to create and market
wireless applications. The program provides access to a wealth of services and support,
including assistance in getting application ideas to market, training classes that range
from overviews to in-depth courses, instantly accessible online technical support,
application certification and industry-leading development software.

A tiered-membership structure enables Motorola Developer Program members to join the
program at whatever level is appropriate for them, based on the level of services and
support they require. Developers in the early stages of application development, for
example, can take advantage of basic development assistance in the form of online
downloads and training materials. Those with fully mature applications, on the other hand,
can join at a higher level that provides opportunities for certification, exposure to potential
markets and other later-stage benefits.

For more information, see the Motorola Developer Program site at
www. not or ol a. coni devel opers/wirel ess.

Developing — Tools and Emulation Environments

14

In order to develop applications for a J2ME enabled device, a developer needs some
specialized tools to improve development time and prepare the application for distribution.
There are several tools available, so this overview is included to help enable developers
to make an informed decision on these tools.

3

Developing and Packaging J2ME™ Applications

Features to Look For

Numerous tools for developing J2ME applications are readily and freely available on the
market. Some of their functionalities include:

Class Libraries

J2ME tools include class files for the standard CLDC/MIDP specifications and may also
contain class files required to compile device specific code.

One of the main issues with the MIDP 1.0 standard is the lack of device specific
functionality. As a stopgap solution, many MIDP 1.0 device manufacturers have
implemented Licensee Open Classes that provide the features requested by developers.
In order to take advantage of these APIs, choose an SDK that natively supports them or
one that can be upgraded to support them.

API Documentation

In addition to providing the class files, most SDKs include reference documentation for the
supported APIs. These documents, typically found in either HTML or PDF format, cover
the standard CLDC/MIDP specifications as well as the device specific APIs.

Emulation Environment

Although not an absolute necessity if the device is available, most toolkits provide this
functionality for multiple devices. The main benefits of an emulation environment are the
reduction in development time as well as the ability to develop for devices not yet on the
market. The extent to which the toolkits emulate the device can vary greatly.

An emulation environment that accurately reflects how the application will look and feel on
the target device, will reduce both your development time and your frustration level. If
most of the development is going to take place on the device, then this may not be a big
consideration, but if access to the target device is limited or unavailable, accurate
emulation is a must. Look for accuracy in the font representation, display dimensions, and
pixel aspect ratio, as many wireless devices do not have square pixels.

Along the same lines as accurate look and feel, the tool should also provide accurate
performance emulation. A comprehensive tool should provide individual adjustments for
performance aspects such as network throughput, network latency, persistent file system
access time, and graphics performance. Ideally, these attributes should not only match
the target device, but also have the ability to be manually adjusted.

Application Packaging Utility

Most SDKs automatically package the application for deployment onto the target device.
Although many tools include this feature, flexibility varies widely. Look for a tool that
generates both the manifest and JAD files with the required tags as well as custom tags.
The packaging steps required to deploy an application on the Motorola A830 handset are
described in a subsequent section.

Is the SDK free?

There are numerous feature rich SDKSs freely available on the market. These are not
disabled or time limited versions but rather full-blown development environments and
tools.

15

Packaging — Putting the Pieces Together

Compiling

Once an application has been tested on an emulator and is ready for testing on the actual
device, the next step is to package the application and associated components into a
JAD/JAR file pair. The files contain both the MIDlet's executable byte code along with the
required resources. Although this process is automatically performed by most SDKs and
IDEs supporting J2ME, the steps are explained and outlined here.

Java Files to .class Files

Compiling a J2ME application is no different than any other J2SE/J2EE application. By
adding the CLDC/MIDP files (whether functional or stubbed out) to the classpath, any
standard Java compiler that is JDK1.3 compliant or greater is sufficient to produce .class
files suitable for the preverification step.

Preverifying .class Files

Class files destined for the KVM must undergo a modified verification step before
deployment to the actual device. In the standard JVM found in J2SE, the class verifier is
responsible for rejecting invalid classes, classes that are not compatible, or have been
modified manually. Since this verification step is processor and time intensive, it is not
ideal to perform verification on the device. In order to preserve the low-level security
model offered by the standard JVM, the bulk of the verification step is performed on a
desktop/workstation before loading the class files onto the device. This step is known as
preverification.

During the preverification step, the class file is analyzed and a stack map is appended to
the front of the file. Although this may increase the class file size by approximately 5%, it
is necessary to ensure the class file is still valid when it reaches the target device. The

standard J2SE class verifier ignores these attributes, so they are still valid J2SE classes.

Creating a Manifest File with J2ME Specific Attributes

16

In addition to the class files, a manifest file for the HelloWorld MIDlet needs to be created.
Although most J2ME tools will auto generate the manifest file, it can also be created
manually using a plain text editor. The following is a sample manifest file:

M Dl et - Nare: Hel | oWbr | d
M D et-Version: 1.0.0
M Dl et - Vendor: Mdtorola, Inc.

MD et-1: Hellowrld, |,
com notorol a. mdl ets. hell oworl d. Hel | oWor | d

McroEdition-Profile: MDP-1.0
M croEdition-Configuration: CLDC 1.0

3
Developing and Packaging J2ME™ Applications

The device’s AMS uses the manifest file to determine the number of MIDlets present
within the suite as well as the entry point to each MIDlet. Additionally, the manifest files
may contain optional tags that are accessible by the MIDlets within the MIDlet suite. For
more information, refer to the MIDP 1.0a specification 0.

Notes:

The following attributes are mandatory and must be duplicated in both the JAR file
manifest and the JAD file. If the attributes are not identical, the application will not install.

e MiDlet-Name
e MiIDlet-Version
e MiIDlet-Vendor

The manifest contains MIDlet-<n> arbitrary attributes each describing a MIDlet in an
application suite.

The MIDlet-1 attribute contains three comma separated fields, the application name, the
application icon, and the application class file (entry point). The name is displayed in the
AMS user interface to represent the nth application. The application icon is currently not
used on the Motorola A830 handset and thus is ignored. To omit the icon field, simply
place a <space> in place of the icon name. The application class file is the class
extending the j avax. mi croedi ti on. ni dl et. M Dl et class for the nth
MIDlet in the suite.

The manifest file is case sensitive.

The manifest must be saved in a file called MANIFEST.MF (case sensitive) within the
meta-inf directory.

J2ME Application Naming Convention

According to Motorola MDP procedures for software development teams, you should
follow this file naming convention for applications:

<App_name>_<Phone_nane>_<Type_Deno_or Ful | >_<lLanguages_supp
orted>_VER <versi on_nunber >

» Application name: Name of application without any specific designation
» Phone Name: Product name that this application is designed for; E.g. A830
e Type_Demo_or_Full: D for Demo version, F for Full version.

» Languages supported: Append list of languages abbreviated by the ISO naming
convention in two letter words.

Example:

TETRI S_A830_D FREN VER 01 _01_02. JAR
SNOOD_A830_F_DEEN_VER 03_03_01. JAD

Notes:

» The Maximum length of MIDlet suite file name is 32 characters, not including the file
extension.

17

18

There is a limitation to length of JAD/JAR including URL used in OTA (Over-The-Air
Download) of the application. The maximum character length is 256 (JAR file name
characters plus OTA site link characters). So, for example:

MD et-jar-URL: http://ww. handango. con ent ert ai nent /
appl i cat ons/ 720/ TESTAPP_T720_F_DEEN_VER 01_01_01. JAR

The MIDlet-Jar-URL in this example has 90 characters, which is less than 256 and is
acceptable.

Language Notation — For each language, appended to each other. e.g. FREN ==
French , English. Referto ht t p: / / www. geo- gui de. de/
nf o/ t ool s/ | anguagecode. ht m for codes.

Language Exceptions — No distinctions exist in the SO guidelines for a few of the
languages. They are defined here:

— Canadian French - CF (Regular French - 'FRY);

— Complex Chinese - CC (Simple Chinese - ZH);

— Brazilian Portuguese - BP (Regular "Portuguese - PT)

— Latin American (Columbian) Spanish - LS (Regular Spanish — ES)

J2ME Application versioning convention —

Version number: xx.yy.zz.

— XX - This is commonly referred to as Major revision number;

— yy-This is commonly referred to as Minor revision number;

- zz-This is commonly referred to as Build number

For Preloaded (Demonstration or “Demo”) application version numbering to be:

— xx = 1through (and including) 4 (first “x" is lead with a “0", i.e., xx = 01, 02, 03, or
04)

For OTA application version (Full version) numbering to be:

xx = 5 through (and including) 9 (first “x" is lead with a “0”, i.e., xx = 05, 06, 07,
08, 09)

The leading “0” as in the above example (01.02.02) is required;

J2ME Application versioning convention: The complete name (all characters)
shall be in uppercase letters;

Application shall end with .JAD or .JAR;

Underscore (" ") must be used to separate the components of the file name,
including the version. Periods/Dots (except for those used to indicate the file
extension, i.e., “.jad") cause issues when posted to host OTA site.

3
Developing and Packaging J2ME™ Applications

JARIng .class Files and Other Resources

Once the application is ready to be packaged for the device, its class files and associated
resources must be bundled in a Java Archive (JAR) file. The JAR file format enables a
developer to bundle multiple class files and auxiliary resources into a single compressed
file format. The JAR file format provides the following benefits to the developer and end-
user:

» Portability — The file format is platform independent.
» Package Sealing — All classes in a package must be found in the same JAR file.

» Compression - Files in the JAR may be compressed, reducing the amount of
storage space required. Additionally, the download time of an application or
application suite is reduced.

MIDlet suite cannot be installed successfully if the JAR content has:
» Corrupted JAR file (extraction/decompression failure);

» Corrupted .class file (verification failure);

» .classfile bigger than 20k ;

» Resources greater than 20K each;

» Total resources for MIDlet suite greater than 64K.

Creating the JAD file

Although the Java Application Descriptor (also known as an Application Descriptor File) is
optional in the MIDP 1.0a specification 1, J2ME applications targeted for Motorola devices
must include a JAD/JAR pair. The following is a sample JAD file for a simple HelloWorld
application.

Required:

M Dl et - Narme: Hel |l oworl d

M D et-Version: 1.0.0

M Dl et - Vendor: Motorola, |nc.

M D et-Jar-URL: http://ww. notorol a.com
M Dl et -Jar-Si ze: 1939

M Dl et - Language*: EN

Mot - Pr ogr am Space- Requi renent :

Mot - Dat a- Space- Requi r enent :

Optional:

M Dl et -Description: A sanple Hell oWwrld application.

M Dl et - | nf o- URL:

M Dl et - Dat a- Si ze:

The JAD file may be created with any text editor and saved with the same file name prefix
as the JAR file. The mandatory MIDlet-Name, MIDlet-Version, MIDlet-Vendor must be
duplicated from the JAR file manifest. JAR files containing manifests that do not match the

19

20

JAD file will not be installed. The MIDlet-Jar-URL attribute must be described properly;
otherwise the MIDlet suite cannot be installed successfully.

Mot-Program-Space-Requirement defines the space required by the application code
once the JAR file is installed on the device.

Mot-Data-Space-Requirement defines the data space required by the application that
includes resources, application descriptors, and images once the JAR is installed on the
device. These are attributes in the JAD file that indicate space required in kilobytes for the
application installation. The idea is to use these custom fields to specify the actual amount
of memory required when the application is installed on a specific device. When these
attributes are present in the JAD file, the device will use this information to check against
the available memory to determine if there is sufficient memory for a successful
installation.

When using these attributes, developers should first install the application on the actual
device to get these values. The installed memory sizes are accessed by selection details
on the application menu. Once the actual values are available, the custom fields can be
entered in the JAD file to enable successful installation.

Notes:
e The file names of the JAD and JAR are not required to be identical.

» The JAD file is case sensitive. All required attributes in the JAD file must start with
“MIDlet-*, followed by the attribute name.

» The total file name length is limited to 32 characters, excluding the .jad and .jar
extensions. For example, HELWD_A830_F_DEEN_VER_03_03_01.jad occupies 30
characters.

» The MIDlet-Jar-Size must contain the accurate size of the associated JAR file. The
number is in bytes.

e It's also important to note that these fields must have associated values with them.
Example: “MIDlet-Name: " is not valid but “MIDlet-Name: Snake” is valid.

» One other note, in the “MIDlet-Name”, if the MIDlet is a demonstration version (demo
version) it should indicate that here. For example, “Breakout” would indicate that the
application is a full application. “Breakout Demo” would indicate a demonstration
version of the game.

e The new Space fields (Mot-Program-Space-Requirement and Mot-Data-Space-
Requirement) should be listed in KB (but without the alpha characters). In addition,
regardless of the fraction, the value should always be rounded up. So for instance, if
the Mot-Program-Space-Requirement is found to be 124.1 KB it should be listed in
the JAD file as 125.

e The MIDlet-Language field: ISO codes, see J2ME Application Naming Convention
for details. This field is for informational purposes to verify naming convention of the
JAD/JAR files. It does not invoke the language used on the phone, etc. This
information should reside in the JAR file.

One other note, for developers working on “Preloaded” (also known as “Demonstration” or
“Demo” versions) versions of applications: the “MIDlet-Name” in the JAD file must be
identical in both the Preload and Full versions of the application so that the OTA (over-
the-air) overwrite/download will work properly.

3
Developing and Packaging J2ME™ Applications

For more information regarding the JAD file, please refer to the MIDP 1.0a specification 0.

Download to Device

After creating the JAR and JAD files, the MIDlet can be downloaded to A830 device
through Motorola WAP Browser, or through PC. Motorola distributes MIDway tool (see
Downloading to the Device) to download MIDlets through PC, and it is available at:
www. not or ol a. coni devel oeprs/w rel ess/.

The download using Motorola WAP Browser does not require any additional software
resources.

21

4
Application Management

MIDlet Lifecycle

22

A MIDlet's lifecycle begins once its MIDlet Suite is downloaded to the device. From that
point, the Application Management Software (AMS) manages the MIDlet Suite and its
MIDlets. The user’s primary user interface for the AMS is the Java Apps feature built into
the device’s firmware.

From the Games & Apps feature, the user can see each MIDlet Suite on the device. If a
MIDlet Suite has only a single MIDlet, then the MIDlet's name is displayed in the Games &
Apps menu for that MIDlet Suite. Otherwise, the MIDlet Suite name is displayed. Then
when that MIDlet Suite is highlighted, the user has the option of opening the MIDlet Suite
and viewing the MIDlets in that MIDlet Suite.

i L
[Games & Apps |

Snake

[BAGK |[T| SELECT |

Figure 2. The Games & Apps Menu

From the Games & Apps menu, the user can highlight a MIDlet Suite, selecting the Menu
soft key, and bring up the Details dialog for that MIDlet Suite. The Details dialog contains:

e MIDlet Suite Name
e MiIDlet Suite Vendor
* MIDlet Suite Version

4
Application Management
» The number of MIDlets in the MIDlet Suite
e The Data Space (MIDlet suite resources).

» Program Space (Unpacked JAR)

i i
I Details |

Name: Pacman
Vendor:

Motorola Inc.
Version: 1.2.0
Apps: 1

Data Space: 22 K
Prog. Space: 70 K

" BAK | [RUN |

Figure 3. Details Properties for a MIDlet

MIDlet Suite Installation

From the Java Tools menu, the user can install MIDlet Suites. The Figure 4 shows the
Java Tools screen. A MIDlet Suite must be installed before any of its MIDlets can be
executed. Installation involves extracting the classes from the JAR file and creating an
image that will be placed into Program Space. The resources are then extracted from the
JAR file and placed into Data Space. The JAR file is then removed from the device, thus
freeing up some Data Space where it was originally downloaded.

The space savings from removing the JAR file is one advantage of installation. However

perhaps an even greater advantage is that class loading is not done during run time. This
means that a MIDlet won't experience slow-down when a new class is accessed. Further
the MIDlet won't have to share the heap with that have been loaded from the JAR file.

B Y)
[Java Tools |
|

Java System

Network Access

DHS IP-000.000.000.000

(BAR | [SECECT |

Figure 4. Java Application Loader on Java Tools

23

MIDlet Suite De-installation

An installed MIDlet can only be removed from the device by de-installing it from the Java
Apps menu. De-installing a MIDlet Suite will remove the installed image from Program
Space. The resources are then removed from Data Space along with the JAD file.

From the Games & Apps menu, the user can highlight a MIDlet Suite, selecting the menu
soft key, and bring up the Delete dialog for that MIDlet Suite (Figure 5).

P) B 2]
[Games & Apps |
Details
SSUITE
Delete Entire Svite and ALl
Data?
f BACK | SELECT e e T

Figure 5. MIDlet Suite de-installation

MIDlet Suite Updating

24

When a MIDlet Suite is de-installed, all of its resources are removed including any
resources that were created by the MIDlets in the suite, such as RMS databases. If a user
gets a new version of a MIDlet Suite, then the user can simply download that new version
to the device that has the older version installed. Once that new version is downloaded,
the user will have the option to update the MIDlet Suite. This will cause the old version to
be de-installed, followed by the immediate installation of the new MIDlet Suite. The only
difference is that the device will prompt the user to see if resources such as RMS
databases should be preserved while de-installing the old version. This prompt will only
occur if such resources exist.

With such a scheme, it places the burden of compatibility on the developer. A newer
version of the MIDlet Suite should know how to use, upgrade, or remove the data in the
RMS databases created by older versions. This idea of forward compatibility should not
be extended to backward compatibility, because the A830 device will not allow a user to
update a version of a MIDlet Suite with an older or equal version of that MIDlet Suite. If
the developer tries to install an older or equal version, the A830 will ignore the installation
and launch the current version of the MIDlet suite.

4
Application Management

Starting, Pausing, and Exiting

AMS Control of MIDlet State Transitions

A MIDlet has three different states: Destroyed, Active, and Paused. A MIDlet's natural
state is destroyed. The AMS typically controls the transition through these states. When a
user decides to launch a MIDlet, the device puts up a screen indicating that the MIDlet is
transitioning through these states. The AMS controls the MIDlets through those states by
calling the MIDlet's methods, st art App(), pauseApp(), and

dest royApp() .

o &N}

Snake
Starting...

| EXIT |

Figure 6. MIDlet Starting Screen

The constructor of the MIDlet’s class that extends MIDlet is first invoked. Then its

st art App() method is called to indicate that it's being started. The MIDlet will have
focus whenits st ar t App() method finishes execution. If a MIDlet takes too long
initializing state variables and preparing to be run in its constructor or st ar t App()
methods, it may appear to be stalled to users.

25

26

Running
Application

notifyDestroyed()

Starting
Application

startApp()

destroyApp()

\ 4

Paused
Application

A

Application

Exit

Figure 7. MIDlet State Transitions

Table 1 - State Transition Methods

Method

Caller

Purpose

Constructor

AMS

Initializes the MIDlet — should return quickly

start App()

AMS

The st art App() method is called to start the
application either from a newly constructed state or
from a paused state.

Ifthe st ar t App() is called from a paused
state, the MIDlet should not re-initialize the
instance variables(unless it is the desired
behavior).

The st art App() method may be called
multiple times during the lifespan of the MIDlet.

The MIDlet may set the current display to its own
Displayable from the st ar t App() method, but
is shown only after the st ar t App() retumns.

When exiting a paused application, the KVM calls
st art App() firstfollowed by a call to
dest royApp()

pauseApp()

AMS,
MIDlet

The pauseApp() method is called from either
AMS or from within the MIDlet.

4

Application Management

Method Caller Purpose

AMS or from within the MIDlet.

The pauseApp() should pause active threads,
and prepare for st ar t App() to be called.

If the application is to be resumed with a screen
other than the present, then the Displayable should
be set current in the pauseApp() .

dest r oyApp() AMS The dest r oy App() method is called from
AMS and signals the MIDlet to clean up any
resources to prepare for termination. For example,
open RMS records should be closed, threads
should be stopped, and any other housekeeping
chores should be performed.

The MIDlet should not call dest r oy App() .

notifyDestroy | MiDlet | Thenoti fyDestroyed() methodis called
ed() by the MIDlet to exit and terminate itself.

All housekeeping such as stopping active threads
and closing RMS records should be performed
before calling not i f yDest royed() .

noti f yDest royed() notifies AMS to
terminate the calling MIDlet.

Focus is an important concept. On a device without a windowing system, only one
application can have focus at a time. When an application has focus, it receives keypad
input, and has access to the display, speakers, LED lights, vibrator, etc. The A830 device
can only run one MIDlet at a time, but that MIDlet has to share focus with the system user
interface. That user interface is a higher priority than the MIDlet, so the MIDlet will
immediately lose focus when the system needs to handle a phone call or some other
interrupt.

The concept of focus correlates directly with the MIDlet state. i.e. when a MIDlet loses
focus because of a phone call, the MIDlet is immediately paused. Conversely to the
example of starting the MIDlet, the MIDlet loses focus immediately, then its
pauseApp() method is called.

The paused state is not clearly defined by MIDP. The only requirement placed on the
device manufacturer is that a paused MIDlet must be able to respond to network events
and timer events. On Motorola devices, the paused state simply implies that the MIDlet is
in the background as mentioned above, but it doesn’t force any of the threads to stop
execution. Essentially, a paused MIDlet is a MIDlet without focus whose pauseApp()
method has been called. It's up to the developer to control their threads, such as making
them sleep for longer periods, completely pausing game threads, or terminating threads
that can be restarted when the MIDlet is made active again.

Similarly to the example of losing focus immediately before the pauseApp() method is
called, a MIDlet's focus is also lost immediately before its dest r oy App() method is

27

28

called. It's interesting to note how a Motorola device manages the transition to the
destroyed state.

As described above, it is the MIDlet writer's responsibility to properly implement all
methods in the javax.microedition.midlet package, especially st ar t App() and
pauseApp(). Acommon error is to implement st ar t App() to execute instructions
that are only intended to be executed once during MIDlet execution. The correct
implementation is to include in st ar t App() those instructions which can and should be
executed each time the MIDlet changes from the Paused state to the Active state. The
same logic should be applied to pauseApp().

The sample MIDlet below demonstrates one way of using st ar t App(). st art App()
performs operations for the initial launch of the MIDlet as well as any operations that need
to take place each time the MIDlet changes state from Paused to Active. Booleans are
used to determine whether the MIDIet has started and whether it's in the Active state.
These Booleans can also be used by other MIDlet threads to determine state.

package m dp. deno;

import javax.microedition. mdlet.MDlet;

public class Deno extends MD et {
/1 The M D et has been started al ready
private boolean isStarted = false;

// The MD et is in active state
public bool ean isActive = fal se;

/1 (in nost cases these bool eans are used by ot her
t hr eads)

protected voi d destroyApp(bool ean unconditional){
i sActive = fal se;
}
protected void pauseApp()
i sActive = fal se;
}
protected void startApp(){
i SActive = true;
if (lisStarted)({
[1...Use getDisplay(), setCurrent(),
/1 and other initial actions
isStarted = true;

}

MIDlet developers should be aware that not all MIDlets found on the World Wide Web or
elsewhere will necessarily execute flawlessly on all J2ME devices. This is certainly true for
MIDlet state transitioning. The MIDP specification of

javax. m croedition. m dl et allows for some latitude in the implementation.
Therefore, it cannot be assumed that all MIDlets are perfectly compatible with all devices.

4

Application Management

Also, some MIDlets may execute flawlessly on desktop simulators such as Sun’s Wireless
Toolkit [see item 4]. However, these simulators in general have no way of loosing and
gaining focus such that the MIDlet transitions between the Paused and Active states and
start App() and pauseApp() are called.

MIDlet Control of MIDlet State Transitions

A MIDlet has a lot of flexibility to control its own state. A MIDlet can call its own

start App(), pauseApp(), anddestroyApp() methods. However those
are the methods that the AMS uses to indicate a state transition to the MIDlet, so this
won't actually cause the state transition. The MIDlet can simply call those methods if it
wishes to perform the work that it would typically do during that state transition.

There are another set of methods that the MIDlet can use to cause state transitions. They
arer esuneRequest (), notifyPaused(), and

noti fyDestroyed() . Since the system user interface has priority, a MIDlet
cannot force itself into the active state, but it can request that it be resumed via a
resunmeRequest () . Ifthe system is not busy, then it will automatically grant the
request. However if the device wasn't in the idle screen, then it displays an alert dialog to
ask the user if they'd like to resume the MIDlet. If the user denies the request, then the
MIDlet is not notified. However if the user grants the request, the MIDlet's

st art App() method is called, and it gains focus when that finishes.

The MIDlet does have more control when it decides that it wants to be paused or
destroyed. It simply performs the necessary work by calling its own pauseApp() or
dest royApp() method, then it notify the AMS of its intentions by calling

noti fyPaused() andnoti f yDest royed() appropriately. Once notified, the
AMS transition the MIDlet's state and revoke focus.

29

Java System

Besides managing MIDlet Suites from the Java Tools Menu, you can also perform system
maintenance. The Java System feature gives statistics about the system such as:

» CLDC Version

» MIDP Version

» Data Space (Free space)

» Program Space (Free space)

» Total Heap Size

P]
M Java System 1
(| CLDC Version: 1.0
MIDP Uersion: 1.0
Data Space:
420K Free
Proq. Space:
122144 K Free
Heap Size:
512K

BACK

_Java System Menu

30

5
Limited Connected Device
User Interface (LCDUI)

5
Limited Connected Device
User Interface (LCDUI)

Overview

The default user interface package for MIDP is LCDUI. It provides several Ul components
that a developer can use to build an application quickly. If more control over the Ul is
needed, the LCDUI Canvas class can be used to draw images, basic primitive shapes,
and receive raw key presses.

The Motorola A830 handset currently supports the PNG with Transparency image type.

Class Description

The API for the LCDUI is located in the package:

javax. m croedition. | cdui

Available Fonts

Overview

As MIDP states the Font class represents fonts and font metrics. Font s cannot be
created by applications. Instead, applications query for fonts based on font attributes and
the system will attempt to provide a font that matches the requested attributes as closely
as possible. A Font 's attributes are style, size, and face. The style value may be
combined using the OR operator whereas the size and face attributes cannot be
combined.

31

Fonts

The Motorola A830 handset offers different sizes, styles, and faces. The following table

describes these fonts:

Font Faces

FACE_PROPCORTI ONAL

Each font has a variable width and a fixed height.

FACE_MONCSPACE

Each font has a fixed width and height.

FACE_SYSTEM Each font has a variable width and a fixed height. These
fonts are used in the ergonomics of the Motorola A830
handset.

Font Sizes

SI ZE_SMVALL The Motorola A830 handset offers small size fonts for all 3
font faces.

SI ZE_VEDI UM The Motorola A830 handset offers medium size fonts for all
3 font faces.

SI ZE_LARGE The Motorola A830 handset offers large size fonts for all 3
font faces.

Font Styles

STYLE PLAIN The Motorola A830 handset offers plain style fonts for all 3

font faces and sizes.

STYLE_UNDERLI NED

The Motorola A830 handset offers underlined style fonts for
all 3 font faces and sizes.

STYLE_BOLD

The Motorola A830 handset offers bold style fonts for all 3
font faces and sizes.

STYLE_I TALI C

The Motorola A830 handset does not offer any italic font
styles.

Default Fonts

The default font is set to FACE_SYSTEM SI ZE_MEDI UM and STYLE_PLAI Nfor all

LCDUI components.

kJava Telephony

This feature allows the user to have ability to press SEND key and make a call using
phone number from current selected Text Fi el d with PHONENUMBER attribute (see

32

5
Limited Connected Device
User Interface (LCDUI)

Sun™ MIDP Specification [2], j avax. mi croedi ti on. | cdui . Text Fi el d class).
The user is asked to confirm the action before any voice call is made. This feature asks
the user to confirm the return to the application after completion of the call.

Functionality

The MIDlet application can specify a special attribute for Text Fi el d of MIDP to
indicate it is a phone number. The application shows the Text Fi el d on the screen
and the user should select this field before making a call.

The user presses the send key to set up a call from the Text Fi el d and the product
shows a confirmation dialog and asks the user permission to setup a voice call to the
number indicated in the Text Fi el d.

After user's confirmation, the Calling Application API (implemented on KVM) provides a
voice call on the A830 device.

After call termination, the A830 shows a confirmation dialog and asks the user to abort or
to return to the MIDlet application execution.

Selecting the return to the application, the execution of the KVM is suspended to
guarantee return to current state of the application.

The current implementation of Text Fi el d supports only digits in a field with
PHONENUMBER attribute. The following characters can be added to a phone number
digit string and are stored in Motorola A830 handsetbook:

» Pause character to create a timed delay during call setup. It is represented by a lower
case p'.

» Wait character to create an untimed delay during call setup. It is represented by a
lower case ‘w'.

» A'n'character is used to represent a variable phone number to be selected during
call setup.

» Aninternational dialing prefix for GSM, it is represented as '+' character.

Code Examples

Below is a simple example on how to create a simple traversable list using standard
LCDUI widgets. In this example, we create a simple menu that allows the selection of
multiple food items.

/* Qur list of foods */

String foodList[] = {“Apple”, "Cookies”, "Cake”, "Oranges”,
"Cheese Burger”, "lce Creanf};

/* create a formwith a title List Form?*/

Form nyForm = new For n(“Food Menu”);

33

Tips

| *x
* Create a choice group with the foodList.

* Also make the choice group be able to accept multiple
* Choices fromthe |ist.

*/
Choi ceG oup foodChoice = new

Choi ceG oup(“Lunch”, Choi ce. MULTI PLE, f oodLi st, nul) ;

/* append the list to our form?*/

nyFor m append(f oodChoi ce) ;

/* now di splay the nmenu */

di spl ay. set Current (nyFornj;

Caveats

Although the Canvas class provides a high level of control over a display, using a canvas
for every screen produces larger classes and more of them. Developers can save a lot of
space in the MIDlet Suites, if they make use of standard LCDUI components when
possible.

34

When using Canvas'’s get W dt h() and get Hei ght () methods, the available screen
area is returned. The available screen area is the full screen area excluding the command
soft key area. If your Canvas possesses LCDUI Command objects, that area will be used
uniquely for rendering of the commands. This will cause the total available space for
drawing to be reduced by the amount of space the commands take up. The amount of
space required for the command area is equal to the font height plus two pixels for
borders.

6
Lightweight Window

6
Lightweight Window
Toolkit (LWT)
Overview

The Lightweight Window Toolkit (LWT) is an extension of the Java 2 Platform, Micro
Edition (J2ME) MIDP specification. LWT addresses the limitations of the MIDP user
interface APIs known as LCDUI. Specifically, LCDUI does not provide a developer with
complete control over screen layouts, nor does it permit using custom components or
extending existing components. LWT solves these problems. Designed to enhance user
interface capabilities, LWT is a key enabler for the development of full-featured
applications on mobile devices. It is especially valuable for delivering a rich user
experience on more capable mobile devices otherwise constrained by LCDUI's limited
capabilities.

The Motorola LWT API is described in more details on LWT Programmer's Guide L.

Example of a MIDlet using LWT package

The following example illustrates the creation of the classical “Hello World” program using
the LWT package.

i mport javax. mcroedition.lcdui.?*;
i mport javax.mcroedition. mdlet.?*;
i nport comnotorola.lw.*;

i mport java.io.| OException;

public class Hell oLWIWrld extends MD et {
Di spl ay di spl ay;
Conponent Screen scr;
| mageLabel | abel ;

35

public Hell oLWIVorl d() {
/1 get display
di splay = Display. getD splay(this);

/1 create the Conmponent Screen
scr = new Conponent Screen() ;

/1 create | mgelLabel

| abel = new | magelLabel (null, null, "Hello LW
World!");

/1 place the |ImageLabel in the center of the screen
| abel . set Lef t Edge(Component . SCREEN HCENTER

| abel . getPreferredWdth()/2);
| abel . set TopEdge(Conponent . SCREEN _TOP

(scr.getHeight()-
| abel . get PreferredHei ght())/2);

/1 add | mageLabel to the Conponent Screen
scr. add(| abel) ;

public void startApp() {
di spl ay. setCurrent (scr);

public void pauseApp() {

public void destroyApp(bool ean b) {

}

The main concept illustrated in the example is the creation of a container, the
ComponentScreen, and the addition of a Component, the ImageLabel. This example will
be revisited later to cover the details regarding the location and dimension of the
Component.

6
Lightweight Window
Toolkit (LWT)

Class hierarchy and Overview

The following diagram shows the class hierarchy of LWT.

javax.microedition.lcdui com.motorola.lwt
c ts <<Interface>>

omponentscreen ComponentListener
AN
Component TextComponent

Canvas ~
(from javax.microedition.lcdui) ﬁ K
Slider LeeE TextArea TextField

Component

ImageLabel Button Checkbox Clieeldse

Group

Figure 9. LWT class hierarchy

ComponentScreen

The Conmponent Scr een class is the top-level container in an LWT user
interface. As a subclass of LCDUI’s Canvas, it can be interchanged with other

LCDUI screens such as Canvas,

Formand Al ert.

Conponent Scr een inherits several methods from Canvas that provide the
mechanisms for handling input events and repainting; thus, the interface to LCDUI is
accomplished using the published APIs, and LWT can be integrated with any MIDP-

compliant implementation.

Component

Component is the abstract base class of all LWT user interface entities that can be

added to a Conponent Scr een.

37

ComponentListener

The Conponent Li st ener interface is implemented by any class that
receives events from a Conponent . The Conponent Li st ener is notified
of an event by calling its processComponentEvent method with the source
Conmponent reference and an integer identifying the event type.

InteractableComponent

I nt er act abl eConponent is the abstract base class of the components that a
user can ‘press’ and ‘release’. Such components include buttons, checkboxes, and icons.
This class serves to reduce code size and complexity of its subclasses by providing the
basic interaction functionality. An | nt er act abl eConponent is actuated by
tapping and releasing within its bounds, or by pressing and releasing the Enter key when
the component has focus.

Button
But t on is a basic button that a user can actuate. A button can display text to convey
its meaning. The text font is the only customizable attribute of the But t on class.
ImageLabel
Anl magelLabel isa general-purpose component that can display an image and/or a
text label; it can be an interactive or a read-only component.
Image
If an image is displayed, a developer can use either a single image or multiple images to
reflect a component's different states (such as pressed, disabled, etc.).
Text

If text is displayed, a developer can specify the text, its color, and its font.

Label Location

If both text and an image are displayed, the location of the text relative to the image can
be specified as:

» Above: The label is displayed centered above the image

» Below: The label is displayed centered below the image

38

6

Lightweight Window

Toolkit (LWT)

Alignment

» Left: The label is displayed centered to the left of the image
» Right: The label is displayed centered to the right of the image

» Centered: The label is displayed centered on the image

Checkbox

Regardless of what is displayed (text, image, or both), the collective alignment of the
image and/or text within the bounds of the | mageLabel may be specified as:

» North: The image and label both are displayed in the top half of the | magelLabel

» South: The image and label both are displayed in the bottom half of the
| mageLabel

e East: The image and label both are displayed in the right half of the | mageLabel
» West: The image and label both are displayed in the left half of the | magel abel

» Centered: The image and label both are displayed centered on the | nageLabel

Used as is, Checkbox provides a single, independent boolean choice. A Checkbox
displays text to convey its meaning. For example, a series of Checkboxes can allow
a user to select toppings for a burger.

CheckboxGroup

A CheckboxGr oup is anon-Ul object that manages one or more Checkboxes. It
can be configured to enforce multiple selection or exclusive selection rules, and can be
used to query the current values of the checkboxes. When used in conjunction with a
CheckboxG oup, Checkboxes can provide a list of exclusive choices in the form
of radio buttons or a list. To continue the above example, a user can select how a burger
is cooked using several Checkboxes and a CheckboxG oup, either as a series
of radio buttons or a list. Checkboxes can be added to or removed from a
CheckboxG oup asneeded. Checkboxes must still be added to the
Conponent Scr een; adding them to the Checkbox G- oup only impacts their
behavior.

TextComponent

Text Conponent s the abstract base class for components that can display and edit
text. It provides common functionality such as text manipulation, constraints, and input
event handling.

39

TextField

TextArea

Text Fi el d isasingle-line Text Conponent designed to display and edit text.
Text Fi el d supports horizontal scrolling only.

Slider

Text Ar ea is a multi-ine Text Conponent designed for displaying and editing
text. Text Ar ea supports vertical scrolling only.

The Sl i der is a gauge-type component that provides a graphical representation of a
numeric value. A Sl i der can be read-only or adjustable. A read-only SI i der might
be used to indicate memory usage or battery level; an adjustable Sl i der might be
used to adjust a volume level. The current value of a Sl i der represents the current
setting or level of the Sl i der , which can be between 0 and the maximum value,
inclusive. The maximum value of a Sl i der may be set programmatically to any non-
negative integer value. A Sl i der does not include a label. A developer can add
labels and icons to the Conponent Scr een to indicate meanings, endpoint values,
etc.

Fundamental Component Behaviors

At the heart of LWT are the Conponent Scr een and Conponent classes;
together, they provide the bulk of LWT’s basic functionality. This section describes the
fundamental behaviors exhibited by Conponent Scr een and Conponent . There
are compelling reasons for describing these behaviors and their mechanisms in detail.
First, it allows developers to fully exploit the APIs and minimize redundant code. Second,
it enables developers to customize behavior without the risk of side effects.

Component Management

Containership Rules

40

Component s can be added and removed from a Conponent Scr een. A
Conponent Scr een cannot be added to another Conponent Scr een, and a
Component cannot be added to another Conponent . A Conponent can have
only one parent Corponent Scr een at atime, and it can be added to a given
Component Scr een only once. Whenever a Conponent is added to a

6

Lightweight Window

Toolkit (LWT)

Component Scr een, itis first removed from the current parent if one exists, thereby
ensuring that these two rules are enforced.

Component Indices

Z-Order

A Component Scr een maintains an ordered list of its child components and assigns
each one a unique index. The index of a component indicates its position in the list where
0 is the first component, and the highest index is the last component. Indices are always
consecutive, so the index for a given component may change if other components are
added or removed from the same Conponent Scr een. For example, if a component
is added in the middle of the list, the indices of the subsequent components will be
incremented to account for the inserted component.

A component may be inserted at a specific valid index, or it may be simply appended at
the end of the list and automatically assigned the next index. A component's index is
significant since it implies Z-order and dictates the order in which layout and focus
traversal are performed.

The component with the highest index is considered closest to the user, as shown below.

Component LT Ll I
Screan Lomponant 1 I
b
e, Component 2
Lomponant 3

Figure 10. Z-Order

Component Regions

Each component occupies a rectangular region of its parent Conponent Scr een. A
component receives pointer events that occur within its rectangular region, and is
responsible for rendering the pixels within its region. A component may render itself as an
ellipse, a triangle, a cloud, etc., but its bounding region is always rectangular.

41

Region Parameters

The region is fully described by the location of the upper-left corner of the component and
by the component’s width and height. The location of the upper-left corner is relative to
the ComponentScreen’s origin and is based on the MIDP coordinate system. Width and
height are expressed in terms of pixels. A developer can query the bounds of a
component by calling get X(),get Y(),get Wdt h(),andget Hei ght () on
the component.

| x I width I

haight l.-I____.-- Componant

ComponantScraen -

Figure 11. Region Parameters

Preferred Size

Each Conponent subclass must implement the methods

get PreferredWdt h() andget PreferredHei ght (). Together, these
two methods specify the ideal dimensions of a given component instance. Even for the
same class, different instances may specify different preferred sizes to reflect the length
of a text label, size of an image, etc. The pr ef er r edW dt hChanged() method
must be called whenever the preferred width of the component changes. Similarly, the
pr ef erredHei ght Changed() method must be called whenever the preferred
height of the component changes. For standard LWT components, these methods are
automatically called when a relevant parameter is changed; for custom components, it is a
developer’s responsibility to call these methods whenever a change is made that impacts
the preferred width or height of the component.

Component States

42

Each Conrponent instance carries state information. Subclasses may introduce
additional state information as needed. The pre-defined states are:

* Visibility
» Enabling

6
Lightweight Window

Toolkit (LWT)

Visibility
A visible component is shown to a user, whereas an invisible component is not.
Components may be hidden to conceal portions of the user interface that are not relevant,
thereby simplifying the user interface. By default, all components are initially visible.

Enabling

Enabling indicates whether or not a component is currently available to a user. Enabling
and disabling is useful for conveying the availability of certain features that may be
temporarily unavailable based on the current context. For example, a View button should
be disabled if the corresponding list contains no items. By default, all components are
initially enabled.

Component Layout

To meet LWT's design goals, the layout model is designed to provide a developer with
complete control over component placement and size. Although this approach provides
the greatest flexibility, it can result in fairly large applications, especially if the application
must automatically adjust its layout to account for different display and component sizes.
Therefore, the LWT layout model also incorporates several features that enable the
creation of adaptable complex layouts with very little code; furthermore, the execution of
these layouts is inherently efficient.

Layout Model

A component’s region is specified in terms of its left, right, top, and bottom edges.

laft right

ko
P | - Componant

bt am

ComponentScraan -

Figure 12. Component Layout
A developer can independently specify the location of each edge using one of several

schemes. An accompanying value controls the location of the edge according to the
scheme selected.

43

Offset Conventions

For all schemes that use an offset, the offset values extend down and to the right. That is,
a horizontal offset extends to the right for positive values and to the left for negative
values. Similarly, a vertical offset extends down for positive values and up for negative

values.

Centering
Whenever components are centered, the location is obtained by truncating the mean of
the two endpoints. This convention permits the use of a bit shift rather than a more
complex division operation to determine the center. Mathematically, the center point
between A and B is defined as (A + B) >> 1.

Left Edge
The following schemes may be used for specifying the location of a component’s left
edge:

Scheme Behavior

SCREEN_LEFT (defaul t) The accompanying value describes the
edge’s offset from the left edge of the
screen.

SCREEN_HCENTER The accompanying value describes the
edge’s offset from the center of the
screen.

SCREEN_RI GHT The accompanying value describes the
edge’s offset from the right edge of the
screen.

PREVI OUS_COMPONENT_LEFT * The accompanying value describes the

edge’s offset from the left edge of the
previous component.

PREVI OUS_COMPONENT_HCENTER * The accompanying value describes the

edge’s offset from the center of the
previous component;

PREVI QUS_COVPONENT_RI GHT * The accompanying value describes the

edge’s offset from the right edge of the
previous component.

* Interpreted as SCREEN_LEFT if there is no previous component.

44

6

Lightweight Window

Toolkit (LWT)

Right Edge

B | J

walus valua

SCREEN_LEFT SCREEN_HCENTER SCREEN_RI GHT
prev ‘ | prev | prev ‘
value walua value
PREVI OUS_ PREVI OUS_ PREVI OUS_
COVPONENT _LEFT COVPONENT _ COVPONENT_RI GHT
HCENTER

Figure 13. Left edge

The following schemes may be used for specifying the location of a component’s right
edge. Developers should use PREFERRED W DTH wherever feasible to maximize
application portability across different devices.

Scheme Behavior

SCREEN_LEFT The accompanying value describes the
edge’s offset from the left edge of the screen

SCREEN_HCENTER The accompanying value describes the
edge’s offset from the center of the screen

SCREEN_RI GHT The accompanying value describes the
edge’s offset from the right edge of the
screen

PREVI QUS_COMPONENT_LEFT * The accompanying value describes the
edge’s offset from the left edge of the
previous component

PREVI QUS_COVPCNENT_HCENTER | The accompanying value describes the
edge’s offset from the center of the previous
component

PREVI QUS_COVPONENT_RI GHT * | The accompanying value describes the

edge’s offset from the right edge of the
previous component

45

Scheme

Behavior

W DTH

The right edge is located such that the
component’s width is equal the
accompanying value

PREFERRED W DTH (def aul t)

The right edge is located such that the
component's width is equal to its preferred
width plus the accompanying value

* The component is set to its preferred width if there is no previous component.

value value

—

wvalua

SCREEN_LEFT SCREEN_HCENTER SCREEN_RI GHT

wvalus

prev | \ prev \ prev |
walue value

PREVI OUS_ PREVI OUS_ PREVI OUS_
COVPONENT _LEFT COVPONENT _ COVPONENT_RI GHT
HCENTER

value 1 _I
preferred width
+wvalue
W DTH PREFERRED W DTH

Figure 14. Right Edge

Top Edge
The following schemes may be used for specifying the location of a component’s top
edge:
Scheme Behavior

46

6
Lightweight Window
Toolkit (LWT)

SCREEN_TCP

The accompanying value describes the
edge’s offset from the top edge of the screen.

PREVI QUS_COVPONENT_TCP *

The accompanying value describes the
edge’s offset from the top edge of the
previous component.

PREVI OUS_COVPONENT VCENTER

The accompanying value describes the
edge’s offset from the center of the previous
component.

PREVI QUS_COVPONENT _BOTTOM
*(defaul t)

The accompanying value describes the
edge’s offset from the bottom edge of the
previous component.

* Interpreted as SCREEN_TOP if there is no previous component.

valus

pre wvalus

SCREEN_TCP

PREVI QUS_COVPONENT_TGOP

prav
| wvalua

prev

value

PREVI OUS_COVPONENT VCENTER

PREVI QUS_COVPONENT_BOTTOM

Figure 15. Top Edge

Bottom Edge

The following schemes may be used for specifying the location of a component’s
bottom edge. Developers should use PREFERRED HEI GHT wherever feasible
to maximize application portability across different devices.

Scheme

Behavior

SCREEN_TOP

The accompanying value describes the
edge’s offset from the top edge of the
screen

PREVI QUS_COVPONENT_TOP *

The accompanying value describes the
edge’s offset from the top edge of the

47

Scheme Behavior

previous component

PREVI QUS_COVPONENT_VCENTER * The accompanying value describes the

edge’s offset from the center of the
previous component

PREVI QUS_COVPONENT_BOTTOM * The accompanying value describes the

edge’s offset from the bottom edge of
the previous component

HEI GHT The bottom edge is located such that
the component's height is equal the
accompanying value

PREFERRED_HEI GHT (defaul t) The bottom edge is located such that
the component's height is equal to its
preferred height plus the
accompanying value

* The component is set to its preferred height if there is no previous component.

prev prev
wvalus
valus
valua
SCREEN_TOP PREVI QUS PREVI QUS
COVPONENT _TOP COVPONENT _
VCENTER
prev preferred
value height
value + value
PREVI OQUS _ HEI GHT PREFERRED _
COVPONENT _ HEI GHT
BOTTOM

Figure 16. Bottom Edge

Validation Cycle

To minimize redundant layout computations, the Conponent Scr een tracks the
state of its layout and computes its layout only when necessary. This mechanism

48

6
Lightweight Window
Toolkit (LWT)

effectively consolidates requests for layout computation and defers the layout process
until updated component bounds are actually needed.

Invalidation

A Conmponent Scr een hecomes invalid when a change is made that could
potentially alter the layout of its components. Such changes include adding or removing
components and changing the edge specifications or visibility of a child component. When
such a change is made, the affected Conponent Scr een automatically becomes
invalid. A Conrponent Scr een can be programmatically made invalid by calling

i nval i date().

Changes to Preferred Width and Height

For some components, the preferred size is dependent on component-specific attributes
such as label width, image size, font, etc. In such cases, a change to one of these
attributes may result in a change to the preferred width or height. When such a change
occurs, the component must call pr ef er r edW dt hChanged() or

pr ef er r edHei ght Changed() , respectively. These methods invalidate the
parent if the preferred dimension is currently being used for the component's layout;
otherwise the change is irrelevant and invalidation is not required.

Validation Process

Aninvalid Conrponent Scr een becomes valid by ensuring that the layout of its
children is up to date. The process of validation involves checking whether or not the
Conponent Scr een isinvalid; if so, the doLayout () method is called and the
Conponent Scr een then becomes valid.

Layout Process

The doLayout () method computes the location of left, right, top, and bottom edges
for each component based on their schemes and accompanying values. The components
are processed in ascending index order. Invisible components are ignored by the layout
process; their edges are not computed and they never become the previous component.

Validation Triggers

Validation automatically occurs prior to any operation that relies on accurate component
layout information, specifically rendering and pointer event dispatching. A developer can
programmatically force validation to occur by calling val i dat e() .

49

Focus Management

Each Conponent Scr een instance keeps track of its current focus owner. The
focus owner is the component within the Conponent Scr een that receives key
events. By default, the focus owner is null indicating that no component is currently
receiving key events; in this case, the Conponent Scr een continues to receive key
events but does not dispatch them to a component. The focus owner may also become
null if the current focus owner is removed or is no longer eligible to maintain focus.

Focus Acceptance

A component may indicate whether or not it is interested in ever becoming the focus
owner by setting the Boolean field acceptsKeyFocus to the appropriate value. If this field
is set to true, the component may gain focus; if false, the component will never gain focus.

Focus Eligibility

In order to be eligible to gain focus, the component must be visible, enabled, and have its
acceptskKeyFocus field set to true.

Focus Traversal

The user may traverse focus by the appropriate keys on the device. Focus traversal
occurs in component index order and skips any components that are not eligible to
receive focus. Focus traversal wraps from the last component to the first component and
vice versa. Focus traversal can also be triggered programmatically by calling
focusNext (), focusPrevious(), focusFirst(), and
focuslLast ().

Requesting Focus

A component may programmatically request focus by calling r equest Focus() .

Focus Notifications

Whenever a component gains key focus, its gai nedFocus method is called.
Similarly, its | ost Focus method is called whenever it loses focus. A component can
query whether or not it has focus by calling hasFocus() .

Key Event Handling

Key events are dispatched to the current Conponent Scr een through the three
methods defined in LCDUI's Canvas. The default implementations of these methods in
Conmponent Scr een check if there is a current focus owner and dispatch the event

50

6
Lightweight Window
Toolkit (LWT)

to that component, if any. Subclasses may override these methods to implement custom
key event handling.

Key events are dispatched to the component through these three methods:

keyPr essed, keyRepeat ed, and keyRel eased. These methods return a
Boolean to indicate if the component consumed the key event, thereby allowing
Component Scr een subclasses to implement default behaviors for unconsumed key
events.

Pointer Event Handling

Pointer events are dispatched to the current Comrponent Scr een by means of the
three methods defined in LCDUI's Canvas. The default implementations of these
methods in Conponent Scr een dispatch these events to the appropriate target

component. Subclasses may override these methods to implement custom pointer event
handling.

Pointer Event Targeting

A component becomes the target when a pointer-pressed event occurs within its bounds.
The search for the component is performed in descending index order to implement the
correct Zorder; in the event that components overlap, the component with the highest
index (i.e., closest to the user) becomes the target. Invisible and disabled components are
ignored when searching for the target.

Once it becomes the target, a component continues to be the target until the pointer is
released. Therefore, a component may receive pointer-drag and release events outside of
its bounds.

Rendering

Component Screen Rendering

The Conmponent Scr een s rendered by a call to its pai nt () method. By default,
this method first clears the background (i.e., fills it with white pixels) and then renders its
components by calling pai nt Conponent s. Conponent Scr een subclasses
may override the default pai nt () method to implement special backgrounds or to
render other artifacts on the screen.

The pai nt Conponent s method renders the components in ascending index order.
If the components overlap, the component with the highest index is rendered last and
appears to be closest to the user, thereby implementing the correct Z-order. Invisible
components are not rendered.

51

Component Rendering

A component is rendered by a call to its pai nt method. The provided Graphics object
is translated such that its origin is located at the upper-left corner of the component. Also,
the clip region of the Graphics object is intersected with the bounds of the component.

Components Are Transparent

Since the Conrponent Scr een s responsible for rendering the background,
Conponent does not clear the background prior to rendering. Rendering of the
background by Conponent is redundant and reduces performance.

States That Impact Appearance

A component must render itself in a manner that conveys its current state to the user. Al
components must render themselves to reflect the following mutually exclusive states:

» Normal - Normal appearance
» Disabled - Should be grayed out or drawn with dotted lines instead of solid lines.

e Focus Owner — Normal appearance with a thick border (a component needs to
support this state only if it accepts key focus)

Component subclasses may include additional states or attributes that affect their
appearance; these should also be accounted for by the rendering code.

Scrolling

Component Scr een supports vertical scrolling, but does not support horizontal
scrolling.

Enabling and Disabling Scrolling

Scrolling is automatically enabled by the native user interface if the bottom edge of the
last component extends past the bottom of the screen. In other words, scrolling support is
provided when it is needed, and may be removed when it is not needed.

Focus-Driven Scrolling

Whenever a component receives key event focus, the screen is automatically scrolled
when necessary to ensure that the component is visible to the user.

User Interface Scrolling

It is the responsibility of the implementation and native user interface to provide the user
with the ability to control the scroll position.

52

6

Lightweight Window

Toolkit (LWT)

Programmatic Scrolling

A developer can query and set the scroll position programmatically. However, a developer
is not permitted to explicitly enable or disable scrolling since that functionality is implicitly
provided by the device.

The ComponentScreen Class

The Conponent Scr een class extends the Canvas class, and forms the basis for
all LWT screen layouts. An application defines a user interface screen by creating a
Conponent Scr een and then adding the desired LWT components to it. With this
class, a developer can create a screen from an arbitrary mix of components, including
special component subclasses. It also provides the developer with complete control over
the screen layout.

ComponentScreen Definition and Constructor

The Conponent Scr een class is defined by: publ i ¢ cl ass
Conmponent Scr een ext ends
javax. m croedition.| cdui.Canvas

Its only constructor is:

* public ComponentScreen()

ComponentScreen Methods

In addition to the methods described in this section, a Conrponent Scr een inherits
many methods from the j avax. m cr oedi ti on. | cdui . Canvas,

java. |l ang. Obj ect and

javax. nmi croedition. | cdui.Di spl ayabl e classes. These inherited
methods are listed in the LWT API documentation.

The methods specifically defined by Conponent Scr een are:

* void add (Conponent w) —addsa Conponent to the
Conponent Scr een;

 protected void doLayout () —recomputes the layout of the
Component s according to the edge specifications for each component;

* Conponent get Conponent (int index) — getsthe Conponent atthe
specified index;

* int getConmponent Count () —getsthe number of Conponent s currently
contained in this screen;

53

54

Component get FocusOaner () —getsthe Conponent that currently has
key event focus;

int getScroll O f set () - gets the current vertical scroll offset;
int get Wdth() - getsthe width of the Conponent Scr een;

voi d insert (Conponent conp, int index) -insertsa Conponent
to the screen at the specified index;

voi d invalidate() -invalidates this Component Scr een, indicating that
its component layouts need to be recalculated;

protected void keyPressed(int keyCode) - called when a key is
pressed;

protected voi d keyRel eased(int keyCode) - called when a key is
released;

protected voi d keyRepeat ed(i nt keyCode) - called when a key is
repeated (held down);

voi d paint (javax. m croedition.|cdui.G aphics g) -renders the
screen;

protected void
pai nt Conponent s(j avax. m croedi tion. | cdui .G aphics g) —
renders the Conponent s;

protected void pointerDragged(int x, int y) -called when the
pointer is dragged;

protected void pointerPressed(int x, int y) -called when the
pointer is pressed;

protected void pointerRel eased(int x, int y) -called when the
pointer is released;

voi d renove(Conponent conp) - removes the specified Conponent
from the screen;

voi d renove(int index) -removesthe Conponent atthe specified
index from the screen;

voi d renoveAl | () -removes all Conrponent s from this screen;

voi d scrol | To(Conponent conp) - scrolls to the specified Conponent .
This method ensures that the screen’s scroll position is adjusted to show as much as
possible of the specified Conrponent ;

voi d set FocusFi rst () - moves key event focus to the first Conponent
that accepts focus;

voi d set FocusLast () - moves key event focus to the last Conponent that
accepts focus;

voi d set FocusNext () - moves key event focus to the next Conponent
that accepts focus;

6
Lightweight Window
Toolkit (LWT)

* void setFocusPrevious() - moves key event focus to the previous
Component that accepts focus;

e void setScroll Ofset(int offset) -setsthe vertical scroll offset;

e protected void showNotify() - called when the Conponent Scr een
is shown;

 void validate() -validates this Conponent Scr een;

Detailed information about using these methods is available in the LWT API
documentation [3].

The first LWT class you should instantiate is a Conponent Scr een, which will form
the basis for laying out the LWT components to be displayed. If your application will use
several screens, it may be worth creating a subclass that all of the screens can inherit
from. For example:

/**

* Superclass for all of the denp screens, provides the
next/ previ ous comrands
**/

cl ass DenoScreen extends Conmponent Screen {
publ i ¢ DenoScreen() {
Command next = new Conmand(" Next", Command. OK, 1);

Command prev = new Conmand(" Previ ous", Comrand. BACK,
1);

addComand(next) ;

addComand(prev) ;

}

This class allows you to build a number of screens which have ‘Previous’ and ‘Next’
command buttons in addition to whatever components you decide to place on the
individual screens.

The Component Class

The Conponent class is the abstract base class from which the various LWT
components are descended. Each subclass descended from the Conmponent class
must implement methods to render the Conrponent , provide preferred width and
height, and optionally, to handle events.

A Conmponent is asingle user interface object that occupies a rectangular region of its
parent Conrponent Scr een. A Conponent can belong only to a single screen. If
a program attempts to add a Conponent to a second screen, it will first be removed
from its current screen (which could be the screen that it is being added to) before it is
added to the second screen.

The location and size of a Conponent s determined by specifying where the left,
right, top and bottom edges are located. The location of each edge can be specified using

55

one of several schemes, including offsets relative to the preceding Conponent , as
defined in Section 3.4 of this document. By default, a Conponent will be set to its
preferred size, and will be aligned with the left edge of the screen directly beneath the
preceding Conponent .

A Conmponent must provide a paint method to render itself. The Gr aphi cs object
passed to the Conrponent ' s pai nt () method is translated so that the origin is
located at the upper left corner of the Conponent .

If desired, a Conponent can respond to key and pointer events by overriding the
appropriate methods (keyPr essed(), poi nt er Dr agged(), etc.) In order to
receive key event focus, a Component must have accept skeyFocus setto
t r ue, and it must be visible and enabled. Provided the parent screen is shown, the
Component with key event focus will receive all key events.

Component Definition and Constructor

The Conponent class is defined by:

public abstract class Conponent extends java.l ang. Obj ect

Its only constructor is:

e public Component()

Component Fields

56

These constants define the values used by the programmer to define where the
Component code should place and size the Conponent on the screen, as well as
to define its ability to interact with the user. These constants are typically passed to some
of the methods defined below to indicate from where the Conponent location value
is to be measured.

e protected bool ean accept sKeyFocus - indicates if this Component
accepts key focus (that is, it uses key events)

e static int HEI GHT - the bottom edge is located such that the Component's
height is equal to the accompanying value

« static int PREFERRED_HEI GHT - the bottom edge is located such that
the Component's height is equal to its preferred height plus the accompanying value

e static int PREFERRED_ W DTH- the right edge is located such that the
Component’s width is equal to its preferred width plus the accompanying value

e static int PREVI OQUS _COVPONENT BOTTOM - the value describes
the edge's offset from the bottom edge of the previous Component

e static int PREVI QUS _COMPONENT HCENTER- the value describes
the edge's offset from the horizontal center of the previous Component

6
Lightweight Window
Toolkit (LWT)

static int PREVI OUS_COVPONENT_LEFT - the value describes the
edge's offset from the left edge of the previous Component

static int PREVI OQUS_COVPONENT_RI GHT - the value describes the
edge's offset from the right edge of the previous Component

static int PREVI QUS_COVPONENT_TOP - the value describes the
edge's offset from the top edge of the previous Component

static int PREVI OQUS COVPONENT_ VCENTER - the value describes
the edge's offset from the vertical center of the previous Component

static int SCREEN_HCENTER- the value describes the edge's offset from
the center of the screen

static int SCREEN_LEFT - the value describes the edge's offset from the
left edge of the screen

static int SCREEN_RI GHT - the value describes the edge's offset from the
right edge of the screen

static int SCREEN_TOPR - the value describes the edge's offset from the
top edge of the screen

static int W DTH-the right edge is located such that the Component's
width is equal to the accompanying value

Component Methods

In addition to the methods defined directly by the Conponent class, this class inherits
several methods fromthe j ava. | ang. Cbj ect class. See the LWT API
documentation for details on these inherited methods. The methods defined by the
Component class are:

bool ean accept sFocus() - checks if this Component currently accepts key
focus

voi d gai nedFocus() - called when this Component gains key focus
i nt get Hei ght () - gets the height of the Component, in pixels

Conponent Scr een get Par ent () - obtains a reference to the Component's
parent screen

abstract int getPreferredHei ght () - gets the preferred height of this
Component

abstract int getPreferredWdth() -getsthe preferred width of this
Component

int get Wdth() -getsthe width of the Component, in pixels
i nt get X() - gets the x coordinate of the Component's left edge within the parent

int getY() - getsthey coordinate of the Component's top edge within the parent

57

58

bool ean hasFocus() - checks if this Component currently has key focus (that
is, it is receiving key events). For a given screen, no more than one Component can
have key focus

protected void invalidateParent () -invalidates this Component's
parent screen, if any

bool ean i sEnabl ed() - checks if this Component is currently enabled (can be
interacted with by the user)

bool ean i sVi si bl e() - checks if this Component is visible (can be seen by the
user)

protected bool ean keyPressed(int keyCode) - called when a key
is pressed

prot ect ed bool ean keyRel eased(i nt keyCode) - called when a key is
released

prot ect ed bool ean keyRepeated(int keyCode) - called when a key is
repeated (held down)

voi d | ost Focus() - called when this Component loses key focus

abstract void paint(javax.nicroedition.|cdui.Gaphics g) -
renders the Component

protected void pointerDragged(int x, int y) -calledwhenthe
pointer is dragged

protected void pointerPressed(int x, int y) -calledwhenthe
pointer is pressed within this Component

protected void pointerRel eased(int x, int y) -calledwhenthe
pointer is released

protected voi d preferredHei ght Changed() - notifies the system that
the preferred height of this Component has changed

protected void preferredWdt hChanged() - notifies the system that
the preferred width of this Component has changed

voi d repaint () -requests a repaint for the entire Component

void repaint(int x, int y, int wdth, int height) -requests
a repaint for the specified portion of this Component

voi d request Focus() - requests key focus for this Component

voi d set BottonEdge(int scheme, int val ue) - specifies the location
of the Component's bottom edge. The scheme parameter is one of the constants
defined above, specifying from where the value is to be measured.

voi d set Enabl ed(bool ean b) - sets this Component as enabled or disabled

voi d set Left Edge(int schene, int val ue) -specifies the location of
the Component's left edge. The scheme parameter is one of the constants defined
above, specifying from where the value is to be measured.

6

Lightweight Window

Toolkit (LWT)

* void setRi ght Edge(int schene, int val ue) -specifies the location of
the Component's right edge. The scheme parameter is one of the constants defined
above, specifying from where the value is to be measured.

* void setTopEdge(int schene, int val ue) - specifies the location of
the Component's top edge. The scheme parameter is one of the constants defined
above, specifying from where the value is to be measured.

* void setVisibl e(bool ean vi si bl e) - shows or hides the
Conponent

Detailed information about using these methods is available in the LWT API
documentation.

Using Components

Once you have your Corponent Scr een defined, you can now start adding LWT
components to it. All of the components defined by LWT are used alike, so the methods
shown here are applicable to all of the LWT components. This example creates a screen
with three buttons on it:

/**

* Denp Screen for the Button Conponent

**/

cl ass ButtonScreen extends Conponent Screen {
public ButtonScreen() {
Button bl = new Button("Button");
add(bl);

Button b2 = new Button("Large Button");
b2. set Ri ght Edge(Conponent . SCREEN _RI GHT, 0);

b2. set Bot t onEdge(Conponent . HEl GHT,
b2. get PreferredHei ght () * 2);

add(b2) ;

Button b3 = new Button("Di sabl ed Button");
b3. set Enabl ed(f al se);
add(b3);

}

This code also shows how to modify the defaults when creating a new component. Since
buttons are automatically created as ‘Enabled’, button b3 has specific code to initialize it
as disabled. The code for button b2 demonstrates a method for changing the default size
of the button.

59

The ComponentListener Interface

The Conponent Li st ener interface is implemented by any class that wishes to
receive events from a Conponent . The events vary depending on the object that
originates the event, but can include events such as button actuation, checkbox selection,
etc.

ComponentListener Interface Definition

This interface is defined as

* public interface ComponentListener

ComponentListener Interface Methods

The Conponent Li st ener interface defines a single method:

* ProcessConponent Event () — It processes an event received by a
Component. It is defined as public void processComponentEvent(java.lang.Object
source, int eventType) where source is the object which originated the event, and
eventType is the type of event that occurred. EventType is defined by the originating
object’s class, and is only defined to be unique within that class. A listener should call
the appropriate methods in the originating object to determine information about the
event that occurred.

The InteractableComponent Class

The | nt er act abl eConponent class is a subclass of Conponent . This class
adds functionality to allow it to interact with the user, i.e. the user can ‘press’ and ‘release’
objects created from this class. It provides the basic pointer and key event handling
required by checkboxes, buttons, image labels, etc. It also provides methods for setting
and getting the text and font associated with the component.

Anl nt er act abl eConponent may be actuated by tapping and releasing within
its bounds. It may also be actuated by pressing and releasing the devices 'Enter' key
when it has key focus. But t on, Checkbox, and | mageLabel are all subclasses
of I nt er act abl eConponent .

InteractableComponent Definition and Constructor

The | nt er act abl eConponent class is defined by:

public abstract class |nteractabl eConponent extends
Conponent

60

6

Lightweight Window

Toolkit (LWT)

Its only constructor is:

I nt er act abl eConponent (j ava. | ang. String | abel) -This
constructs a new InteractableComponent with the specified label. It also sets
acceptsKeyFocus to true so that this Component can accept focus and key events.

InteractableComponent Methods

Since this class extends the Conponent class, it inherits many fields and methods
from that class. In addition, it defines the following methods:

abstract voi d conponent Act uat ed() - called when the Component is
actuated (tapped and released). Subclasses must define this method to perform the
appropriate actions when they are actuated.

protected voi d di spat chConmponent Event (i nt event) - dispatches
the specified event to this InteractableComponent's listener, if any

j avax. m croedition. | cdui.Font getFont() -getsthe Font
associated with this label

java.lang. String getLabel () -getsthe label for this Component

bool ean i sPressed() - checks if this InteractableComponent is currently
pressed

prot ect ed bool ean keyPressed(int keyCode) - calledwhenakeyis
pressed

prot ect ed bool ean keyRel eased(i nt keyCode) -calledwhena
key is released

abstract void paint(javax. mcroedition.|cdui.Gaphics Q)
- renders the Component

protected void pointerDragged(int x, int y) -calledwhenthe
pointer is dragged

protected void pointerPressed(int x, int y) -calledwhenthe
pointer is pressed

protected void pointerRel eased(int x, int y) -calledwhenthe
pointer is released

voi d set Conponent Li st ener (Conponent Li st ener 1) - sets this
InteractableComponent's listener

voi d set Font (j avax. m croedi tion. | cdui.Font font) -setsthe
Font object for rendering the label, if any

voi d set Label (java.lang. String | abel) -setsthe label for this
InteractableComponent

voi d set Pressed(bool ean b) - sets the pressed/released state of this
Component

61

The Button Class

AButton isasubclassof | nt er act abl eConponent . As such, it can interact
with the user. Optionally, it can display a label to convey its function.

Button Class Definition and Constructors

The But t on class is a subclass of | nt er act abl eConponent and is defined
by:

public class Button extends |nteractabl eConponent

It has two constructors:
e Button() — Construct a Button with no label

» Button(java.lang.String label) — Construct a Button with the given text string as a label

Button Class Fields

The But t on class has a single constant, which is used to send an event to a
Butt on’ s listener, if any, when the But t on is pressed.

e public static int BUTTON_ACTION_EVENT

Button Class Methods

The But t on class inherits methods from | nt er act abl eConponent and
Component . In addition, it defines these methods:

* voi d conponent Act uat ed() — called when this Button is actuated. This
implementation dispatches a BUTTON_ACTION_EVENT to the Button's listener, if
any.

e int getPreferredHei ght () — gets the preferred height for this Button
e int getPreferredWdth() — gets the preferred width for this Button

e void paint(javax.mcroedition.l|cdui.G aphics g) - rendersthe
Button

An example of the But t on class is described in Using Components.

62

6

Lightweight Window

Toolkit (LWT)

The ImageLabel Class

| magelLabel isaConponent thatcan display animage and/or a text label. The
image and/or text label, referred to as the | mageLabel ' s contents, can be
collectively placed North, South, East, West, or centered within the bounds of the

| magelLabel . See ImageLabel for more information.

The relative layout of the contents can be controlled by specifying the location of the text
label relative to the image. The text label can be placed either above the image, below the
image, to the left of the image, to the right of the image, or in the center of the image.

An | magelLabel may be either “interactable” or non-‘interactable”. An “interactable”
| mageLabel may be actuated by the user and its state can be normal, disabled or
pressed. Separate images may be provided for each of these states; the normal image is
used by default if a specific image is not provided for a given state.

A non-interactable | nageLabel cannot be actuated by the user; its state can be
either normal or disabled.

The separation between the text and the image when the LABEL_RI GHT or
LABEL_LEFT nposition is selected is 3 pixels. The separation between the text and the
image when the LABEL_ABOVE or LABEL_BELOW position is selected is 2
pixels. In the absence of either text or image, the separation will be zero.

ImageLabel Class Definition and Constructors

Thel magelLabel classisasubclass of | nt er act abl eConponent andis
defined by:

public class | mageLabel extends Interactabl eConponent

This class has two constructors:

* | magelLabel (javax. m croedition.|cdui.lnage normnal
javax. mcroedition.|cdui.lnmge disabled,
javax. mcroedition.|cdui.lnmge pressed, java.lang.String
| abel) — constructs a new interactable ImageLabel with the specified images for
the three states (normal, disabled and pressed) and the specified label.

* | magelabel (javax. ni croedition.|cdui.lmge normal,
javax. mcroedition.|cdui.lnmge disabled,

java.lang. String | abel) —constructs a new non-interactable ImageLabel
with the specified images for the two states (normal and disabled).

63

ImageLabel Class Fields

The fields defined for the | mageLabel class are mainly used to indicate the relative
positions of the image and text items within the object. One event is defined for use by
any listeners.

static int ALI GN_CENTER-theimage and label should be horizontally
and vertically centered within the ImageLabel

static int ALI GN_EAST - The image and label should be vertically
centered and aligned with the right edge of the ImageLabel

static int ALI GN_NORTH - Theimage and label should be horizontally
centered and aligned with the top edge of the ImageLabel

static int ALI GN_SOUTH - Theimage and label should be horizontally
centered and aligned with the bottom edge of the ImageLabel

static int ALI GN_VEST - The image and label should be vertically
centered and aligned with the left edge of the ImageLabel

static int HORI ZONTAL_GAP - the horizontal gap between image and the
text

static int | MAGE_LABEL_ACTI ON_EVENT - event indicating that the
ImageLabel was actuated by the user (for interactable ImageLabels only)

static int LABEL_ABOVE - the label, if any, should be placed above the
image and horizontally centered relative to the image

static int LABEL_BELOW-the label, if any, should be placed below the
image and horizontally centered relative to the image

static int LABEL_CENTER-the label, if any, should be centered on the
image

static int LABEL_LEFT —the label, if any, should be placed to the left of
the image and vertically centered relative to the image

static int LABEL_RI GHT -the label, if any, should be placed to the right
of the image and vertically centered relative to the image

static int TRANSPARENT - transparent background color
static int VERTI CAL_GAP -the vertical gap between image and text

ImageLabel Class Methods

64

The | magelLabel class inherits many methods from
I nt er act abl eConponent and Conponent . In addition, it defines the
following methods:

voi d conmponent Act uat ed() - called whenthis | mrageLabel is
actuated by the user.

6
Lightweight Window
Toolkit (LWT)

i nt get BackgroundCol or () - gets the current background color.
i nt get For egroundCol or () - gets the current foreground color.

i nt get PreferredHei ght () - getsthe preferred height of the
| magelLabel .

i nt getPreferredW dt h() - gets the preferred width of the
| magelLabel .

voi d paint(javax. mcroedition.|cdui.Gaphics g) -
paints this | mageLabel .

voi d set Alignnent (int alignment) -setsthe desired alignment for
this | magelLabel .

voi d set BackgroundCol or (i nt col or) -setsthe background color.
voi d

set Di sabl edl nage(j avax. nicroedition.|cdui.lnmage i) -
sets the image for the disabled state.

voi d set For egroundCol or (i nt col or) - sets the foreground color

voi d set Label Location(int |ocation) -setsthe location of the
label, if any, relative to the | mageLabel ' s image.

voi d set Nor mal | mage(j avax. m croedition. | cdui.lmge
i) - sets the image for the normal state.

voi d set Pressedl mage(j avax. m croedition.|cdui.lnmge
i) - sets the image for the pressed state.

Checkbox Class

The Checkbox is a component that represents a boolean value. A Checkbox can
be used as-is to provide a single, independent choice for the user. A Checkbox can
also be added to a CheckboxGr oup to provide more extensive functionality.

Checkbox Class Definition and Constructors

The Checkbox class is a subclass of I nt er act abl eConmponent andis
defined by:

public class Checkbox extends I nteractabl eComponent

It has two constructors:

Checkbox() - creates a new Checkbox with an empty (null) label

Checkbox(java.l ang. Stri ng | abel) - createsanew Checkbox with
the specified label

65

Checkbox Class Fields

These constants are used to pass events to a listener, if any, or to define the appearance
of the Checkbox:

static int CHECKBOX_ CHECKED_ EVENT - eventindicating that this
Checkbox was checked

static int CHECKBOX UNCHECKED EVENT - event indicating that this
Checkbox was unchecked

static int STYLE CHECKBOKX - indicates that this Checkbox should
look like a checkbox

static int STYLE LI ST_I TEM- indicates that this Checkbox should
look like a list item

static int STYLE_RADI O BUTTON- indicates that this Checkbox
should look like a radiobutton

Checkbox Class Methods

Checkbox inherits several methods from | nt er act abl eConponent and
Conponent .

In addition, it defines the following methods:

voi d conponent Act uat ed() - called when this Checkbox is actuated
by the user

voi d gai nedFocus() - called when this Checkbox gains key focus

i nt get PreferredHei ght () - gets the preferred height of this
Checkbox

i nt getPreferredW dt h() - gets the preferred width of this Checkbox
bool ean get Val ue() - gets the current value of this Checkbox
voi d | ost Focus() - calledwhen this Checkbox loses key focus

voi d paint(javax. mcroedition.|cdui.Gaphics g) -
renders the Checkbox

voi d set Val ue(bool ean val ue) - sets the current value of this
Checkbox.

Grouping Checkboxes

The Checkbox components are designed to be used together with other ones.
Although individual Checkboxes have many uses, it's also nice to be able to combine

66

6

Lightweight Window

Toolkit (LWT)

them to provide a multiple-choice grouping. The CheckboxGr oup class is designed
to make that possible. Here’s how to use it:

/* Denp Screen for the Radi oButton Conponent (Checkbox wth
a

CheckboxGr oup)

**/

cl ass Radi obuttonScreen extends Conponent Screen {
publ i ¢ Radi obuttonScreen() {

CheckboxGroup g = new CheckboxG oup
(Checkbox. STYLE_RADI O BUTTON) ;

Checkbox ¢l = new Checkbox("Radi o Button A");
add(cl);
g.add(cl);

cl = new Checkbox("Radi o Button B");
add(cl);

g.add(cl);

cl = new Checkbox("Radi o Button C');
add(cl);

g.add(cl);

Checkbox c2 = new Checkbox("Large Radi o Button");
c2. set Ri ght Edge(Conponent . SCREEN _RI GHT, 0);

c2. set Bot t onEdge(Conponent . HEl GHT,
c2.getPreferredHeight() * 2);

add(c2);
g.add(c2);

Checkbox ¢3 = new Checkbox("Smal |l Radi o Button");
c3. set Ri ght Edge(Conponent . SCREEN_RI GHT, 0);

c3. set Bot t onEdge(Conponent . HEl GHT,
c3.getPreferredHei ght() - 8);

add(c3);
g.add(c3);

Checkbox c4 = new Checkbox("Di sabl ed Radi o Button");
c4. set Enabl ed(f al se);

add(c4);

g. add(c4);

Note in this example that each Conponent s added not only to the
Component Scr een, but also to the Checkbox G oup. The type of
CheckboxGroup is specified when the Checkbox G oup s instantiated (in this

67

case it's a radio button group), and the Checkboxes themselves are created and
customized just as the Buttons in the earlier Button example.

The CheckboxGroup Class

The CheckboxGr oup manages a group of Checkboxes. Unlike the AWT class of
the same name, the use of a Checkbox G oup does not imply an exclusive list. A
CheckboxG oup can be constructed for both exclusive and multiple selection modes.
In LWT, the CheckboxGr oup serves as a single reference point for several
Checkboxes, eliminating the need to deal with each Checkbox individually. The
CheckboxG oup supports a Conponent Li st ener, so the interested object
can listen to just the Checkbox G oup, rather than having to add itself as a listener to
each of the Checkboxes individually.

CheckboxGroup Class Definition and Constructor

The CheckboxG oup class is a subclass of Obj ect , and is defined by:

public class CheckboxG oup extends java.lang. Obj ect

It has the following constructor:

e public CheckboxGroup(int style) throws
|1l egal Argunent Excepti on - creates a new CheckboxGroup with the
given style. The argument st yI e can be one of the following options:
Checkbox.STYLE_CHECKBOX, Checkbox.STYLE_RADIO_BUTTON, or
Checkbox.STYLE_LIST ITEM.

CheckboxGroup Class Fields

68

The CheckboxGroup class defines the following constant:

e public static final int
CHECKBOXGROUP_SELECTI ON_CHANGED - Event indicating that the value
of one or more Checkboxes in this CheckboxGroup has changed. This constant has
a value of 0x01.

6

Lightweight Window

Toolkit (LWT)

CheckboxGroup Class methods

The CheckboxGroup class defines the following methods:

public int getSel ectedl ndex() - Gets the index of the selected
element. It returns the index of the selected element (or -1 if style is
Checkbox.STYLE_CHECKBOX or the group has no Checkboxes);

public void

set Component Li st ener (Conponent Li st ener |) - Sets this
Component's listener. A Component can have only one listener at a time. The
parameter | is a ComponentListener, or null if no listener is desired;

public int add(Checkbox b) —Addsa Checkbox to this group and
returns the index assigned to it. The parameter b is a non-null Checkbox to add;

public void insert(Checkbox b, int index) -lInsertsa
Checkbox into this group at the specified index. If the index is less than 0, the
Checkbox is inserted at the beginning of the list (index = 0). If the index is greater
than the number of Checkboxes in this group, the Checkbox is appended at the end
of the list. The parameter b is a non-null Checkbox to add, and the parameter i ndex
is the index where the Checkbox is to be inserted;

public void renmove(Checkbox b) -Removes the specified Checkbox
from this group. This method does nothing if the specified Checkbox is null or not
currently added to this CheckboxGroup. For single select groups, the selected
Checkbox defaults to index 0 if the Checkbox to be removed is currently selected.

The parameter b is the Checkbox to be removed from this list;

publ i ¢ Checkbox get Checkbox(int index) throws
I ndexQut OF BoundsExcept i on - Gets the Checkbox with the specified
index. The parameter i ndex is the index of the Checkbox.

public int get CheckboxCount () - Getsthe number of Checkboxes
that belong to this CheckboxGroup;

public void remove(int index) throws

| ndexQut Of BoundsExcept i on - Removes the Checkbox with the
specified index from this group. For single select groups, the selected Checkbox
defaults to index 0 if the Checkbox to be removed is currently selected;

publ i ¢ bool ean isSel ected(int index) throws

| ndexQut Of BoundsExcept i on - Gets the value of the Checkbox with the
specified index. The parameter i ndex is the index of the Checkbox. It returns t r ue
if the Checkbox is selected, otherwise f al se;

public void

set Sel ect edFl ags(bool ean[] sel ect edArray) throws

I I egal Argunent Excepti on, Nul | Poi nt er Except i on - Sets the
values of the group's Checkboxes to the values of the provided array. The number of
elements in the array must be greater than or equal to the number of Checkboxes.

69

For multiple-select CheckboxGroups (Checkbox.STYLE_CHECKBOX), this method
sets the value of every Checkbox; an arbitrary number of elements may be selected.
For single-select CheckboxGroups (Checkbox.STYLE_RADIO_BUTTON or
Checkbox.STYLE_LIST ITEM), exactly one array element must have the value

t rue. If no elementis t r ue, the first Checkbox will be setto t r ue. If two or more
elements are t r ue, only the first t r ue element will be recognized; the other
elements will be ignored. This method has no effect if the CheckboxGroup contains
no Checkboxes.

e public void setSel ectedl ndex(int index,
bool ean val ue) throws | ndexQut Of BoundsExcept i on - Sets the
selection for this CheckboxGroup. For multiple-select CheckboxGroups
(Checkbox.STYLE_CHECKBOX), this method simply sets the value of the specified
Checkbox to the specified value. For single-select CheckboxGroups
(Checkbox.STYLE_RADIO_BUTTON or Checkbox.STYLE_LIST_ITEM), this method
sets the specified Checkbox provided the specified value is true; otherwise, the call is
ignored. The parameter i ndex is the index of the checkbox to set or select, and
val ue is f al se for a new value of the checkbox for multi-select lists, or t r ue for
single-select lists.

The TextComponent Class

The Text Conponent class is the base class for Text Ar ea and Text Fi el d.
It provides common functionality such as text manipulation, font control, length limiting,
constraints, justification and echo character support. The native implementation of

Text Conponent s may include support for selection, cut/copy/paste, handwriting
recognition, keypad prediction, etc.; however, these features are not exposed in the API
since they are not guaranteed to be supported by all devices.

TextComponent Class Definition and Constructor

The Text Conponent class is a subclass of Conmponent , and is defined by:

public abstract class Text Conponent extends Conponent

There is no constructor for this class. Use a Text Ar ea or Text Fi el d class to
define a text-handling object.

TextComponent Class Fields

The Text Conponent class defines the following constants:

e static int JUSTIFY_CENTER- constant for center justification
« static int JUSTIFY_LEFT -constant for left justification

« static int JUSTIFY_RI GHT - constant for right justification

70

6

Lightweight Window

Toolkit (LWT)

static int NO_LIMT-constant for no length limit

TextComponent Methods

The TextComponent inherits several methods from Component. In addition, it
defines these methods:

voi d appendChar (char c) -appends the specified character at the end of
the current text

voi d appendText (java.lang. String text) -appendsthe
specified text at the end of the current text

i nt get Constraint() -gets the text entry constraint for this
Text Conponent

char get EchoChar () - obtains the echo character used by this
Text Conponent , or 0 if the actual characters are displayed.

javax. m croedition.|cdui.Font getFont () -getsthe font
currently used by this Text Conponent

int getlLengthLimt() -getsthe length limit

i nt get PreferredHei ght () - gets the preferred height of this
Text Conponent

i nt getPreferredW dt h() -gets the preferred width of this
Text Conponent

java.l ang. String get Text () - obtains the text contained in this
Text Conponent

voi d insertChar(char c, int index) -inserts the specified
character at the specified index in the current text

void insertText(java.lang. String newlext, int
i ndex) -inserts the specified text at the specified index in the current text

bool ean i sEditabl e() - checks whether or not the contents of this
Text Conponent may be edited by the user

bool ean keyPressed(i nt keyCode) - called when a key is pressed

bool ean keyRepeat ed(i nt keyCode) - called when a key is repeated
(held down)

voi d paint(javax. nicroedition.|cdui.Gaphics g) -
renders the Conponent

voi d pointerPressed(int x, int y) -calledwhen the pointeris
pressed within this Conponent

voi d set Constraint(int constraint) -setsthe text entry
constraint for the contents of this Text Conponent

71

 void set EchoChar(char c) -setsthe echo character to be displayed by
this Text Conponent . Use 0 to display the actual characters typed.

* void setEditabl e(bool ean editabl e) - setswhetherornotthe
Text Conponent can be edited by the user

e void setFont(javax.nicroedition.|cdui.Font newFont)
- sets the current font of the Text Conponent

e void setJustification(int justification) -setsthe
justification of this Text Conponent

e void setLengthLimt(int naxChars) -setsthe length limit

e void setText(java.lang. String newText)- sets the contents of
the Text Conponent to the specified St ri ng

e protected void textChanged(int start, int end,
bool ean user) - called whenever the contents of this Text Conmponent
are changed, either by the user or programmatically

The TextField Class

The Text Fi el d class defines a single line Text Conponent that scrolls
horizontally as needed.

TextField Class Definition and Constructor

This class is defined by

public class TextField extends Text Conponent

The only constructor is:
« TextField(java.lang.String text, int colums)

This constructor constructs a new Text Fi el d with the given text and number of
columns. The number of columns is used only to establish the preferred width for layout
purposes; it does not restrict the length of text that can be entered into the Text Fi el d.

TextField Class Methods

The Text Fi el d class inherits all of its methods from the Text Conponent and
Component classes. There are no additional methods defined in the Text Fi el d
class.

72

6
Lightweight Window
Toolkit (LWT)

The TextArea Class

The Text Ar ea class is a multi-line Text Conponent that scrolls vertically as
needed. Scrolling is automatically provided by the platform. A scrollbar (or other similar
mechanism) is provided by the native Ul as needed so that the user can adjust the scroll
offset.

TextArea Class Definition and Constructor

This class is defined by

public class Text Area extends Text Conponent

The only constructor is:

« TextArea(java.lang.String text, int rows, int
col ums)

It constructs a new Text Ar ea with the given text, number of rows, and number of
columns. The number of rows and columns is used only to establish the preferred height
and width for layout purposes; it does not restrict the length of text that can be entered
into the Text Ar ea.

TextArea Class Methods

The Text Ar ea class inherits all of its methods from the Text Conponent and
Conmponent classes. There are no additional methods defined in the Text Ar ea
class.

The Slider Class

The Sl i der component represents a variable (and possibly adjustable) numeric value.

The Sl i der can either be a read-only device to display a value, or it can be an
interactable device that allows the user to view and adjust a value.

Only horizontal Sl i der is supported since the vertical direction keys are reserved for
changing key focus.

ASlider's value canrange from 0 to its maximum value, inclusive. The maximum
value must be at least 0. There is no upper limit on the maximum value; however, the
resolution of a Sl i der will be reduced if its maximum value exceeds its width.

73

Slider Class Definition and Constructor

The Sl i der class is a subclass of Conponent , and is defined by:

public class Slider extends Component

The constructor fora Sl i der is:

e Slider(boolean interactive, int maxVal ue, int
val ue)

Slider Class Fields

The Sl i der class defines two fields which are passed as events to any listeners that
may be active on the class. These fields are:

« static int SLIDER DRAGGED -eventindicating thatthe SI i der' s
value has been changed and that it is still being interacted with by the user. Since this
event may happen repeatedly and quickly, the code that deals with it should execute
quickly.

e static int SLIDER SET -eventindicatingthatthe Sl i der' s value
has been changed and that the user is no longer interacting with it.

Slider Class Methods

74

The Sl i der class inherits many methods from Conponent . In addition, it
defines the following methods:

e int getMuxVal ue() - getsthe maximum value of the Sl i der

 int getPreferredHei ght () -getsthe preferred height of the SI i der
e int getPreferredWdth() -getsthe preferred width of the Sl i der

e int getVal ue() -getsthe current value of the Sl i der

» protected bool ean keyPressed(int keyCode) -called whena
key is pressed

« protected bool ean keyRel eased(i nt keyCode) -calledwhena
key is released

« protected bool ean keyRepeat ed(i nt keyCode) -calledwhena
key is repeated (held down)

e void paint(javax.nicroedition.|cdui.G aphics g) -
renders the Conponent

6
Lightweight Window
Toolkit (LWT)

protected void pointerDragged(int x, int y) -calledwhen
the pointer is dragged

protected void pointerPressed(int x, int y) -calledwhen
the pointer is pressed

protected void pointerRel eased(int x, int y)-called
when the pointer is released

voi d set Conponent Li st ener (Conponent Li stener 1) -sets
this Sl i der ' s listener

voi d set MaxVal ue(i nt maxVal ue) - setsthe maximum value of the
Sli der

voi d set Val ue(i nt val ue) - setsthe current value of the Sl i der

75

;
Record Management
System (RMS)

Overview

The most common mechanism for persistently storing data on a MIDP device is through
RMS. RMS provides the capability to store variable length records on the device. Those
records are accessible to any MIDlet in the MIDlet Suite, but not to MIDlets outside of the
MIDlet Suite. The RMS implementation of the Motorola A830 handset is MIDP compliant,
so there are no significant additions or changes to the MIDP specification.

Class Description

The API for the RecordStore is located in the package j avax. mi cr oedi ti on. r ns.

Code Examples

76

The following simple code example will open the Recor dSt or e. If any exception
occurs it will be caught.

try {
Systemout. println("Opening RecordStore " + rsNane + "
")
//try to open a record Store
recordStore = RecordStore. openRecordStore(rsName, true);

//keep a note for the last nodified time for record
store

Date d = new Date(recordStore. getlLastMdified());
System out. println(recordStore. get Nane()+"nodi fied | ast

7

Record Management

System (RMS)

Tips

time: " +

d.toString());

}

catch (RecordSt oreException rse) {
/] process the | OException

Caveats

It is much faster to read and write in big chunks than it is to do so in small chunks.

Whenever you close a Recor dSt or e, the close command will not return until all the
pending writes have been written. A successful call to close a Recor dSt or e
guarantees that the data got written. It is then safe to power off the phone; a side effect to
this is that the close command may take a while to return. Therefore, if a

Recor dSt or e is opened and closed for every write performance will be greatly
affected.

The maximum number of Recor dSt or es that the Motorola A830 handset supports
depends on the number of files installed. Once the phone has 500 RecordStores (that
includes resource files, wall papers, ring tones, and other files), then it will not be able to
make more.

Therefore, if a MIDlet is to have many images, such as sprites used in animations, it may
be advantageous to have them all in one image file and use clipping to display only what
you need.

Recor dSt or e can be of any size as long as there is file space available. A zero byte
Recor dSt or e is also allowed.

77

Overview

8
J2ME Networking

78

The J2ME platform on the Motorola A830 handset provides a variety of networking
functionalities beyond those specified in MIDP. The additional networking protocols are
added through the Generic Connection Interface in order to simplify the interface to the
application as well as to reduce the need for additional classes. Most of the additional
network connections are invoked using a runtime parameter similar to HTTP, reducing the
learning curve for developers as well as the reducing potential application porting efforts.
The following is a list of networking features for the Motorola A830 handset:

HTTP

HTTPS

TCP Sockets

SSL Secure Sockets
UDP Sockets

Serial Port Access

The standard networking protocol specified in MIDP 1.0 is HTTP. Although HTTP is
useful and flexible for most data exchanges, many of the applications fall outside the
standard request/response models of most browsers. Applications such as games and
stock tickers require networking protocols with different characteristics. In order to
accommodate these types of applications with reasonable efficiency, additional protocol
stacks including UDP, TCP Sockets, SSL, and HTTPS have been added. These added
networking functionalities not only provide the application developer with more
communication options, it alleviates the need to perform inefficient workarounds for a
strict HTTP environment. Other applications may also choose to take advantage of the
bottom connector on the devices. The bottom connector is a serial port enabling
communication with a variety of other devices. The Motorola A830 handset also provides
serial port access through the Generic Connection Framework in order to provide
applications a means to communicate to external devices such as GPS, OBD, PCs, etc.

8
J2ME Networking

Class Descriptions

<<Interface>> <<Interface>>
StreamConnectionNotifier DatagramConnection

<<Interface>> |

Connection

<<Interface>>

] <<Interface>>
InputConnection

OutputConnection

<<Interface>>
StreamConnection

/T

<<Interface>>
ContentConnection

/T

<<Interface>>
HttpConnection

Figure 17. The Connection Framework

Since all the additional communication protocols have been added to the Generic
Connection Framework, the access methods and parameters are very similar. The main
calls are to the Connect or class, which provides three static methods that accept
different compile time parameters. The commonality between the three static methods is
the first parameter in their signatures. This particular runtime parameter accepts

St ri ngs formatted in the standard Uniform Resource Locator format. The following is
the list of method signatures:

* Connector.open(String URL) - default READ WRITE, no timeout.
» Connector.open(String URL, int node) -defaultstono timeout.

e Connector.open(String URL, int node, Bool ean tinmeout)

79

HTTP

- String URL — parameter string describing the target conforms to the URL format
as described in RFC 2396 for all networking protocols except for Serial Port.

- int node — READ/WRITE/READ_WRITE

- bool ean timeout — An optional third paraneter,
protocol may throw an | OException when it detects
a tinmeout condition.

The timeout period for the TCP implementation on the Motorola A830 handset is 20
seconds on read operation and about 45 seconds on write operation if the timeout flag is
set to true. If the timeout flag is set to false, the timeout time is indefinite. The lingering
time for closing sockets is 0 second (if the socket closed by the server the lingering time
will be less than 100 ms). If a new socket is requested within this time frame and the
maximum number of sockets opened has been reached (4 sockets), then an IOException
is thrown.

Applications requesting a network resource for any protocol must use one of the three
methods above. The URL is the distinguishing argument that determines the difference
between HTTP, Serial, etc. The following chart details the prefixes that should be used
for the supported protocols.

Table 2 - Supported Protocols on the Motorola A830 handset

Protocol URL Format

HTTP http://

HTTPS https://

TCP Sockets socket://

SSL Secure Sockets secur esocket://
UDP Sockets dat agram//

Serial Port conm <Port _Nanme>;

e <Port_Name> - should be derived from the return string of System.get

Property("serialport.name").

80

The HTTP implementation follows the MIDP 1.0 standard. The Connect or . open()
methods return a Ht t pConnect i on object that is then used to open streams for
reading and writing. The following is a code example:

Ht t pConnection hc = (HttpConnecti on) Connect or. open(
“http://ww. nmot orol a. cont);

In this particular example, the standard port 80 is used, but this parameter can be
specified as shown in the following example:

8
J2ME Networking

HTTPS

Ht t pConnection hc = (HttpConnecti on) Connect or. open(
“http://ww. not orol a. com 8080") ;

The other static Connector methods work in the same manner, but they provide the
application additional control in dealing with the properties of the connection. By default,
HTTP 1.1 persistency is used to increase efficiency while requesting multiple pieces of
data from the same server. In order to disable persistency, set the “Connection” property
of the HTTP header to “close”.

The HTTPS implementation follows the MIDP 1.0 standard, save for the security aspects.
The Connect or . open() methods returna Ht t pConnect i on object that is then
used to open streams for reading and writing. The following is a code example:

Ht t pConnection hc = (HttpConnection) Connect or. open(
“https://ww. not orol a.cond') ;

In this particular example, the standard port 443 is used, but this parameter can be
specified as shown in the following example:

Ht t pConnection hc = (Htt pConnecti on) Connect or. open(
“https://ww. not orol a. com 8888") ;

The other static Connect or methods work in the same manner, but they provide the
application additional control in dealing with the properties of the connection.

Due to memory constrain, Motorola A830 handset can support only one secure session
(i.e. if other application like Browser already opened a secure socket, a MIDlet application
will get an IOException when it tries to open only one connection which is HTTPS
connection).

Note — Only Verisign Certificates are supported in the Motorola A830 handset. The
following is a list of supported features:

e SSL 3.0 (Secure Socket Layer)
e TLS 1.0 (Transport Layer Security)

e Server Authentication

TCP Sockets

The low-level socket used to implement the higher-level HTTP protocol is exposed to
applications via the Generic Connection Framework. The usage is similar to the
examples above, however, a St r eamConnect i on is returned by the

Connect i on. open() method, as shown in the following example:

St reanConnecti on sc =

(St reantConnect i on) Connect or. open(
“socket : // ww. not or ol a. com 8000") ;

81

Although similar to HTTP, notice the required port number at the end of the remote
address. In the previous protocols, those ports are well known and registered so they are
not required, but in the case of low level sockets, this value is not defined. The port
number is a required parameter for this protocol stack.

SSL Secure Sockets

The low-level socket used to implement the higher-level HTTPS protocol is also exposed
to applications via the Generic Connection Framework. The usage is similar to the
examples above.

St reanConnection sc = (StreanConnecti on) Connect or. open(
“securesocket://ww. not or ol a. com 8000”) ;

As with non-secure sockets, the port number is a required parameter for this protocol
stack.

UDP Sockets

If networking efficiency is of greater importance than reliability, datagrams (UDP) sockets
are also available to the application in much the same manner as other networking
protocols. The Connect or object in this case returns a Dat agr amConnect i on
object, as is shown in the following example:

Dat agr amConnection dc =
(Dat agr amConnect i on) Connect or. open(
“datagram//170. 169. 168. 167: 8000") ;

Much like low-level sockets, accessing UDP requires both a target address and a port
number. The Motorola A830 handset supports a maximum outgoing and incoming
payload of 1472 bytes and 2944 bytes, respectively.

Serial Port Access

82

Applications utilizing the bottom connector (serial port) to communicate with a variety of
devices are given exclusive access to the port until either the application voluntarily
releases the port or is terminated. Much like any other networking connection, opening a
serial port is not guaranteed and an exception can be thrown. If another application
native or Java is using the port, or a cable is not attached to the device, an IOException
may be thrown. In the normal usage scenario, the Connect or object in this instance
returns a St r eamConnect i on, as is shown in the following example:

String port_nane= System getProperty("serial port.nanme");
String max_baudrat e=

8
J2ME Networking

System get Property("serial port. maxbaudrate");
i f(baudrate > nmax_baudrate) baudrate= nmax_baudrat e;
St reamConnection sc = (StreanConnecti on) Connect or. open(

“comm” + "port_nane” + ”";baudrate=" + baudrate +
" parity=n; databits=8; stopbits=1;flowontrol=n/n");

Although serial port access is integrated into the Generic Connection Framework, the
URL parameters passed in deviates from the other networking protocols. The optional
parameters, such as baud rate, parity, etc are appended to the base parameter of
“comm:0”. Optional parameters are listed below along with the default values when not
explicitly specified:

Table 3 - Connection Optional Parameters

Parameter Syntax Options Default
baudrate baudrate = x [300, 1200, 2400, 4800, 192000
9600, 19200, 38400,
57600, 115200]
databits databits = x [8,7] 8
stopbits stopbits = x 1, 1,5 and 2 1
parity with parity = X [n,o0,e,s,nM n=none, n
mapping o=odd, e=even, s=space,
memar k
Flow control flowcontrol = [n, s, h] / [n, s, h] N n
outflow infl ow n=none,
s=sof t war e, h=har dwar e
aut oct s autocts= X on or off of f
autorts autorts= x on or off of f
bl ocki ng bl ocking = x on or of f of f

Note - The following combinations of properties are not supported.
— 7 databits with none parity
— 8 databits with mark parity
— 8 databits with space parity
— 8 databits with odd parity
— 8 databits with even parity

IOException will be thrown while trying to use any of the unsupported combinations in
Connector.open().

All properties must be semicolon separated. If not all properties are passed; the remaining
properties will be taken as default values. The order of properties in the argument does
not matter.

name = "conmm O; baudr at e=38400; "
Here, the flow control, parity, data bits and stop bits will use the default values.

For mode and timeout refer to the CLDC API specification for the Connector class.

83

Communicating on a Port

The open method of the Connect or class returns a St r eantConnect i on object
for the serial port. St r eanConnect i on has methods for obtaining input and output
streams from a port. The base interface, Connect i on, has a method to close the port.
(Refer to the class hierarchy from St r eamConnect i on from J2ME CLDC API
specification).

There are five basic steps to communicating with a port:
e Open the port using the open() method of Connect or . If the port is available,

this returns a St r eantConnect i on object for Comm port. Otherwise, an
IOException is thrown.

» Get the output stream using the openOutputStream() method of
Qut put Connecti on.

e Get the input stream using the openinputStream() method of
| nput Connecti on.

e Read and write data onto those streams.

» Close the port using the cl ose() method of both the Connect i on and open
Streams.

Once the connection has been established, simply use the normal methods of any input
or output stream to read and write data. The openinputStream and openOutputStream
methods of St r eantConnect i on are similar to the methods of the socket

St reantConnecti on.

Example using StreamConnection

84

Connect or. open is used to open the serial port and a St r eantConnect i onis
returned. From the St r eamConnect i on the | nput St r eamand

Cut put St r eamare opened. It is used to read and write every character until the
connection is closed(-1). If an exception is thrown the connection and stream are closed.

St reamConnection sc = nul |
InputStreamis = null
Qut put Stream os = nul | ;

/*

* Create the parameter String with options specified
*/

String parameter =

"comm 0; baudr at e=19200; pari t y=n; dat abi t s=8; st opbi t s=1;
fl owcontrol =n/n";

try{
sc = (StreanConnecti on) Connect or. open(par anet er,

8
J2ME Networking

Connect or. READ WRI TE, fal se);
0s = sc. openQut put Streanm();
is = sc.openlnput Streamn();
int ch;
while ((ch = is.read()) !'=-1) {
os.wite(ch);
}
} finally {
if (sc !=null)
sc.cl ose();
if(is I=null)
is.close();
if(os = null)
os. cl ose();

Implementation Notes

Tips

As stated in the previous sections, the Motorola A830 handset supports some networking
options. The networking options however are limited by both memory and bandwidth,
which place hard restrictions on the applications. These limitations manifest themselves
mainly in the number of simultaneous connections that can be opened.

Maximum number of sockets is 4 of any combinations of HTTP, HTTPS, socket,
securesocket and UDP. Due to memory constrain A830 can support only one secure
session (i.e. if other application like Browser already opened a secure socket, a KJava
midlet will get an IOException when it tries to open only one connection which is HTTPS
connection). If the maximum number of sockets is concurrently opened by the application
and a fiveth socket is requested, an exception is thrown to the calling application.

Only one serial port is available. Any attempts to open 2 concurrent serial port
connections results in a thrown exception.

A factor to take into consideration while developing networked applications is the blocking
nature of many javax.microedition.io and java.io object methods. It is advisable to spawn
another thread specifically dedicated to retrieving data in order to keep the user interface
interactive. If a single thread is used to retrieve data on a blocking call, the user interface
becomes inactive with the end-user perceiving the application as “dead”.

Reading from an | nput St r eamusing an array is faster then reading byte by byte,
when the length of the data is known. For example, if the content length is provided in the
header of the Ht t pConnect i on, then an array of the specified size can be used to
read the data.

85

86

The | nput St r eamand Qut put St r eamas well as the Connect i on object
need to be completely closed.

An application in the paused state can still continue to actively use the networking
facilities of the Motorola A830 handset.

The platform does not support simultaneous voice and data transmissions.

Gaming

9
Gaming

Functional Description

The Gaming API provides gaming related functionality to J2ME MIDlet writers. This
functionality includes the ability and support for transparent images, the ability to play
simple sounds and sound effects during a game, the ability to detect simultaneous key
presses, support for sprites, and support for dynamically changing the palette color
associated with an image.

Class Hierarchy

javax.microedition.lcdui com.motorola.game
Graphics
(from javax.microedition.lcdui) GameScreen —_——— SoundEffect
Canvas ImageUtil BackGroundMusic
(from javax.microedition.lcdui) /
-~ Palettelmage FileFormatNotSupported
L — Exception
Image —

(from javax.microedition.lcdui)

I ——— PlayField

L

Sprite

Figure 18. Gaming API class hierarchy

87

BackgroundMusic Class

The Backgr oundMusi ¢ class encapsulates the data for a game's background
music. A game may create several Backgr oundMusi c objects, but only one may be
playing at any one time. The sound data may be stored on the device as a named
resource in the application JAR file, or it can be stored on a server and retrieved via the
network. Backgr oundMusi c is played by a GaneScr een.

BackgroundMusic Methods

The Backgor oundMusi c class defines the following methods:

e public static BackgroundMusic
cr eat eBackgr oundMusi c(j ava. | ang. String name) throws
Fi | eFor mat Not Support edExcept i on - Creates a BackgroundMusic for
the sound data stored in the specified named resource or URL.

Using BackgroundMusic

Example:

BackgroundMusi ¢ bgml =
Backgr oundMusi c. cr eat eBackgr oundMusi ¢c("/ FunkyTunes. bgni') ;

Backgr oundMusi ¢ bgnR =
Backgr oundMusi c. cr eat eBackgr oundMusi c("http://ww. notorol a. c
om sounds/ JazzyTunes. bgn') ;

GameScreen Class

The GanmeScr een class provides the basis for a game user interface. In addition to the
features inherited from MIDP's Canvas (commands, input events, etc.) it also provides
game-specific capabilities such as an off-screen buffer with synchronized flushing and key
status polling. A game may provide its own thread to run the game loop. A typical loop will
check for input, implement the game logic, and then render the updated user interface.

GameScreen Fields

88

The GanmeScr een class defines the following fields:

e public static final int DOAN_KEY - The bit representing the
DOWN key. This constant has a value of 0x02.

e public static final int FIRE_KEY-The bitrepresenting the FIRE
key. This constant has a value of 0x10.

Gaming

public static final int GAME_A KEY - The hit representing the
GAME_A key (may not be supported on all devices). This constant has a value of
0x20.

public static final int GAME_B_KEY - The hit representing the
GAME_B key (may not be supported on all devices). This constant has a value of
0x40.

public static final int GAME_C _KEY - The bit representing the
GAME_C key (may not be supported on all devices). This constant has a value of
0x80.

public static final int GAME D _KEY - The bit representing the
GAME_D key (may not be supported on all devices). This constant has a value of
0x100.

public static final int LEFT_KEY -The bitrepresenting the LEFT
key. This constant has a value of 0x04.

public static final int RIGHT_KEY -The bitrepresenting the
RIGHT key. This constant has a value of 0x08.

public static final int UP_KEY -The bitrepresenting the UP key.
This constant has a value of 0x01.

public static final int PRI ORI TY_MAX-The maximum priority
for playing sound effects. This constant has a value of 100.

public static final int PRI ORI TY_M N-The minimum priority
for playing sound effects. This constant has a value of 0.

public static final int VOLUME_MAX - The maximum volume for
playing sound effects. This constant has a value of 100.

public static final int VOLUME_M N-The minimum volume for
playing sound effects. This constant has a value of 0.

GameScreen Methods

The GameScr een class defines the following methods:

protected G aphics get Graphi cs() - Obtains the Graphics object
for rendering GameScreens. The Graphics object renders to an off-screen buffer
whose size is equal to that of the GameScreen (use getWidth() and getHeight() to
determine the size of the GameScreen). The buffer is initially filled with white pixels.
Rendering operations do not appear on the display until flushGraphics() is called;
flushing the buffer does not change its contents (that is, the pixels are not cleared as
a result of the flushing operation). Only one image buffer is supported because
without a vertical sync blanking period or its equivalent, there is little or no benefit
from having multiple image buffers. Only one Graphics object exists for each
GameScreen instance.

public int getKeyStates() -Getsthe states of the physical keys.
Each bit in the returned integer represents a specific key on the device. A key's hit

89

90

will be set if the key is currently pressed or was pressed at least once since the last
time this method was called. The bit will be 0 if the key is not currently pressed and
was not pressed at all since the last time this method was called. This latching
behavior ensures that a rapid key press and release will always be caught by the
game loop, regardless of how slowly the loop runs. This method may be called twice
to check if a key is currently pressed; that is, calling this method twice effectively
disables the latching behavior. The lower bits are defined by UP_KEY, DOWN_KEY,
LEFT_KEY, etc.; the remaining bits may be mapped to device-specific keys.

For example:

/1l Get the key state and store it
int keyState = ganeScreenChj ect. get KeySt ates();
if ((keyState & LEFT_KEY) != 0) {

posi tionX--;
} else if ((keyState & RIGHT_KEY) != 0) {

posi ti onX++;
}
publ i c voi d enabl eKeyEvent s(bool ean enabl ed) -Enablesor
disables key event calls to this GameScreen. If disabled, the Canvas key event
methods (keyPressed, keyRepeated, keyReleased) are not called when keys are
pressed or released; however, the developer can still call getKeyStates to query the
state of the keys. For games that poll key state and do not need event-driven key
information, disabling key events can improve performance.
Note that this setting is unique to each GameScreen instance; other GameScreens,
when shown, are subject to their own setting for key events.

public void

pai nt (j avax. m croedition.|cdui.G aphics g) -Paintsthis
GameScreen. By default, this method does nothing. It can be overridden according to
application needs.

public void flushGraphics(int x, int y, int wdth,

i nt hei ght) - Waits until the end of the current screen refresh cycle and then
flushes the specified region of the off-screen buffer to the display driver. This method
does not return until that region of the buffer has been completely flushed. The pixels
of the off-screen buffer are not changed as a result of the flush operation. Upon
returning from this method, the application may immediately begin to render the next
frame using the same buffer.

public void flushG aphics() -Waits until the end of the current
screen refresh cycle and then flushes all of the off-screen buffer to the display driver.
This method does not return until the entire buffer has been completely flushed. The
pixels of the off-screen buffer are not changed as a result of the flush operation. Upon
returning from this method, the app may immediately begin to render the next frame
using the same buffer.

public static int getDi splayCol or(int col or) throws
I'I'l egal Argunment Except i on - Gets the color that will be displayed if the
specified color is requested. This method enables the developer to check the manner
in which RGB values are mapped to the set of distinct colors that the device can
actually display. For example, with a monochrome device, this method will return

Gaming

either OXFFFFFF (white) or 0x000000 (black) depending on the brightness of the
specified color.

public void playSoundEffect (SoundEf fect se, int
vol une, int priority) -Playsthe specified SoundEffect. A
GameScreen's sound effects are heard only while it is the visible screen. A device
capability of playing SoundEffects can be found by using the method
soundEffectsSupported(). The platform's ability to play several SoundEffects
simultaneously can be found by using the method getMaxSoundsSupported(). The
priority specified for each request determines which sound(s) are heard when the
number of simultaneous sound requests exceeds the capabilities of the device.

publ i ¢ bool ean soundEf f ect sSupported() - Checkswhether
the underlying platform supports SoundEffects. It returns true if SoundEffects are
supported.

publ i ¢ bool ean backgroundMisi cSupported() -Checks
whether the underlying platform supports BackgroundMusic. It returns true if
BackgroundMusic is supported.

public int get MaxSoundsSupport ed() - Queries the underlying
platform's capability to play multiple SoundEffects simultaneously.

public void stopAl |l SoundEf f ect s() - Stops all the SoundEffects
that are playing. Note that this method does not affect background music.

public void playBackgroundMusi ¢ (BackgroundMusi ¢ bgm
bool ean | oop) - Plays the specified BackgroundMusic object from the beginning.
This method first stops the current BackgroundMusic if any. Thus, this method may
be used to start background music (by specifying a non-null BackgroundMusic
object), restart the current background music (by specifying the same
BackgroundMusic object), change the background music, or end the background
music (by specifying null). The | oop parameter is set to true if the BackgroundMusic
is to repeat indefinitely. Otherwise, set to false.

Using GameScreen

The GameDemoScreen class uses the GameScr een class to provide a Ul screen for a
hypothetic game. GameDemoScreen is a subclass of GameScr een that implements
runnable for running the main game loop thread.

cl ass GaneDenoScreen extends GaneScreen inplenents Runnabl ef

1.,
public void run() {

Il Get the Graphics object for the
I/ off-screen buffer
G aphics g = get Graphics();
while (true) {
/1 Check user input and update
/1 positions if necessary

91

int keyState = getKeyStates();

if ((keyState & LEFT_KEY) != 0) {
sprite.move(-1, 0);

}

else if ((keyState & RIGHT_KEY) != 0) {
sprite.move(l, 0);

}

/1 Draw t he background

g. dr awl mage(backgr oundl nage, 0, 0, G aphics. TOP

+ Graphi cs. LEFT);

/! Draw the sprite on top of the background

sprite.draw(g);

/1 Flush the off-screen buffer

flushG aphi cs();

ImageUtil Class

| mageUt i | provides static methods useful to the manipulation of | mage objects.
Specifically, it provides methods for setting and getting RGB values, and also provides the
ability to create a scaled instance of an existing | mage.

ImageUtil Fields

The I mageUt i | class defines the following fields:
* public static final int SCALE_AREA - Area scaling method.

* public static final int SCALE_REPLI CATE - Replicate scaling
method.

e public static final int SCALE SMOOTH- Smooth scaling
method.

ImageUtil Methods

The Il mageUt i | class defines the following methods:

e public static void getPixels(lmge src, int x, int
y, int width, int height, int[] rgbData) throws
Arrayl ndexQut OFf BoundsExcept i on — Gets RGB pixel data from the
specified region of the source image. The data is stored in the provided int array in
row-major order using the standard 24-bit color format (0OXRRGGBB). Note that the

92

Gaming

color information stored in the image may be subject to the capabilities of the device's
display. The r gbDat a must be instantiated previously calling this method, according
to pixel amount that the user is requiring to the method. The parameters are the
following: sr c - the source Image to retrieve the pixel data from; x - the horizontal
location of left edge of the region; y - the vertical location of the top edge of the
region; wi dt h - the width of the region; hei ght - the height of the region; hei ght
- the height of the region; and r gbDat a - the array in which the pixel data is to be
stored.

public static void getPixel s(lnmge src,

int[] rgbData) throws Arrayl ndexOut Of BoundsExcepti on -
Gets RGB pixel data from the entirety of the source image. The data is stored in the
provided int array in row-major order using the standard 24-bit color format
(0XRRGGBB). Note that the color information stored in the image may be subject to
the capabilities of the device's display. The r gbDat a must be instantiated previously
calling this method, according to pixel amount that the user is requiring to the
method. The parameters are the following: sr c - the source Image to retrieve the
pixel data from; and r gbDat a - the array in which the pixel data is to be stored.

public static void

set Pi xel s(j avax. m croedition.|cdui.lnmge dest, int
X, int y, int width, int height, int[] rgbData) throws
Arrayl ndexQut Of BoundsExcepti on,

I'I'l egal Argunment Except i on - Sets RGB pixel data in specified region of
the destination image. The data must be stored in the int array in row-major order
using the standard 24-bit color format (0KRRGGBB). The method parameters are the
following: dest - The mutable destination Image whose pixels will be set; x - The
horizontal location of left edge of the region; y - The vertical location of the top edge
of the region; wi dt h - The width of the region; hei ght - The height of the region;
and r gbDat a - The array of RGB pixel values.

public static void

set Pi xel s(javax. m croedition.|cdui.lnmge dest,

int[] rgbData) throws Arr ayl ndexQut Of BoundsExcepti on,
1| egal Ar gunent Except i on - Sets RGB pixel data in the entirety of the
destination image. The data must be stored in the int array in row-major order using
the standard 24-bit color format (0KRRGGBB). The method parameters are dest -
The mutable destination Image whose pixels will be set, and r gbDat a - The array of
RGB pixel values.

public static |nmage

get Scal el mage(j avax. m croedition. | cdui.lnage src,
int width, int height, int nethod) throws

|1l egal Argunment Except i on - Creates a scaled version of the source
image using the desired scaling method. All platforms must implement the
SCALE_REPLICATE scaling method; other scaling methods may be optionally
supported. SCALE_REPLICATE is used if the requested scaling method is not
supported by the device. The method parameters are the following: sr ¢ - the source
Image; wi dt h - the width, in pixels, of the new Image, hei ght - the height, in
pixels, of the new Image, and net hod - The desired method to be used to scale the
image data (see the item 0).

93

Using ImageUtil

This example uses an image (tank.png) to create a data structure (r gbDat a) to stores
the RGB pixel data. The r gbDat a is used to draws the same image. Follows the
example:

try {
I mage tank = | nage. createl mage("tank. png");

} catch(Exception e) {
/1 The image can't be | oaded

/] creates a data structure to stores the RGB pixel data
from | mage

int rgbData]] = new int[tank. getHeight()*tank.getWdth()];
/] Stores the RGB pixel data from I mage
| mageUti | . get Pi xel s(tank, rgbbDat a) ;

/1 Draws the imge pixel by pixel with the respective RGB
pi xel data

for (i=0;i<tank.getHeight();i++) {
for (j=0;j<tank.getWdth();j++) {
g.setCol or(rgbData[i*tank.getWdth() + j]);
g.fillRect(j,i,1,1);

Palletelmage Class

94

Pal et t el mage provides methods for manipulating the color palette data of an image.
Pal et t el mages can only be created with palette-based image data (PNG color type
3, or other palette image formats that a particular device may support).

The developer can retrieve either a single palette entry or the entire palette as a series of
RGB values in 0OXRRGGBB format (MIDP color format). The developer can also update a
single entry or the entire palette by providing a new set of RGB values. The effects of the
palette changes will be visible in the next Image that is generated.

Single color transparency is supported: the entire palette may be fully opaque, or a single
palette entry may be designated as being fully transparent. Alpha channels are not
supported.

Once the palette entries have been set to the desired values, a MIDP Image object is
retrieved that reflects the new palette settings.

9
Gaming

Palletelmage Constructor

The Pal | et el mage class defines the following constructors:

Pal | et el mage(byte[] data, int offset, int |ength) throws
IOException - Creates a new Palletelmage using the provided image data.

Pal | et el mage (j ava.lang. String nane) throws IOException -
Creates a new Palettelmage using the provided image data in a named resource.

Palletelmage Methods

The Pal | et el mage class defines the following methods:

public | mage getlmage() - Createsand returns a new Image object
using this Palettelmage. The Image returned will reflect the Palettelmage’s original
pixel data and current palette data. This method enables the developer to easily
generate a series of differently colored images by adjusting palette data.

public int getTransparentl ndex() - Getsthe current transparent
index. Pixels that reference the transparent index in the palette are not drawn when
the image is rendered. By default, the transparent index is -1 even if a transparent
color is specified in the original image data.

public void setTransparent!|ndex(int index) throws

| ndexQut Of BoundsExcept i on - Sets the current transparent index. Pixels
that reference the transparent index in the palette are not drawn when the image is
rendered. The effects of the new transparent index will be reflected in the next Image
object that is created by calling getimage().

public int getPaletteSize() -Getsthenumber of entriesinthe
palette.

public int getPaletteEntry(int index) throws
| ndexQut Of BoundsExcept i on - Gets the specified entry in the palette. The
method returns the current color value of the entry (0XRRGGBB format).

public void setPal etteEntry(int index, int color)
throws | ndexQut OF BoundsExcept i on — Sets the specified entry in the
palette. The color must be specified using the MIDP color format (0XRRGGBB, the
upper 8 bits are ignored). The effects of the new palette will be reflected in the next
Image object that is created by calling getimage().

public int[] getPal ette() -Getsthe entire palette as an array of
ints, each one representing a 24-bit RGB value. The method returns a new int array
each time it is called, so this method should be used sparingly to avoid creating
excessive garbage.

public void setPalette(int[] newPal ette) throws

Arrayl ndexQut Of BoundsExcepti on, Nul | Poi nt er Excepti on,

|11 egal Ar gunent Except i on - Sets the palette data for this image. The palette
data must be specified using MIDP color format (0XRRGGBB, the upper 8 bits are

95

ignored). The size of the new palette must be at least as large as the value returned
by get Pal et t eSi ze() ; additional palette entries, if present, are ignored. The
effects of the new palette will be reflected in the next Image object that is created by
calling get | mage() .

Using Palletelmage

Pal | et el mage enables a developer to adjust the colors of an image to match the
capabilities of the device. It also enables reuse of image data by allowing the developer to
change the color scheme. For example, a racing game may use a single

Pal et t el mage of a car; the developer may then tweak the palette and generate a
series of | mages of differently colored cars:

Pal ett el mage raceCar = new Pal ettel mage("car. png");

/1 Set the car color to red and retrieve the | mage
raceCar. set Pal etteEntry(0, OxFF0000);
| mage redRaceCar = raceCar.getlmge();

/1 Set the car color to blue and retrieve the | nage
raceCar. setPal etteEntry(0, O0xO0000FF);
| mage bl ueRaceCar = raceCar. getlmage();

/1 Set the car color to green and retrieve the |nage
raceCar. set Pal etteEntry(0, OxOOFFQO);
| mage greenRaceCar = raceCar. getl nage();

/1l The Pal ettel nage can now be di scarded since we have the
/1 1 mage objects that we need
raceCar = null;

PlayField Class

96

APl ayFi el d is arectangular grid of cells with a set of available tiles to place in those
cells and a set of associated Sprites.

The Pl ayFi el d grid is made up of (rows * columns) cells, where the number of rows
and columns are defined by parameters to the constructor. The cells are equally sized.
The size of the cells is defined by the size of the tiles, or if the Pl ayFi el d has notiles,
by arguments to the constructor. Each cell is either empty or contains a single tile whose
image will be drawn in that cell. An empty cell is fully transparent - Nothing will be drawn
in that area by the Pl ayFi el d.

The tiles used to fill the Pl ayFi el d cells can be either static tiles or animated tiles.
Tiles are referred to using index numbers. Tile O (tile with index 0) refers to the special

Gaming

empty tile. Any cell assigned the tile 0 will be considered empty and will be effectively
transparent.

The static tile indices are non-negative (>=0) and the animated tiles indices are negative
(<0).

Using Static and Animated Tiles

Static tiles are called static because their image does not often change, i.e., any cell that
contains the static Tile 1 will always be drawn as the unchanging image of Tile 1. Tile 0 is
a special static tile. It represents an empty cell. Any cell containing tile 0 will be
transparent, it will not have a tile image drawn in it.

Animated tiles are called animated because their appearance changes easily over time.
At any given time, each animated tile is associated with a particular static tile. When a cell
containing an animated tile is drawn, the image of the static tile currently referenced by
that animated tile will be drawn in that cell. In effect, the animated tiles provide indirect
references to the set of static tiles, and therefore allow many cells to be animated
simultaneously. For example, cells (0,0) and (0,1) both contain animated Tile -2. Animated
Tile -2 currently references static Tile 1. Cells (0,0) and (0,1) will then be drawn with the
image of static Tile 1. If animated Tile -2 is subsequently set to reference static Tile 2 by
calling set Ani mat edTi | el mage(-2, 2);, cells (0,0) and (0,1) will then be drawn
with the image of static Tile 2.

Using Sprites

In addition to being a grid of cells, a Pl ayf i el d can have a set of associated

Spri t es (see 0item). When the Pl ayFi el d is drawn, the grid is considered to
have depth 0. Therefore, Spr i t es below the grid (Spri t es with

Sprite. getDepth() < 0)aredrawn first. Then all cells in the grid are drawn.
Then all the Spr i t es above the grid (Spri t e. get Dept h() >= 0)are drawn.
The Spri t es are drawn according to their location and visibility status as defined in the
Spri t e class. The location of Spr i t es is relative to the top-left corner of the

Pl ayFi el d.

Defining View Windows

A view window onto the Pl ayFi el d can be defined using the method

set Vi ewW ndow() . This defines the area of the Pl ayFi el d that will be drawn by
the dr aw() method. The default viewing window onto a Pl ay Fi el d (at construction
time) is the entire area of the Pl ayFi el d.

97

PlayField Constructor

98

The Pl ayFi el d class defines the following constructors:

PlayField (i nt columms, int rows, Inmage ing, int tWdth,
int tHeight) throws NullPointerException, lllegalArgumentException -
Creates a new PlayField with a tile set. The parameter are the following:

— col umms - width of the PlayField in number of cells;
— rows - height of the PlayField in number of cells;

— i ng - Image to use for creating tiles;

— t W dt h - width, in pixels, of the individual tiles;

— tHei ght - height, in pixels, of the individual tiles.

It creates a new Pl ayFi el d, r ows cells high and col unms cells wide. The
static tile set for the PlayField will be created from subsections of the image passed
in. The Pl ayFi el d gridis initially filled with empty cells (tile 0 - a reserved tile and
represents an empty square) and laying out tiles must be accomplished through the
use of other methods in the class. The creation of the static tile set follows these
standards:

Tiles must be equally sized, all being of the tile width (t W dt h) and height

(t Hei ght) defined in the constructor parameters. They may be laid out in the image
horizontally, vertically, or as a grid. The width of the source image must be an integer
multiple of the tile width. The height of the source image must be an integer multiple
of the tile height.

The tiles in the source image will have indices as follows:

The static tiles are indexed like words are read on a page; left-to-right, then top-to-
bottom. The top-left tile is assigned index 1. If there is a tile to its right, this tile is
assigned index 2, and so on, across the first row of tiles. If there is a second row of
tiles, the index of the left-most tile in this row is one greater than the right-most tile in
the preceding row. Below is is a diagrammatic depiction:

1 2 N
N#L N + 2 oN
N1 2N + 2

[(Mr\u_é) "ol v s Ny 2 | (M* N)

So the total number of tiles is M * N, where:
— N =(image width) / (tile width);
— M= (image height) / (tile height).

The indices for the static tile set will be non-negative (>=0) and the indices for
animated tiles will be negative (<0). The index sets do not overlap and therefore

Gaming

indices for static and animated tiles can be used interchangeably in the methods that
set or move the contents of the Pl ayFi el d cells. The static Tile set shall behave
as if the image used in creation were cached. If a mutable image is used to create the
tiles, the tiles' appearances should not reflect changes to the mutable source image.
The appearance of individual static tiles can be changed with

set Stati cTil el mage() . The entire static tile set can be changed using
set Stati cTil eSet (). These methods should be used sparingly since they
are both memory and time consuming.

PlayField (i nt columms, int rows, int cellWdth,
int cell Hei ght) throws lllegalArgumentException - Creates a new
PlayField without a tile set. The parameter are the following:

— col umms - width of the PlayField in number of cells;

r ows - height of the PlayField in number of cells;

cel | W dt h - Pixel width of each cell;
— cel | Hei ght - Pixel height of each cell.

It creates a new Pl ayFi el d, r ows cells high and col unms cells wide. A
PlayField created with this constructor will not have any tiles (animated or static)
associated with it. The primary use of a Pl ayFi el d without tiles is expected to be
as a container for managing sprites. The on-screen pixel dimensions of cells is
defined by the parameters cel | W dt h and cel | Hei ght . The cells in the
PlayField are all empty (tile 0 - a reserved tile and represents an empty square). A tile
set can later be added using set St ati cTi | eSet ().

PlayField Methods

The Pl ayFi el d class defines the following methods:

public void addSprite(Sprite s) throws
Nul | Poi nt er Except i on - Add a Sprite to the PlayField. Ignores the request
if the Sprite is already associated with the PlayField.

public void renoveSprite(Sprite s) throws
Runt i meExcept i on, NullPointerException — Remove a Sprite from PlayField.

public void renoveAl |l Sprites() -Remove all Sprites from
PlayField.

public int createAnimatedTile(int staticTileldx)
throws | ndexQut Of BoundsExcept i on - Creates a new animated tile and
initializes it with a static tile index. Returns the index to use when referring to this
animated tile. The indices for animated tiles will be negative (<0) and the indices for
the static tile set will be positive (>=0). The index sets do not overlap and therefore
indices for static and animated tiles can be used interchangeably in the methods that
set or move the contents of the PlayField cells. The first animated tile shall have the
index -1, the second, -2, etc.

99

100

public void setAni mat edTi | el mage(i nt ani mri | el dx,
int staticTileldx) throws| ndexQut Of BoundsExcepti on -
Sets the static tile that will be displayed in any cell that contains the animated tile.
The method parameters are ani niri | el dx - index of the animated tile, and
staticTil el dx - index of a static tile to be referenced by the animated tile.

public int getAnimatedTil el mage(int aninmil el dx)
throws | ndexQut Of BoundsExcept i on - Get the static tile referenced by an
animated tile, and returns the index of the static tile that is currently referenced by an
animated tile.

public void setCell (int cel Col, int cel Row,

int tileldx) throwsl ndexQut Of BoundsExcepti on,

Arrayl ndexQut OF BoundsExcept i on - Sets the tile to be displayed in a
cell. The tile can be either a static or an animated tile. The method parameters are
cel Col - column of cell to set, cel Row- row of cell to set,and ti | el dx - index
of tile to place in cell.

public int getCell (int cel Col, int cel Row
throws.Ar r ayl ndexQut Of BoundsExcept i on - Gets the index of the
static or animated tile currently displayed in a cell.

public void nmoveTiles(int dstCol, int dstRow,

int srcCol, int srcRow, int width, int height) throws
Arrayl ndexQut OF BoundsExcept i on —Move a rectangular set of tiles
from a source location to a destination location. Source cells are left empty. If the
source and destination cells overlap, the method shall behave as if the source cells
are first copied to a separate array, the source cells are cleared, and the tiles are
then copied back to the destination cells. The method parameters are the following:
dst Col - column of top-left destination cell; dst Row- row of top-left destination
cell; srcCol - column of top-left source cell; sr c Row- row of top-left source cell;
wi dt h - width, in rows, of area of tiles to move; and hei ght - height, in rows, of
area of tiles to move.

public void fillCells(int col, int row, int wdth,
int height, int tileldx) throws

| ndexQut OF BoundsExcepti on,

Arrayl ndexQut OF BoundsExcept i on —Fill each cell in a rectangular
area with a given animated or static tile. The method parameters are the following:
col -column of top-left cell; r ow- row of top-left cell; wi dt h - width, in rows, of
area of cells to fill; hei ght - height, in rows, of area of cells to fill; and t i | el dx -
index of tile to place in fill region.

public void

draw(j avax. m croedi tion. | cdui.Gaphics g, int X,

i nt y) throws Nul | Poi nt er Except i on — Draw the PlayField to a
Graphics instance, anchoring the top left corner of the PlayField view window at the
position (x, y) on the Graphics instance. The method parameters are the
following: g - Graphics instance on which to draw the PlayField; x - the x coordinate
of the top left corner of the PlayField; and y - the y coordinate of the top left corner of
the PlayField. The PlayField will be drawn as follows:

Gaming

— Draw all the Spr i t es with depth < 0 in increasing order of depth (depth -2
drawn before or below depth -1);

— Draw the tiles for all cells. Empty cells, those with Tile 0, are considered fully
transparent, so nothing is drawn for them.

— Draw the all the Spr i t es with depth >= 0 in increasing order of depth (depth 1
drawn before or below depth 2). The location of the Sprites is defined by the
Spri t e instance and is relative to the top left corner of the Pl ayFi el d grid.

public int getCell Wdth() - Getwidth of a cell, in pixels.

public int getCell Hei ght () —Getheight of a cell, in pixels.

public int getGidWdth() -Getwidthofthe PlayField grid, in cells.
public int getGidHei ght () —Getheight of the PlayField grid, in cells.

publ i ¢ bool ean anyCol | i si ons() - This method checks whether any
of the PlayField's Sprites collide with any of the PlayField's tiles or other Sprites on
the PlayField. It will return t r ue if any Sprite on the PlayField collides with a tile or
any other Sprite. Like collidesWithSprites(Sprite) and collidesWithAnyTile(Sprite), this
method reports collisions only at a boundary level granularity, not pixel level
granularity.

public bool ean collidesWthSprites(Sprite s) throws
Nul | Poi nt er Except i on — Check for Sprite collision with any other Sprites
on the PlayField. This method is complemented by Sprite.collidesWith(Sprite,
boolean); If collidesWithSprites(Sprite) returns true, the developer can find the exact
Sprite collision(s) by using Sprite.collidesWith(Sprite, boolean). This is similar to how
collidesWithAnyTile(Sprite) and collidesWithTiles(int, int, int, int, Sprite, boolean)
complement each other. Sprite s does not have to have been added to the PlayField.
The collision detection will proceed as if the Sprite is on the PlayField. That is, its
location will be treated as relative to the origin of the PlayField's coordinate system.

publi ¢ bool ean collidesWthAnyTile(Sprite s) throws
Nul | Poi nt er Except i on - Check for Sprite collision with PlayField tiles.
Return true if the Sprite overlaps with a cell that contains a tile (i.e. a cell containing a
non-zero tile index). Sprite s does not have to have been added to the PlayField. The
collision detection will proceed as if the Sprite is on the PlayField. That is, its location
will be treated as relative to the origin of the PlayField's coordinate system.

publi ¢ boolean collidesWthTiles(int col, int row,
int width, int height, Sprite s,

bool ean pi xel Level) throws Nul | Poi nt er Excepti on,

Arrayl ndexQut OF BoundsExcept i on — Check for Sprite collision with a
region of PlayField tiles. It returns true if the Sprite overlaps with a cell in the defined
region that contains a tile (i.e. a cell containing a non-zero tile index). If

pi xel Level is true, this method will report a collision only when opaque Sprite
pixels overlap opague tile pixels. This method complements the
collidesWithAnyTile(Sprite) method by letting the programmer focus their search and
find specific tiles or regions of collision. This is similar to how
Sprite.collidesWith(Sprite, boolean) complements collidesWithSprites(Sprite). The
method parameters are the following: r ow- Row of top-left cell for collision check

101

102

region; col - Column of top-left cell for collision check region; hei ght - Height, in
rows, of area for collision check; wi dt h - Width, in rows, of area for collision check;
s - Sprite to check for collision; and pi xel Level - Boolean indicating whether
collision detection should be done at a pixel level instead of simply as boundary
checks.

public void setStaticTilelmge(int staticTileldx,
mage ing, int x, int y) throwsNul | Poi nter Excepti on,
Arrayl ndexQut OF BoundsExcept i on —Modify the image associated with
a static tile. Replace the image currently associated with a static tile with a new image
of the same size. New static tile image will be extracted from the image passed in,
starting from pixel (x, y) inthe new source image and extending for getCellWidth()
pixels horizontally and getCellHeight() pixels vertically. As at tile set creation time, if a
mutable source image is used, behavior of the tile set should be as if the new image
were cached. Updates to the mutable source image will not cause a change in the
appearance of the tile image.

public void setStaticTileSet(lmge ing, int tWdth,
i nt tHeight) throws Nul | Poi nt er Excepti on,

I'I'l egal Argument Except i on - Replaces the current static tile set with a
new static tile set. See the constructor PlayField(int, int, Image, int, int) for information
on how the tiles are created from the image. If the new static tiles have the same
dimensions as the previous static tiles, the view window will be unchanged. If the new
static tiles have different dimensions than the previous static tiles, the view window
will be reset to the construction default, i.e. the entire grid dimension. If the new static
tile set has as many or more tiles than the previous static tile set, then the animated
tiles will be unchanged, and the contents of the PlayField grid will be unchanged. If
the new static tile set has less tiles than the previous static tile set, then the PlayField
grid will be reset to completely empty, and All animated tiles will be deleted.

public void setViewN ndowint x, int y, int wdth,
i nt hei ght) - Sets the portion of the PlayField that will be drawn when
draw(Graphics, int, int) is called. This will limit the portion of the PlayField that is
drawn to the rectangle defined by the region (x, y) to(x + width, y +

hei ght) . The default view window (at construction time) is the entire area of the
PlayField, i.e. the rectangular region bounded by (0, 0) and (getGridwidth() *
getCellWidth(), getGridHeight() * get Cel | Hei ght ()) .The rectangle defined
by the parameters may extend beyond the bounds of the PlayField. If this happens,
the dr aw(gr aphi cs, int, int) method wil draw no tiles in the area outside
the grid boundaries. Sprites may still be drawn in this area if their position places
them outside the bounds of the PlayField grid. The view window stays in effect until it
is modified by another call to this method or is reset as a result of calling
setStaticTileSet(Image, int, int). The method parameters are x - x coord of top-left
pixel for the drawing view window, y - y coord of top-left pixel for the drawing view
window, wi dt h - width of the drawing view window, and hei ght - height of the
drawing view window.

9
Gaming

Using PlayField

Follows a Pl ayFi el d example:

/]l Creates a playField with 100 colums and 10
/1 rows and tiles with 24x16 pixels

Pl ayFi el d foreground = new Pl ayFi el d(100, 10,
| mrage. createl mage("tiles.png"), 24, 16);

/1 Sets the first cell in the first line to

/[l empty(tile with index 0)

foreground.setCell (0, 0, 0);

/1 Fills the second cell in the first line with tile 1
foreground.setCell (1, 0, 1);

/1 Fills the third cell inthe first line with tile 2
foreground.setCell (2, 0, 2);

/1l Fills the fourth cell in the first line with tile 3
foreground.setCell (3, 0, 3);

/1l Gets the G aphics object for this GaneScreen
Graphics g = get Gaphics();

/1l Draws the foreground playfield

foreground.draw(g, 0, 0);

SoundEffect Class

The SoundEf f ect class encapsulates the data for a game sound effect. A game may
create several SoundEf f ect objects, one for each of the sounds that it needs to play.
The sound data may be stored on the device as a named resource in the application JAR
file, or it can be stored on a server and retrieved via the network. SoundEf f ect
instances are played by a GameScr een.

SoundEffect Methods

The SoundEf f ect class implements the following method:

* public static SoundEffect
createSoundEf fect (String resource) throws
Fi | eFor mat Not Suppor t edExcept i on - Creates a SoundEffect for the
sound data stored in the specified named resource or URL. The data must be in a
sound format that is supported by the device. Though additional formats may be
supported, all devices must support some format yet to be determined.

103

Using SoundEffect

As described above, a game can need several different sound effects. The code below
exemplifies the creation of some SoundEf f ect objects:

try{

/1 Create a SoundEffect using a wave file inside the JAR
SoundEf fect sl1 = createSoundEffect("/junp.wav");

/1l Create a SoundEffect using a wave | ocated
/'l on a web site
SoundEf f ect s2=

creat eSoundEf fect ("htt p://ww. not or ol a. conf sound/ nmp. wav");

}cat ch(Fi | eFor mat Not Support edException fe){}

Sprite Class

The Spri t e class is used to create graphic images, animated or non-animated, that a
user can interact with and move around.

Animation Frames

An animated spr i t e is created from an image divided into sections as described in the
constructor Sprite(Image, int, int). The individual sections of the image are considered the
raw frames of the Spr i t e. The method getNumRawFrames returns the number of raw
frames.

Sprite Drawing

104

Spri t es can be drawn at anytime using the dr aw{ Gr aphi c¢s) method. The sprite
will be drawn on the Gr aphi cs object, according to the current state information
maintained by the Sprite (i.e. position, frame, visibility). Some potential uses of Sprites
include:

Arbitrarily draw the Sprite on a GameScreen.

A Sprite can be added to a PlayField. Then PlayField.draw(Graphics, int, int) will
automatically draw all the Sprites associated with the PlayField.

draw(Graphics) could be called from the pai nt () method in a subclass of Canvas.

draw(Graphics) could be called at any time to draw the Sprite on a MIDP mutable
image. This is virtually identical to the first bullet, drawing on a GameScreen.

Gaming

Only in the case where a set of Sprites are a part of a container object (i.e. where the
Sprite is associated with a PlayField) is the depth information automatically handled by
the system. In other situations, managing the drawing order is the responsibility of the
developer.

Sprite Constructor

The Spr i t e class defines the following constructors:

public Sprite(lmage ing) - Createsanew non-animated Sprite from
an Image object. All animation operations on a non-animated Sprite behave as if
there is a single raw frame. At construction time, the Sprite's position will be set to
(0,0), the depth will be set to 0, and the Sprite will be visible. The Sprite shall behave
as if the image used in creation were cached. If a mutable image is used to create the
Sprite, the Sprite's appearance should not reflect changes to mutable source image.

public Sprite(lmage ing, int fWdth, int fHeight) -
Creates a new animated Sprite from an Image. The constructor parameters are the
following:

— img - Image to use for Sprite;

— fWidth - width, in pixels, of the individual raw frames;
— fHeight - height, in pixels, of the individual raw frames.
The creation of the raw frames follows these standards:

— Frames must be equally sized, all being of the frame width (f W dt h) and height
(f Hei ght) defined in the constructor parameters. They may be laid out in the
image horizontally, vertically, or as a grid. The width of the source image must be
an integer multiple of the frame width. The height of the source image must be
an integer multiple of the frame height.

The frames in the source image will have raw frame numbers as follows:

— The frames are numbered like words are read on a page; left-to-right, then top-
to-bottom. The top-left frame is numbered 0. If there is a frame to its right, this
frame is numbered 1, and so on, across the first row of frames. If there is a
second row of frames, the number of the left-most frame in this row is one
greater than the right-most frame in the preceding row. Below is a diagrammatic
depiction:

0 1 N-1
N N+ 1 2N - 1
2N ON + 1

(M= 1) * N | ((M1)* N) +1 (M* N) — 1

105

So the total number of frames is M * N, where:
— N =(image width) / (frame width)
— M= (image height) / (frame height)

At the time of creation, all Sprites have a default frame sequence corresponding to
the raw frame numbers. This can be modified with set Fr ameSequence() . At
construction time, the Sprite's position will be set to (0,0), the depth will be set to 0,
and the Sprite will be visible. The Sprite shall behave as if the image used in creation
were cached. If a mutable image is used to create the Sprite, the Sprite's appearance
should not reflect changes to mutable source image.

public Sprite(Sprite s) -Createsanew Sprite from another Sprite.
Create a copy of a Sprite. All attributes (raw frames, position, frame sequence,
current frame, visibility) of the source Sprite should be reflected in the new Sprite.
Any subsequent updates to the source Sprite after the creation of the second Sprite
should not be reflected in the second Sprite.

Sprite Methods

106

The Sprite class implements the following methods:

public void setPosition(int x, int y) -SetSprite'sxy
position. The X, y position is relative to whatever object the sprite is associated with or
drawn on.

public void setDepth(int d) - SetSprite's depth order. The depth
order is relative to other Sprites when multiple Sprites are contained in a container
object, i.e. a PlayField. When Sprites are drawn explicitly instead of implicitly through
the use of a container object, the management of drawing order is the responsibility
of the developer. Integer.MIN_VALUE is the lowest depth, Integer. MAX_VALUE is
the highest depth. So items with depth Integer.MIN_VALUE would be drawn first, or
at the bottom, and items with depth Integer. MAX_VALUE would be drawn last or on
top.

public void nove(int dx, int dy) -Move Sprite. The method
parameters are dx - pixels to move Sprite along horizontal axis, and dy - pixels to
move Sprite along vertical axis.

public int getX() -GetSprite's x position.

public int getY() -GetSprite'sy position.

public int getDepth() -GetSprite'sdepthorder.
public int getHeight() - GetSprite's height order.
public int getWdth() -GetSprite's width in pixels.

publ i c boolean collidesWth(Sprite s,

bool ean pi xel Level) throws Nul | Poi nt er Except i on - Check for
collision between two Sprites. If pi xel Level is false, check for overlap in the
rectangular areas of the two Sprites, using positions (x, y) and extents (width, height).

Gaming

The two Sprites are treated as if they are in the same coordinate system. For
example, if the two Sprites are on different PlayFields that are drawn at different
locations, this method still behaves as if they are on the same PlayField. If

pi xel Level is true, check for overlap in opaque pixels of the two Sprites.
Overlapping in transparent regions of either Sprite will not be considered a collision.

public void setFrame(int frame) - SetSprite's animation frame.
Sets which frame from the frame sequence to draw when draw(Graphics) is called.
All Sprites have a default frame sequence as described in the constructor.

public int getFrame() -Get Sprite's current animation frame. All Sprites
have a default frame sequence as described in the constructor.

public int get NumRawFrames() - Getthe number of raw frames in
the original frame set for this Sprite.

publi ¢ void next Frame() - Setcurrent animation frame to the next
frame. Advance to next frame in the frame sequence. All Sprites have a default frame
sequence as described in the constructor. Frame list is considered to be circular, i.e.
if next Fr ame() is called when the last frame is the current frame, this will advance
to the first frame.

public void prevFrame() - Setcurrent animation frame to the previous
frame. Advance to previous frame in the frame sequence. All Sprites have a default
frame sequence as described in the constructor. Frame list is considered to be
circular, i.e. if pr evFr ame() is called when the first frame is the current frame, this
will advance to the last frame.

public void setVisibl e(bool ean vi si bl e) — Set visibility
status. If set Vi si bl e(f al se) is called, the Sprite will not be drawn by
draw(G aphi c¢s) until set Vi si bl e(true) is called.

publ i ¢ bool ean i sVisi bl e() - Getvisibility status. The method returns
boolean indicating whether the Sprite will be drawn by dr aw(Gr aphi cs).

public final void draw(Graphi cs g) throws

Nul | Poi nt er Except i on - Draw the Sprite. Draw current frame of Sprite to
Graphics instance g at location currently set in Sprite. Sprite will be drawn only if

i sVisible()= true.

public void set FrameSequence(int[] seq) throws

Arrayl ndexQut OF BoundsExcept i on - Set the sequence of frames to
cycle through with next/prevFrame. All Sprites have a default sequence as described
in the constructor. This method allows for the creation of an arbitrary sequence from
the original frameset. The methods nextFrame(), previFrame(), getFrame(), and
setFrame(int) all operate on the frame sequence. Passing in nul | causes the
sequence to revert to the default sequence defined in the constructor. The parameter
seq is an array of integers, where each integer is a reference to a frame in the
original raw frameset, that is, the frames from left to right on the original image.

public int[] getFrameSequence() - Getthe current frame
sequence. Returns the frame sequence set with
set FranmeSequence(i nt[]) or, if none has been set, return the default

107

frame sequence for this Sprite. Each entry in the array is an index to the original raw
frameset, that is, the frame numbering as described in the constructor.

e public void
set | mage(j avax. m croedition. | cdui.l mge inyg,
int fWdth, int fHeight) throwsNul | Poi nt er Excepti on,
|1l egal Ar gunment Except i on - Change the image used for the Sprite.
Replaces the current raw frames of the Sprite with a new set of raw frames. See the
constructor Sprite(Image, int, int) for information on how the frames are created from
the image. Changing the image for the Sprite could change the number of raw
frames. If the new frame set has as many or more raw frames than the previous
frame set, then:

— The current frame will be unchanged;

— If a custom frame sequence has been defined (using setFrameSequence(int[])),
it will remain unchanged. If no custom frame sequence is defined (i.e. the default
frame sequence is in use), the default frame sequence will be updated to be the
default frame sequence for the new frame set. In other words, the new default
frame sequence will include all of the frames from the new raw frame set, as if
this new image had been used in the constructor.

If the new frame set have less frames than the previous frame set, then:
— The current frame will be reset to frame O;

- Any custom frame sequence will be deleted and the frame sequence will revert
to the default frame sequence for the new frame set (all frames in the frame set,
left-to-right then top-to-bottom).

Using Sprite

108

The example below creates two Sprites (bullet and tank) and tests collisions between
them. When there are no lives left, the game finishes.

try {
Sprite bullet = new
Sprite(lmage. createl mage("bull et. png");

Sprite tank = new Sprite(lnage.createl mage("tank. png");
} catch (Exception e) {
/1 any inage can't be | oaded
}
Bool ean i sGameOver = Fal se;
int lifes= 3; // The nunber of lives is 3
while(!i sGaneOver) {
/1 verifies the collision between the two sprites
if(tank.collidesWth(bullet,false)) {
lifes--;
/1 If there are no nore lifes, the gane is over
if(lifes == -1) {
i sGameOver = true;

Gaming

FileFormatNotSupportedException

The Fi | eFor mat Not Suppor t edExcept i on is an exception which will be
thrown when a SoundEf f ect or Backgr oundMusi ¢ format is not supported by
the platform or the size of the data is larger than the size of the internal buffers. The

Fi | eFor mat Not Support edExcept i on extends the

j ava.l ang.Runt i neExcepti on class.

FileFormatNotSupportedException Constructors

The Fi | eFor mat Not Support edExcept i on class defines the following
constructors:

* public FileFornmatNot SupportedException(

j ava. | ang. Excepti on e) - The parameter e is the underlying exception
that caused the failure.

 public FileFormatNot SupportedException(
java.l ang. String i nfo) —The parameteri nf o is a String containing
information about the failure

e public FileFormat Not Support edExcepti on(
java.lang. String info, Exception e) -The parameters are
i nf o a String containing information about the failure, and e - The underlying
exception that caused the failure.

109

Appendix A:
Key Mapping of Motorola A830
handset

Key Mapping

The Figure 19 maps out the keys available through the j avax. m croediti on

. I cdui . Canvas class. By overriding the Canvas. keyPr essed() and
Canvas. keyRel eased() methods, the MIDlet can listen for certain key presses
and key releases. The keys available to the MIDlet via the MIDP specs include the ITU-T

keypad (0-9, *, #). In addition to the standard keys, the Motorola A830 handset offers a 4-
way keypad, two soft keys, a menu key, and a send key

110

Appendix A:
Key Mapping of Motorola A830 handset

KN: Menu KN: Right Soft Key
KC: -22 KC: -21
GA: 0 GA: 07
KN: Left Arrow KN: Right Arrow
KC: -13 KC: -12
GA: 2 GA:5
KNE Left Soft Key KN: Send
KC: -20 .
GA: 0 KC: -14
: GA: 8
KN: Up Arrow KN: 3
KC: -10 KC: 51
GA: 1 GA: 10
KN: Down Arrow KN: 6
KC: -11 KC: 54
GA: 6 GA: 0
KN: 2 KN: 9
KC: 50
GA: 0 KC: 57
; GA: 12
KN: 1
KC: 49 KN: #
GA: 9 KC: 35
GA: 0
KN: 4
KC: 52
GA: 0
KN = Key Name
KC = Key Code
GA = Game Action
KN: 7
KC: 55
GA: 11
KN: * KN: 5 KN: 0 KN: 8
KC: 42 KC: 53 KC: 48 KC: 56
GA: 0 GA: 0 GA: 0 GA: 0

Figure 19. Key Code Mapping

111

Appendix B:
How To

Downloading to the Device

Serial port download procedure

112

The MIDway utility provides the application developer a means to load an application to
the A830 device through PC. A serial data cable is used to connect to the bottom
connector on the Motorola A830 handset, and the PC serial port.

Figure 20. Serial port download

For instructions on installing the MIDway utility, please consult the user guide.

After loading the JAR and JAD file on the Motorola A830 handset, the friendly name
specified in the MANIFEST.MF file for the MIDlets should appear on the Games & Apps
menu. For the HelloWorld example, the Games & Apps menu will contain an item
“HelloWorld” representing the application. At this point, the application is only “Loaded” on
the Motorola A830 handset and not yet installed. From this point, the application may be
removed from the device.

Appendix B:
How To

NOTES: The number of MIDlet suites that can be installed on the Motorola A830 handset
is limited to 20. If the number of MIDlets suites installed is more than 20, de-install an
application before proceeding.

The application must be installed before it can be executed. The following steps describe
the installation procedure.

OTA procedure

There is no need of additional software tools, or cables, to downloaded MIDlet suites
through WAP browser. The application developer just has to use the A830 browser and
connect to a WAP server site that contains the desired MIDlet suite to be downloaded.
The application developer should follow the WAP server site instructions to download the
MIDlet properly.

After loading the JAR and JAD file on the Motorola A830 handset, the friendly name
specified in the MANIFEST.MF file for the MIDlets should appear on the Games & Apps
menu.

Installation

The following checklist should be covered before attempting to install a MIDlet Suite.
Failure to verify this checklist could lead to an installation failure.

e Applications supports CLDC-1.0 and MIDP-1.0 (the configuration and profile
supported by the Motorola A830 handset)

» JAD file has been created.
* JAR file contains META-INF/MANIFEST.MF.

» Verify the MIDlet-Name, MIDlet-Version, and MIDlet-Vendor attributes are duplicated
in both the MANIFEST.MF and the JAD file.

e Both the JAD and JAR file have the same name (except for the .JAD and .JAR
extensions).

» File names (JAR and JAD) are less than 32 characters (not including extension).
» Lessthan 20 MIDlet suites are currently installed.

e Maximum length of class path inside JAR file must be 64 characters.

e Maximum length of URL path must be 256 characters.

» No more than ~500 files are used by installed MIDlet suites.

» JARssize listed in JAD matches actual JAR size.

» MiIDlet suite version must be higher than an already installed one.

Even though the Data and Program Space in Java System indicate more available space
than the size of a particular JAR file, it doesn't necessarily mean the JAR will install.

113

114

Moreover, if it is able to install, there’s no guarantee the MIDlet will execute because quite
often more RAM is required for execution and then installation. In addition, MIDlets that
will not install or execute on the phone because of lack of memory will most certainly
execute on the Sun Wireless Toolkit since the PC has virtually unlimited memory with
respect to the size of MIDlets.

The memory requirements for MIDlet suite installation are the following:

» First, there must be enough Data Space (file system space) to temporarily store the
JAR. If there's not enough Data Space, the browser (in the OTA mechanism) will
display the error "Insufficient Memory".

» Secondly, there must be enough heap memory to uncompress the JAR file. The JAR
size should be a predefined safe proportion of the heap size. The JAR maximum size
recommended is 100K. This means that MIDlet typically will not install if the JAR is
greater than 100K. There are exceptions to this and it depends on how many class
files vs. resource files are contained within the JAR. If there's not enough heap, the
device will typically display the message "Memory Full".

Third, there must be enough Data Space to store not only the temporary JAR but also
all the resource files needed by the MIDlet. The JAR is essentially a zip file that must
be uncompressed. It contains class files (the actual application) and resource files
that are used by the MIDlet. These resources typically include, png images, database
files and any other data the MIDlet needs. These resource files are stored in the Data
Space during installation. The JAR is deleted after the installation phase completes. If
there's not enough Data Space, the device will typically display the message
"Memory Full". Also, note that total size of the uncompressed resources in the JAR
doesn't necessarily equal the Data Space occupied by that MIDlet once installed.

» Fourth, there needs to be enough Program Space to store the actual MIDlet. The
class files in the JAR are the application files and are converted into a native format
and stored in the Program Space during installation. This native format size will be
greater than the total of the uncompressed class files in the JAR. Once stored in the
Program Space, the MIDlets are referred to as DAV Objects. DAV reserves additional
Program Space equal to the largest DAV Object. This reserved space cannot be used
for additional MIDlets. Its purpose is to provide power loss protection during a DAV
reclaim of the flash memory. The allocation of this reserved Program Space is often a
point of confusion with users. When the largest DAV object is installed, the Program
Space in Java System will be reduced by more than the size of Program Space in
Suite Details. Java System shows the free Program Space. Suite Details shows the
amount of Program Space occupied by that MIDlet.

Program and Data space notes:

» To check Program and Data space from the Java menu, select “Java System” and
press the “Select” soft key.

» Program space is used to store class files.

» Data space is used to store the JAR files before installation and resource files after
installation. After installation, the JAR file is destroyed.

Then to install the MIDlet Suite, highlight the Suite in the Java Tools menu. Select the
“Java Application Loader” option and press the SELECT soft key. A dialogue will be
displayed indicating the serial cable must be connected to the device. Execute the

Appendix B:
How To

MIDway tool on PC, select and send the desired MIDlet to be installed. The MIDway tool
indicates exactly which steps are being executed.

Java Application Installer/De-Installer (JAID)

» JAID is a component built into the Motorola KVM to handle installation and de-
installation of Java applications to a device. The process of installing an application
is time intensive involving loading of the class files from the JAR file and writing the
image, in a platform-specific manner, to memory. By installing Java applications,
class files do not have to be stored in RAM, allowing more runtime memory for the
application at hand. Additionally, the time required to launch Java applications is
decreased dramatically.

» After successful installation, the class files are placed in the Program space and the
resource files are placed in the Data space. The original JAR file is then destroyed.

» Applications only need to be JAID installed once. If the Motorola A830 handset’s
software is upgraded, Java applications must be re-installed.

Once the application is done installing on the Motorola A830 handset, you need to return
to the Games & Apps menu to launch the downloaded application.

If you leave the installation progress screen while the MIDlet Suite is still being installed,
the installation will fail, and you must repeat all installation procedure again.

Starting Applications

Often times a MIDlet Suite only contains one MIDlet. If so, then that MIDlet can be
launched from the Games & Apps menu simply by highlighting that MIDIet Suite and
pressing the “SELECT” soft key.

If there are multiple MIDlets in the Suite, then a suite content menu will be displayed, and
one of the individual MIDlets can be highlighted. From there, pressing the “RUN" soft key
will launch the selected MIDlet.

Exiting Applications

During the development process, chances are a MIDlet may not exit properly via the
“correct” and “elegant” method. The Motorola A830 handset's policy on Java applications
is to allow the user to exit an application at anytime, either forcefully or via a menu option.
If an application, during the development process, becomes unstable or fails to respond,
the user/developer may end the application by pressing the END key.

115

Appendix C:
Frequently Asked Questions

Question 1 How is port configurations handled? What if native functionality is using a port?

Answer Ports used by native applications will be allocated first. If a MIDlet requests a port in use
by a native application an IOException will be thrown. For other applications, use
random port assignments.

Question 2 Are volume keys available to be mapped by the application? Which keys are going to be
mapped and which ones are not?

Answer The following keys are not available. Everything else can be mapped by the application.
- End/Home
- Power

Question 3 What events will cause the application to turn over control to the native 0S?

Answer The application never turns over control to the native OS because the native OS is

always in control. The native OS will pause a MIDlet if the device receives an incoming
Group Call, Private Call, or Phone Call.

Question 4 Will applications have a dedicated icon?

Answer The manifest has space for the user to specify a PNG image to use as an icon, however
the Motorola A830 handset does not support MIDlet icons in the Java menu.

Question 5 Is there a “Sleep” mode?

Answer There is no “Sleep” mode. MIDlets can be paused therefore, application developers
should write MIDlets in such a way that they become less active when paused: Longer
delays in loops, etc.

116

Appendix C:

Frequently Asked Questions

Question 6

Answer

Question 7

Answer

Question 8

Answer

Question 9

Answer

Question 10

Answer

Question 11

Answer

Question 12
Answer

In addition to the CLDC 1.0 and MIDP 1.0 libraries that will come on the A830, what other
libraries will be provided?

The available APIs are LWT, KJava Telephony and Gaming.

Does your Java implementation support HTTP as a communication protocol? If not, what
else do you support?

We support HTTP, HTTPS, TCP Sockets, UDP socket and serial port.

What is the operating system of the phones? Which virtual machine do you use? Is it
the same for all Motorola phones?

The OS is an in-house proprietary RTOS. The KVM is licensed from Sun with in-house
enhancements done by Motorola. All Motorola phones have the same KVM.

Is it correct there would be a 100k limit to the size of the .jar files that can be downloaded
to the phone? Is that a limit created by Motorola in the J2ME implementation or is it an
overall MIDP limitation that | missed in the spec?

100k limit in terms of compressed JAR file size is a guideline. The limitation is due to
limited memory in the phone and not specified by MIDP.

If the application JAR size is limited to 100Kk, for example, can the JAR file be broken into
several JAR files?

No; you can download files bigger than 100k but it may fail to be installed. For the sake
of performance, the Motorola A830 handset does not execute directly from the JAR. In-
device loading and linking of class files to the VM is done before the application is
executed the first time.

How much RAM will be available? Total memory per application and stack?

512k heap is allocated. Only one MIDlet can run at a time, sharing a small portion of the
heap with the KVM.

What are the storage limitations of the phone?

Total flash data space on the Motorola A830 handset is 1.2Mb, however this space is
shared with other phone features like ring tones and uninstalled MIDlets. The amount
available to a J2ME MIDlet will vary accordingly.

117

Question 13

Answer

Question 14

Answer

Question 15
Answer

Question 16

Answer

Question 17

Answer

Question 18
Answer

118

What is the bandwidth available for http?

The http bandwidth depends on the carrier and the link. Using AT&T GPRS the
measured bandwidth is 3800 bytes/sec. It is possible that the bandwidth with UMTS is
larger than 3800 bytes/sec.

Do you have an access / security model in place for record management system?

The unit of security domain is MIDlet suite. MIDlet suites are protected from each other.
A MIDlet suite must be packaged in one JAR file.

Where can | download the Motorola SDK for J2ME development?

You can download the Motorola SDK for J2ME from:
www. not or ol a. coni devel oeprs/wirel ess/

Is there is any way to initiate a call from a J2ME application running on Motorola A830
handset?

You cannot initiate a call from a J2ME application.

Are there any J2ME libraries/methods where | can manipulate files or save files?

The only methods available to manipulate files and save data use RMS package.

A recordstore consists of a collection of records, which will remain persistent across multiple
invocations of the MIDlet. The platform is responsible for making its best effort to maintain the
integrity of the MIDlet's record stores throughout the normal use of the platform, including
reboots, battery changes, etc.

Recordstores are created in platform-dependent locations, which are not exposed to the
MIDlets. The naming space for record stores is controlled at the MIDlet suite granularity.
MIDlets within a MIDlet suite are allowed to create multiple record stores, as long as they are
each given different names. When a MIDlet suite is removed from a platform installed
recordstores associated with its MIDlets will also be removed. These APIs only allow the
manipulation of the MIDlet suite's own record stores, and do not provide any mechanism for
record sharing between MIDlets in different MIDlet suites. MIDlets within a MIDlet suite can
access each other's record stores directly.

Why do you need to handle IOExceptions and when can they be caused?

When the network isn't available due to temporary problems or invalid settings on your phone,
you get "PPP up failed."

When the network doesn't provide your phone with a DNS server or the DNS server can't be
reached, you get "Can't obtain IP address."

When something is wrong with the response from a server or the way you handle the
response, you get "malformed response.” (need to work out exactly which cases give you a
malformed response message).

Appendix D:
Sun Microsystem’s
J2ME™ Wireless Toolkit

Appendix D:
Sun Microsystem’s
J2ME™ Wireless Toolkit

Overview

The J2ME Wireless Toolkit is a set of tools that provides developers with the emulation
environment, documentation and examples needed to develop CLDC/MIDP compliant
applications. To obtain detailed information such as the system requirements, installing
and downloading the Wireless Toolkit, please refer to the J2ME Wireless Toolkit
homepage [.

One of the benefits of using the Wireless Toolkit is its flexibility to emulate any new
platform such as the Motorola A830 handset. To customize the Wireless Toolkit for the
Motorola A830 handset, Motorola provides the following items:

» Stubbed out A830 OEM APIs — Used as external class libraries

* Motorola A830 handset images — Skins for Motorola A830 handset

» Motorola A830 handset device property file — Device specific information
« JavaDocs for A830 OEM APIs

After install, to learn how to use the J2ME Wireless Toolkit, please refer to the installed
directory: { I nstal | ed dir}\docs\ User Gui de. pdf.

Here are some directories that developers should be aware of:

URL Description

I'i b\ m dpapi . zi p | Archive containing the CLDC and MIDP API classes. These files
are used during the compilation of the application source files
and the byte-code pre-verification of the application classes.

apps\lib Contains external class libraries, in JAR or zip format. All
MIDlets in the apps directory have access to these external
class libraries.

apps\{proj ect Contains external class libraries, in JAR or zip format. Only

119

URL Description

nanme}\lib {project name} MIDlet has access to these external class

libraries.

Customizing the Wireless Toolkit to the Motorola
A830 handset

120

Use{installed dir}\docs\Basi cCustonizati onCGui de. pdf to
learn more about how to create a new device in the Wireless Toolkit.

As BasicCustomizationGuide.pdf mentions, there are only three steps to create a new
device in the Wireless Toolkit:

1.

Obtain the default J2ME Wireless Toolkit.

The toolkit includes a default development environment and a Default Emulator. The
Default Emulator is supplied with sets of device property files that enable the
emulation of several generic wireless devices.

Create new device property files.

A company that wants to have applications developed for a specific device using the
toolkit can modify the device property file and use them with the Default Emulator.
Download A830.zip from

www. not or ol a. cont devel opes/ wi rel ess/.

Add the new device property files to the J2ME Wireless Toolkit.

A set of device property files created for an additional device should be copied to the
folder in the J2ME Wireless Toolkit's installation that contains device definitions. The
new device is automatically added the device list.

Once the toolkit is installed, and A830.zip is downloaded, follow step 3 above. To add the
Motorola A830 handset to the toolkit device list, unzip A830.zip to the { i nst al | ed
di r}\ wtklib\devices\ AB30\ directory. When the toolkit starts again, the
Motorola A830 handset can be selected from the device pull-down menu in KToolbar.

If A830 does not show up in the device list, please make sure that:

1.
2.

The toolkit was restarted after unzipping A830.zip.

The name of the device directory matches the name of the device property file. For
example, the name of the device should be A830 and the property file name should
be A830.properties.

The property files and images should not be in any sub-directories under a device
directory.

If the problem continues, please contact J2MEWIK- commrent s@un. com

Appendix D:

Sun Microsystem’s
J2ME™ Wireless Toolkit

Using Stubbed-out Classes

The Motorola A830 handset's developer support material package includes the A830
OEM classes for the developers to develop and test their application within the Wireless
Toolkit. These classes behave similarly to or the same as in the Motorola A830 handset;
however, some of the functionalities of some classes have been removed because they
can not be simulated within the toolkit. A object, such as

com not or ol a. | ocat i on.PositionSource, represents a connection interface on
the Motorola A830 handset*; however, in the emulator, it only allows a MIDlet to compile
and simulate its functionality using the Syst em out . pri ntl n() method. Thus,
in the emulator, when a MIDlet requests a connection interface within its application, the
stubbed-out PositionSourcer object will output “The connection was obtained
successfully.” to the console. Similar functionalities have been adapted to the other A830
OEM classes.

These external stubbed-out libraries can be added to the

apps/ {project.nane}/Ilib/ orapps/|i b/ directories in zipped format.
Refer to item 0 for detailed information on directories within the toolkit. For more
information, please refer to UserGuide.pdfin docs\ directory.

Packaging Applications

One of the downfall of placing external class libraries in the

apps/ {project.nane}/Ilib/ or apps/|i b/ directoryis that when the
MIDlet is packaged using the toolkit, it adds the project’s class files as well as all external
class libraries into the JAR file. Since the KVM is running on the Motorola A830 handset
already, the MIDlet does not require to package stubbed out class files. Please use the
following steps to remove external library classes from the JAR file before downloading
the MIDlet onto the Motorola A830 handset:

1. Open the JAR file using WinZip or any other application that supports JAR.
2. Select and remove all external class libraries from the JAR file.

3. Open the JAD file and change the value of the MIDlet-Jar-Size attribute based on the
new file size of the JAR file.

4, Save and close the JAD file.
5. Now the MIDlet is ready to be downloaded.

For additional information on packing MIDlets, please refer to UserGuide.pdf in the
docs\ directory.

121

0 MOTOROLA

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or
service names are the property of their respective owners. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

© Motorola, Inc. 2002.

