
Developers guidelines

November 2006

UIQ 3 C++
for Sony Ericsson UIQ 3 phones



Developers guidelines | UIQ™ 3 C++
Preface

Purpose of this document

This document describes the Symbian™ 9.1 / UIQ™ 3 C++ support for the Sony Ericsson P990, M600, 
W950, and W958 series.

Readers who will benefit from this document include support engineers and software developers.

It is assumed that the reader is familiar with the C++ programming language.
2 November 2006

This document is published by Sony Ericsson 
Mobile Communications AB, without any 
warranty*. Improvements and changes to this text 
necessitated by typographical errors, inaccuracies 
of current information or improvements to 
programs and/or equipment, may be made by 
Sony Ericsson Mobile Communications AB at any 
time and without notice. Such changes will, 
however, be incorporated into new editions of this 
document. Printed versions are to be regarded as 
temporary reference copies only.

*All implied warranties, including without limitation 
the implied warranties of merchantability or fitness 
for a particular purpose, are excluded. In no event 
shall Sony Ericsson or its licensors be liable for 
incidental or consequential damages of any 
nature, including but not limited to lost profits or 
commercial loss, arising out of the use of the 
information in this document.

These Developers guidelines are published by:

Sony Ericsson Mobile Communications AB, 
SE-221 88 Lund, Sweden

Phone: +46 46 19 40 00
Fax: +46 46 19 41 00
www.sonyericsson.com/ 

© Sony Ericsson Mobile Communications AB, 
2006. All rights reserved. You are hereby granted 
a license to download and/or print a copy of this 
document.
Any rights not expressly granted herein are 
reserved.

Third edition (November 2006)
Publication number: EN/LZT 108 8155 R3A



Developers guidelines | UIQ™ 3 C++
Sony Ericsson Developer World

On www.sonyericsson.com/developer, developers will find documentation and tools such as phone White 
Papers, Developers Guidelines for different technologies, SDKs and relevant APIs. The website also con-
tains discussion forums monitored by the Sony Ericsson Developer Support team, an extensive Knowl-
edge Base, Tips & Tricks, example code and news.

Sony Ericsson also offers technical support services to professional developers. For more information 
about these professional services, visit the Sony Ericsson Developer World website.

UIQ Developer Program

Developers who register with the new UIQ Developer Program at www.uiq.com/developer will get access 
to the UIQ 3 forum, getting started tutorial and downloading of the UIQ 3 beta SDK.

UIQ Technology provides support for platform and SDK questions, whereas support for Sony Ericsson 
UIQ 3 phone specific extensions are to be directed to Sony Ericsson.

Sony Ericsson will continue to provide developer support for previous versions of UIQ (UIQ 2.0 and 2.1 for 
P800, P900 and P910 series) as long as these products are available on the market.

Document conventions

Products

pçåó=bêáÅëëçå=rfn=P=éÜçåÉë=~êÉ=êÉÑÉêêÉÇ=íç=áå=íÜáë=ÇçÅìãÉåí=ìëáåÖ=ÖÉåÉêáÅ=å~ãÉë=~ë=ÑçääçïëW

Generic names
Series

Sony Ericsson mobile phones

P990 P990i, P990c

M600 M600i, M600c 

W950 W950i, W950c

W958 W958c
3 November 2006

www.sonyericsson.com/developer
www.uiq.com/developer


Developers guidelines | UIQ™ 3 C++
Abbreviations

Typographical conventions

Code is written in Courier font, for example: TInt CCamera::CamerasAvailable()

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CSS Cascading Style Sheet

DRM Digital Rights Management

HAL Hardware Abstraction Layer

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

MMS Multimedia Message Service

OMA Open Mobile Alliance

OTA Over The Air

PDA Personal Digital Assistant

PIM Personal Information Manager 

RTSP RealTime Streaming Protocol

SDK Software Development Kit

SMS Short Message Service

USB Universal Serial Bus

WAP Wireless Application Protocol

XML eXtensible Markup Language
4 November 2006



Developers guidelines | UIQ™ 3 C++
Trademarks and acknowledgements

Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the U.S. and other countries.

Symbian, Symbian OS, UIQ Technologies, UIQ and other Symbian marks are all trademarks of Symbian 
Ltd.

Metrowerks and CodeWarrior are trademarks or registered trademarks of Metrowerks Corporation.

The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by 
Sony Ericsson is under license.

Microsoft, Windows and Visual Studio are either trademarks or registered trademarks of Microsoft Corpo-
ration in the United States and/or other countries.

RealAudio and RealVideo are trademarks or registered trademarks of RealNetworks, Inc.

Memory Stick, Memory Stick Duo, Memory Stick Pro Duo and Memory Stick Micro™ (M2™) are trade-
marks of Sony Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Document history

Change history

2005-10-11 Version R1A Preliminary version published on Developer 
World. 

2006-02-13 Version R2A Second preliminary version published on 
Developer World. 
Note: Information in this document is prelimi-
nary and in some parts incomplete, and may 
be changed without any notice until the 
phones in scope of this document are 
released to the market.

2006-11-20 Version R3A Third edition. Updated with new layout and 
references to W958 series.
5 November 2006



Developers guidelines | UIQ™ 3 C++
Contents

Technical overview .....................................................................................................8
Phone features ..........................................................................................................9
Programming environment ......................................................................................10

Backwards compatibility .....................................................................................11
Porting applications .............................................................................................11

API overview ............................................................................................................11
Symbian OS subsystems and APIs .....................................................................11
UIQ 3 specific API ................................................................................................12
Other supported APIs ..........................................................................................12

Application development .........................................................................................14
General development tips .......................................................................................15
The UIQ 3 SDK ........................................................................................................16
Sony Ericsson SDK extension packages ................................................................16
Building and installing applications .........................................................................16

Generation of project files ...................................................................................16
Building for the device from the command line ...................................................17
Deploying applications ........................................................................................17
.sis packages .......................................................................................................18
Installation and data storage ...............................................................................19
On-target debugging (ODD) ................................................................................19
Signing digital applications ..................................................................................20

Programming issues .................................................................................................21
General issues .........................................................................................................22

Power consumption considerations ....................................................................22
Memory usage considerations ............................................................................22

Base HAL API issues ...............................................................................................23
Retrieving battery status ......................................................................................24
Retrieving flight mode ..........................................................................................24

Telephony API issues ..............................................................................................25
ETEL Core API .....................................................................................................25

HTTP framework extension .....................................................................................25
UI configuration modes ...........................................................................................26

Supported UI configurations ...............................................................................26
Default UIQ 3 flip behavior ...................................................................................26
Handling UI config changes ................................................................................27
Accessing current UI config mode ......................................................................27
UI configurations in the emulator ........................................................................28

Bluetooth keyboard APIs ........................................................................................29
Interface Design ...................................................................................................29
Client API .............................................................................................................30
HIDHOST ECom Plug-in Interface .......................................................................30

Camera APIs ...........................................................................................................31
General ................................................................................................................32
Compliancy issues ...............................................................................................32
Camera settings ...................................................................................................33
Advanced camera settings – Autofocus ..............................................................34
Taking a picture ...................................................................................................34
Duplicate camera .................................................................................................34
6 November 2006



Developers guidelines | UIQ™ 3 C++
Multimedia issues ....................................................................................................35
Supported MIME types ........................................................................................35
Audio policies for priorities ..................................................................................36
Usage tips for the multimedia APIs .....................................................................37

Vibration API ............................................................................................................38
Vibration parameters ...........................................................................................38

Sony Ericsson MMS API .........................................................................................39
UIQ 3 SDK emulator ............................................................................................39
Not supported methods ......................................................................................40
Changed method .................................................................................................41
Accessing the MMS Client MTM .........................................................................41
Reading and Changing MMS Settings ................................................................41
Sending a MMS Message ...................................................................................42
Error Handling ......................................................................................................43
Test Harness ........................................................................................................43

OpenGL-ES implementation ...................................................................................44
UIQ and OpenGL-ES ...........................................................................................44
OpenGL-ES development tips .............................................................................45

Links and references ................................................................................................46
Reference documents .........................................................................................46
7 November 2006



Developers guidelines | UIQ™ 3 C++
Technical overview

This document is valid for the Sony Ericsson P990, M600, W950, and W958 series of UIQ 3 phones.

The Symbian 9.1/UIQ 3 UIQ 3 phones are versatile application platforms enabling application developers 
to create applications in a variety of programming languages, including native C++ and Java™. This doc-
ument provides guidelines for developing C++ applications.

The reader of this document is expected to understand the basics of Symbian OS™, UIQ 3 and the devel-
opment environment of UIQ 3 SDK. For further reading, please refer to http://www.uiq.com/developer.
8 November 2006

http://www.uiq.com/developer


Developers guidelines | UIQ™ 3 C++
Phone features

The Sony Ericsson P990, M600, W950, and W958 mobile phones are based on the Symbian 9.1 / UIQ 3 
user interface. UIQ 3 is a pen- and softkey-based user interface platform.

The table below lists general features of the phones.

For more information about the technical features of the P990, M600, W950, and W958, please refer to the 
product White Papers, available at Sony Ericsson Developer World.

Feature Support

Colour screen P990 Flip open/M600/W950/W958:
portrait mode, full screen 240x320 px
portrait mode application area 240x220 px
landscape mode, full screen 320x240 px
Note: Applications for flip open, landscape orientation should always 
be designed for full screen.
P990 Flip closed:
portrait mode, full screen 240x256 px
portrait mode application area 240x156 px
landscape mode, full screen 256x240
Note: Applications for flip closed, landscape orientation should 
always be designed for full screen.

262,144 colours

Screen font Sans-Serif, Latin

Internal User storage P990, M600: 80 MB
W950, W958: 4 GB

Additional storage:
P990: Memory Stick Duo™
P990: Memory Stick Duo Pro™
M600: Memory Stick Micro™ 
(M2™)

supports up to 128 MB external storage.
supports up to 8 GB external storage. 
supports up to 1 GB external storage.
9 November 2006

http://www.sonyericsson.com/developer 


Developers guidelines | UIQ™ 3 C++
Programming environment

The P990, M600, W950, and W958 are based on Symbian OS 9.1. 
Refer to http://www.symbian.com/technology/product_v9.html

The user interface (UI) is based on UIQ 3.
Refer to http://www.uiq.com/documentation

Third party application support Symbian 9.1 UIQ 3 C++

Java™ ME platform, compliant to the following specifications:
Connected Limited Device Configuration, CLDC 1.1, JSR-139
Joint Technology for Wireless Industry R1 (JTWI 1.0), JSR-185
Mobile Media API, MMAPI 1.1 ,JSR-135
Wireless Messaging API, WMA 1.1, JSR-120
Wireless Messaging API, WMA 2.0, JSR-205
Java APIs for Bluetooth, JSR-82
Mobile 3D Graphics API 1.0, JSR-184
PDA Optional Packages, JSR-75, (File and PIM APIs)
Web Services API, JSR-172
Nokia UI API 1.1

Connected Device Configuration (CDC) 1.0
Foundation Profile 1.0
Personal Profile 1.0
JDBC for J2ME, JSR-169
PDA Optional Packages, JSR-75

Music player MP3 ,WAV, AU, AMR, MIDI (G-MIDI with 40 voices polyphony and 
SP-midi), RMF, iMelody, XMF, DLS, RealAudio®, AAC, AAC+ and 
eAAC+. 
W950 and W958 also support WMA

Video recorder
(P990 only)

3GPP and MPEG4 (VGA, QVGA, QQVGA and 24-bit color depth) with 
AMR-NB or AAC-LC encoded audio (2 quality levels + video without 
audio). 

Video player 3GPP and MPEG4 (VGA, QVGA, QQVGA and 24-bit color depth) with 
AMR, AAC-LC, AAC+ or enhanced AAC+ encoded audio.
RealVideo® decoding

Streaming RTSP according to 3GPP, RealAudio, RealVideo and FastTrack 
(PacketVideo proprietary)

Still images JPEG/EXIF, BMP, WBMP, GIF, PNG
10 November 2006

http://www.symbian.com/technology/product_v9.html
http://www.uiq.com/documentation


Developers guidelines | UIQ™ 3 C++
Backwards compatibility

The Symbian OS 9.1 / UIQ 3 environment and its implementation in P990, M600, W950, and W958 series 
represent a concept with major differences to earlier Symbian/UIQ implementations in Sony Ericsson UIQ 
3 phones.

Porting applications

The “Programmers Guide to New Features in UIQ 3”, which can be found in the UIQ 3 SDK documenta-
tion, contains extensive tips and code examples for developers wishing to port applications written for 
earlier versions of the Symbian/UIQ environment.

API overview

The tables below list subsystems and APIs which in one way or other deviates from the standard Sym-
bian/UIQ implementation. Any API or subsystem which are not in the list are fully supported according to 
specifications by Symbian/UIQ.

For a complete API reference, see the Symbian/UIQ documentation included with the UIQ 3 SDK and 
documentation found at http://www.symbian.com/technology/product_v9.html and http://www.uiq.com/
documentation. Note: In the UIQ 3 SDK documentation, API details can be found primarily in the “Sym-
bian OS Guide” and “Symbian OS Reference” sub-sections of the “Symbian OS SDK v9.1” chapter.

Symbian OS subsystems and APIs

Subsystem /API Support Comments/references

Base and system libraries

Base HAL Partly supported. Includes backlight 
support. 

For more information, see “Base 
HAL API issues” on page 23

Multimedia

Multimedia ASR Not supported

Multimedia DevASR Not supported

Multimedia DevVideo Not recommended, because 
DevVideo requires MultimediaDD 
capability in PlatSec. The MMF API 
should be preferred for multimedia 
applications.

For more information, see “Audio 
policies for priorities” on page 36 
and “Usage tips for the multimedia 
APIs” on page 37
11 November 2006

http://www.symbian.com/technology/product_v9.html
http://www.uiq.com/documentation
http://www.uiq.com/documentation


Developers guidelines | UIQ™ 3 C++
UIQ 3 specific API

Other supported APIs

Sony Ericsson specific APIs

Multimedia DevSound Not recommended. The MMF API 
should be preferred for multimedia 
applications.

For more information, see “Audio 
policies for priorities” on page 36 
and “Usage tips for the multimedia 
APIs” on page 37

Telephony

ETEL Core API Fax and Ownership not supported For more information, see “Teleph-
ony API issues” on page 25

Help

Help application engine Not supported

System agent

System agent (mail noti-
fication service, etc.)

Partly supported. Sysagt has been 
deprecated in Symbian 9.1 and 
replaced with a “Publish and Sub-
scribe” (P&S) component. Some 
properties have changed. 

See E32property.h and UIQ 3 SDK 
for details.

HTTP client

HTTP framework User-Agent/x-wap-profile exten-
sion implemented.

For more information, see “HTTP 
framework extension” on page 25

API Support Comments/references

QimFramework Not supported

API Description Comments/references

BT Keyboard Support for keyboard vendors. See “Bluetooth keyboard APIs” on 
page 29

Subsystem /API Support Comments/references
12 November 2006



Developers guidelines | UIQ™ 3 C++
Open GL-ES API

Vibration API See “Vibration API” on page 38

MMS API See “Sony Ericsson MMS API” on 
page 39

API Description Comments/references

OpenGL-ES extensions See “OpenGL-ES implementation” 
on page 44

API Description Comments/references
13 November 2006



Developers guidelines | UIQ™ 3 C++
Application development

This chapter contains general information for the developer of C++ applications for the Sony Ericsson 
P990, M600, W950, and W958 series of mobile phones.
14 November 2006



Developers guidelines | UIQ™ 3 C++
General development tips

When developing UIQ 3 C++ applications for Sony Ericsson UIQ 3 phones, the following should be con-
sidered:

• Always favor CQikXXX classes over CEikXXX classes. Derive your AppUi from CQikAppUi (Qikon) 
rather than CEikAppUi 

• Ensure that your application is "theme aware". Use logical colors to draw application controls and 
propagate color scheme change messages through your application. 

• Make sure that application icons in three different sizes are defined for display on the device. 

• Prefer the Symbian exception handling before the standard C++ language exception handling. 

• Do not block a ViewActivatedL - any potentially long running action chained off a view activation 
should be done async. Otherwise the system may kill your application for being too sluggish.

• Be conservative in stack usage, including the implementation of recursive algorithms.

• Follow the UIQ 3 style guidelines.

• Have some way to call Exit from your application in debug builds. In the emulator, this will cause a 
panic if there is any memory leakage. It's much better to find memory leaks during development in the 
emulator, than at the end of development, when testing in the phone is done.

• Do not run timers continuously in the background because it seriously affects battery life.

• Make your code device independent when possible. Do not "hard code" screen sizes, colour depths, 
font sizes, and so on, instead use Symbian OS APIs to get details of device characteristics and capa-
bilities so that your application will run on the widest possible ranges of devices including any future 
Symbian/UIQ based Sony Ericsson phones.

• Avoid using local TBuf objects. They consume valuable stack space, which is extremely limited on a 
symbian device, and behave very differently compared to in the emulator. If you need more than a few 
hundred bytes allocated to a TBuf, then use a HBuf which is allocated on the Heap instead. Always 
remember to destroy the HBuf after it is finished with. The reasons for stack exhaustion are almost 
impossible to trace on the real target, they appear as random, unexplained crashes.

• Since applications can be installed either in phone memory or on Memory Stick, avoid using absolute 
paths for file locations in your code.
15 November 2006



Developers guidelines | UIQ™ 3 C++
The UIQ 3 SDK

A beta version of the UIQ 3 SDK for Symbian OS v9.1 is available as a free download from the UIQ Devel-
oper Program Web site, http://www.uiq.com/developer. The SDK is designed for use with Metrowerks™ 
CodeWarrior™ Development Studio for Symbian OS, and also includes support for Microsoft® Visual Stu-
dio® 2003.

Note: An IDE, for example the Metrowerks CodeWarrior Development Studio for Symbian OS, is required 
if an application needs to be tested in the UIQ 3 SDK emulator. Otherwise it will only be possible to test 
the application on the target device itself.

Sony Ericsson SDK extension packages

The Sony Ericsson extension Packages will be available at Sony Ericsson Developer World by February 
2006. The extension packages include Sony Ericsson specific APIs as well as emulator components such 
as phone specific fonts and skins.

By April 2006 there will also be extension packages available for development on the Chinese version of 
the phone.

Sony Ericsson C++ API extensions for the UIQ 3 SDK enable developers to create UIQ 3 applications to 
access:

• Vibration functions

• Bluetooth keyboard functions

• MMS API functions

Building and installing applications

Generation of project files

A symbian project consists of a number of different files such as bld.inf, mmp, rss, cpp, h and pkg-files. 
These files are all needed for a complete application. When starting a new project it is possible to create 
these files manually, for example by copying the “Hello World” example application, shipped with the 
SDK, and then editing the copied files.

A more convenient way is to use a kind of skeleton generator tool, which can generate the project files 
automatically.
16 November 2006

www.sonyericsson.com/developer
http://www.uiq.com/developer


Developers guidelines | UIQ™ 3 C++
Building for the device from the command line

It is possible to build a project for the phone using only the command line and the GCC-E compiler with-
out using any IDE.

If there are multiple SDK:s installed on the PC, the correct SDK must be configured using the devices 
command.

To select the UIQ 3 SDK as the active SDK, the following command is used:

$ devices -setdefault @UIQ_30:com.symbian.UIQ

To get more information about the devices command:

$ devices -help

When the active SDK has been set, the project can be built for the handset.This requires that project files 
such as bld.inf, mmp- and pkg-file are already created, see above.

The build is done using the following commands:

$ bldmake bldfiles

$ abld build gcce urel

$ makesis project.pkg

This will create an unsigned SIS-file. 

If the application use any Platform Security (platsec) capabilities it must also be signed in order to install it 
on the handset. For this, a developer certificate must be obtained from the Symbian signed web-site: 
https://www.symbiansigned.com/. For more information, see the section “Signing digital applications” 
below.

To sign the sis-file, the following command is used:

$ signsis -s project.SIS outfile.sis cert.cer key.key password

This will create a developer certificate signed SIS-file that may be installed on the device.

Deploying applications

The steps described below are documented in the UIQ 3 SDK. It is important that the developer is familiar 
with the “MakeSIS” and “SignSIS”, used for preparing applications to execute on the mobile phones. 

Each Symbian OS UI variant has a shell program, an Application Launcher, that allows the user to run 
application programs. For an application to be run from the Application Launcher, the following is recom-
mended: 

1. An application file (.exe) minimally containing a unique identifier (UID) to identify the program.
17 November 2006

https://www.symbiansigned.com/


Developers guidelines | UIQ™ 3 C++
2. Application registration information. The application icon and caption are specified in a special 
resource file, the localizable icon/caption definition file, or in the application’s UI resource file. Applica-
tion properties and other information are defined in another type of resource file, called a registration 
file.
For more information, refer to the UIQ 3 SDK documentation, Symbian OS SDK v9.1 / Symbian OS 
guide / Tools and Utilities / Application resource tools guide. 
Note: In earlier Symbian versions .aif files where used for specification of the application icon, caption 
and other properties. This method is not supported in Symbian OS 9.

Other files may also be required.

• Create a .pkg file by copying a sample file from the Install directory <SDK_DIR> and modify it to 
match your application. 

• Run the MakeSIS or SignSIS tool from the command line.
“MakeSIS” or “SignSIS” is needed for generating .sis format installation files to ensure availability of a C++ 
application to end users for installation.

Note: In Symbian OS 9.1, only the .exe extension is supported for executable files. The .app extension is 
no longer supported.

.sis packages

The P990, M600, W950, and W958 series handsets are open devices for adding applications. Today, 
there are Symbian devices on the market based on different user Interfaces (UI), namely UIQ, Series 60, 
Series 80 and Series 90. Applications for these devices are all installed using an installation package. 

The format is developed by Symbian and is called “Symbian Installation System” (SIS).

To ensure that the appropriate .sis file is installed on a designated target device, .sis packages for the 
Sony Ericsson UIQ 3 phones need to contain platform-specific package information. If this information is 
not included, the installation will stop and the user will receive the error “Incompatible installer version” 
when trying to install the .sis package.

Information that needs to be added to the .sis package files:

Note: X, Y, Z in the ID fields below indicates that the actual values have not been decided when this doc-
ument is published.

For general UIQ 3.0 compatibility: 
(0x101F6300),3, 0, 0, {"UIQ30ProductID"}

For platform identification:
(only needed if the application is platform dependant, required for Symbian Signed applications) 
For Sony Ericsson phones, based on Symbian OS 9.1 / UIQ 3 platform:
(0x10274BE7), 1, 0, 0, {"SEMCSEZPlatformID"}

For product (phone model) identification:
(only needed if the application is product dependant) 
P990i: (0x10274BB1), 1, 0, 0, {“SonyEricssonP990PlatformProductID”}. 
P990i Alias: (0x10274BE8), 1, 0, 0, {“SonyEricssonP990ProductID}.
P990c: (0x10274BEE), 1, 0, 0, {“SonyEricssonP990CProductID”}
M600i: (0x10274BEA), 1, 0, 0, {“SonyEricsson10274BEAProductID”}
18 November 2006



Developers guidelines | UIQ™ 3 C++
M600c: (0x10274BEC), 1, 0, 0, {“SonyEricsson10274BECProductID”}
W950i: (0xXXXXXXXX), X, Y, Z, {“SonyEricssonXXXXXXXXProductID”}
W950c: (0xXXXXXXXX), X, Y, Z, {“SonyEricssonXXXXXXXXProductID”}
W958c: (0xXXXXXXXX), X, Y, Z, {“SonyEricssonXXXXXXXXProductID”}

For language compatibility:
(optional)
P990i: (0x10274BE9), 1, 0, 0, {“SonyEricssonP990LanguageID”}. 
P990c: (0x10274BEF), 1, 0, 0, {“SonyEricssonP990CLanguageID”}
M600i: (0x10274BEB), 1, 0, 0, {“SonyEricsson10274BEBLanguageID”}
M600c: (0x10274BED), 1, 0, 0, {“SonyEricsson10274BEDLanguageID”}
W950i: (0xXXXXXXXX), X, Y, Z, {“SonyEricssonXXXXXXXXLanguageID”}
W950c: (0xXXXXXXXX), X, Y, Z, {“SonyEricssonXXXXXXXXLanguageID”}
W958c: (0xXXXXXXXX), X, Y, Z, {“SonyEricssonXXXXXXXXLanguageID”}

Note: When creating a .sis file that is not to be signed, the VID (Vendor ID) must not be specified in the 
mmp file. A .sis file containing a VID without a matching signature will fail to be installed.

Installation and data storage

Applications can be easily downloaded directly to the mobile phone using the browser, or may be installed 
from a connected PC, using USB, Infrared or Bluetooth. Applications can also be installed from a Memory 
Stick.

Multimedia content such as images, movie clips, sound clips and general-purpose files such as Word 
documents can either be stored locally (C: drive) or on a Memory Stick (D: drive). Third party (Java and 
C++) applications can also use the Memory Stick for both application and data storage. These are all 
accessed using the viewers provided with the mobile phones. 

The built in browser can download .sis files from WML and xHTML pages provided that the server sup-
ports the actual file types. P990, M600, W950, and W958 can also download .sis files from ordinary Web 
servers provided that they support the MIME type for each of the file types.

On-target debugging (ODD)

On-device debugging is addressed through CodeWarrior 3.1, Carbide Developer and Carbide Profes-
sional Editions which provision the necessary client for deployment on the phone. The client is signed with 
sufficent permissions to allow flexible debugging without requiring any specialised re-signing prior to 
deployment. Once installed, debugging can be invoked in the usual visual fashion through the IDE.

For more information, please refer to http://www.forum.nokia.com/carbide and 
http://www.forum.nokia.com/main/0,6566,1_74,00.html
19 November 2006

http://www.forum.nokia.com/carbide
http://www.forum.nokia.com/main/0,6566,1_74,00.html


Developers guidelines | UIQ™ 3 C++
Signing digital applications

Symbian Signed
“Symbian Signed” is a program from Symbian that supports tested and digitally signed applications on 
Symbian OS phones. It is supported by all Symbian licensees including Sony Ericsson.

A “signed” application means that the application has passed the test criteria and is digitally signed to 
guarantee the source and integrity of the application. Sony Ericsson encourages all users to use 
signed applications only.

Developers are allowed to use a Symbian logo called “For Symbian OS” to indicate compliance to the pro-
gram.

In order to install an application that is “Symbian Signed”, a Symbian root certificate must be present in 
the phone. This certificate is pre-installed in the Sony Ericsson UIQ 3 phones.

For detailed information about the “Symbian Signed” program, please refer to
https://www.symbiansigned.com

Unsigned-sandboxed applications
A number of unrestricted APIs may be used for unsigned applications, running in a “sandboxed” environ-
ment. Unsigned applications can be deployed with blanket or one-shot permission settings. During instal-
lation the user is prompted to select one of these permissions for the application.

Applications using only unrestricted APIs may be tested and assigned a Symbian Signed certificate. This 
will allow installation with blanket permission, without user interaction during the installation. The signing 
process requires that the developer owns a valid ACS Publisher ID from Verisign.

Symbian OS v9 security enhancements
Symbian OS v9 introduces enhancements of the security architecture for mobile devices and applications. 
In short this implies that only trusted applications will be granted access to certain groups of sensitive 
APIs (capabilities). 

An application using restricted APIs may only be Symbian Signed when the application is released (fin-
ished). This would make it impossible to test the unfinished application on actual handsets. To take care 
of that, special Developer Certificates (DevCerts) can be installed on the handsets where the application is 
to be tested during development. DevCerts are issued by Symbian Signed via a Web portal, 
https://www.symbiansigned.com/app/page/devcertgeneral.

Testing in an emulator does not require DevCerts, but platform security for the emulator can be turned on 
and off.

For details on developer certificates and Symbian Signed, please refer to
https://www.symbiansigned.com or the DevCert Web portal, 
https://www.symbiansigned.com/app/page/devcertgeneral.

Also refer to Sony Ericsson Developer World for information about Symbian signing and Channel certifica-
tion: http://developer.sonyericsson.com/site/global/devservices/certification/symbiancer/dev_certs/
p_devcerts.jsp
20 November 2006

https://www.symbiansigned.com
https://www.symbiansigned.com/app/page/devcertgeneral
https://www.symbiansigned.com
https://www.symbiansigned.com/app/page/devcertgeneral
http://developer.sonyericsson.com/site/global/devservices/certification/symbiancer/dev_certs/p_devcerts.jsp
http://developer.sonyericsson.com/site/global/devservices/certification/symbiancer/dev_certs/p_devcerts.jsp


Developers guidelines | UIQ™ 3 C++
Programming issues

This chapter contains some programming issues of interest for developers of UIQ 3 C++ applications for 
the Sony Ericsson P990, M600, W950, and W958 series.
21 November 2006



Developers guidelines | UIQ™ 3 C++
General issues

Power consumption considerations

In Sony Ericsson Mobile devices based on Symbian OS only small parts of the power management frame-
work are implemented. The reason for this is that the ASICs used are very much developed with power 
management in mind and include mechanisms to implement fast and efficient power management in low 
level code (for example kernel extensions and device drivers). This pretty much removes the need for the 
greater part of the framework.

Design guidelines
To get an optimized power management the following should always be kept in mind when developing 
applications for multitasking environments:

• Timeouts should never be used for control of HW power down.

• Timers should always be preferred before delay loops in the code. The most accurate timers on user 
side have 1ms granularity and this should be short enough to remove the need for any delay loops.

• Polling should be avoided. If absolutely necessary, a timer callback that initiates the poll should be 
used. This allows CPU power save during the timer interval.

• Optimal hardware power save is normally done via the hardware device driver.

• Memory handling should be considered. Using large buffers when transferring data and accessing 
flash drives using large blocks results in more idle time for the CPU and memory HW to be put in low 
power mode.

• Code efficiency from a CPU load perspective should be considered. The less time code is executing 
the more time the CPU will be put in low power mode.

• "Focus lost" notification when implementing an app should be respected. When focus is lost there 
should not be any activity left running, for example, all timers have to be cancelled to avoid stealing 
CPU usage in the background with less low power mode as a result.

Memory usage considerations

RAM cost in NAND devices
Sony Ericsson UIQ 3 phones are NAND devices, which means that DLL and EXE binary code must be 
shadowed in RAM before execution. Therefore, the total RAM cost of a running application depends not 
only on the heap usage, but also on the size of the binary code.

Data files (for example .txt and .ini files) can be accessed as normal files from the file system. The smallest 
block size that the system reads or writes is 512 bytes, which is therefore the smallest suggested size of 
data files. 
22 November 2006



Developers guidelines | UIQ™ 3 C++
Stack and heap issues
According to the UIQ 3 SDK documentation, processes are by default assigned a stack size of 8K. How-
ever, it has been found that some applications run out of stack memory and crash, even if stack objects 
were handled correctly by the application.

These issues can in many cases be solved by increasing the stack size for the application with the
epocstacksize directive in the project’s mmp file. For example, to increase the stack size to 20K:

// set stack to 20K
epocstacksize 0x5000

Some general advice to solve stack and heap issues:

• Prefer heap objects before stack objects, by using HBufC instead of TBuf.
• Spread the stack objects in separated methods. This helps keeping local stack objects smaller.
• Try increasing the stack size with the epocstacksize directive in the mmp file.
• Allocate more heap with the epocheapsize directive in the mmp file.

Base HAL API issues

The following properties do not fully comply with the SymbianOS standard:

EDisplayState
EBacklightState
EDisplayBrightness
EKeyboardBacklightState

Unlike the generic code, setting these properties does not directly control the display. 

Note: The implementation is not fully decided by the release of this document, but will be specified in later 
editions.

EDisplayState
Get: gets current state of display, 0 if display is off, 1 if display is on

Set: makes request to the LCD handler to switch display off (0) or on (1) The result of setting this property 
depends on what other resources are currently using the LCD.

EBacklightState
Get: gets current state of LCD backlight, 0 if display is off, 1 if display is on

Set: makes request to LCD handler to turn backlight off (0) or on (1) The result of setting this property 
depends on what other resources are currently using the LCD.

EDisplayBrightness
Get: gets current state of LCD backlight brightness, in the range 0 to the value of property EDisplay-
BrightnessMax.
23 November 2006



Developers guidelines | UIQ™ 3 C++
Set: makes request to LCD handler to change the LCD backlight brightness.

The result of setting this property depends on what other resources are currently using the LCD.

EKeyboardBacklightState
This is read-only. The value is 1 if any part of the keyboard backlight is illuminated, else 0.

EManufacturerHardwareRev
This returns a 4-byte field describing the hardware platform.

Note: The implementation is not fully decided by the release of this document, but will be specified in later 
editions.

EPowerBatteryStatus
The value for this is derived from the current battery status published by the battery handler, but this is 
transparent and it behaves as the standard SymbianOS definition.

Retrieving battery status

Battery status is published to the rest of the system using the Symbian Publish and Subscribe (P&S) func-
tionality. Category and property key values are defined in the file SaCls.h The battery status is published 
as an integer value which can have one of three values: ESABatteryAlmostEmpty, ESABatteryLow or 
ESABatteryFull.

Code example
#include <e32property.h> 
#include <SaCls.h>

TInt capacity = -1;
TInt r=RProperty::Get(

KUidSystemCategory, 
KUidBatteryStrengthValue, 

                       capacity);

Retrieving flight mode

Flight mode status is published to the rest of the system using the Symbian Publish and Subscribe (P&S) 
functionality. Category and property key values are defined in the file SaCls.h. The flight mode status is 
published as an integer value which can have one of two values: ESAPhoneOff or ESAPhoneOn.

Code example
#include <e32property.h> 
#include <SaCls.h>
24 November 2006



Developers guidelines | UIQ™ 3 C++
TInt status = -1;
TInt r=RProperty::Get(

KUidSystemCategory, 
KUidPhonePwrValue, 

                       status);

Telephony API issues

ETEL Core API

In Sony Sony Ericsson UIQ 3 phones based on Symbian OS 9, Fax and Ownership are not supported. This 
implies that all RFax methods together with the following methods are not supported.

void RCall::AcquireOwnership(TRequestStatus& aStatus)
void RCall::AcquireOwnershipCancel()
TInt RCall::TransferOwnership()
TInt RCall::GetOwnershipStatus(TOwnershipStatus& aOwnershipStatus)
TInt RCall::GetFaxSettings(TFaxSessionSettings& aSettings)
TInt RCall::SetFaxSettings(const TFaxSessionSettings& aSettings)

HTTP framework extension

Sony Ericsson provides an extension to the HTTP framework, a filter to manage the device User-Agent 
and x-wap-profile headers.

The filter is automatically loaded into the HTTP session of each client, and modifies the headers of outgo-
ing requests as follows:

• User-Agent header: The filter appends the device User-Agent string to any such string supplied by the 
client.

• x-wap-profile header: The filter replaces any existing header with the absolute URI of the device pro-
file. However, there is no support for profile diffs.
25 November 2006



Developers guidelines | UIQ™ 3 C++
UI configuration modes

This section contains information about the different Ui configurations supported in Sony Ericsson UIQ 3 
phones.

More information can be found in the “Programmer’s Guide to new features in UIQ 3” section of the UIQ 3 
SDK documentation.

Supported UI configurations

The QUiConfigServer in P990 is configured to support the following UI config modes.

• Flip Closed (softkey style UI)
• KQikSoftkeyStyleSmallPortrait (PFC), UIQ supported style
• KQikSoftkeyStyleSmallLandscape (LFC)
• KQikSoftkeyStyleSmallLandscape180 (LFC180)

• Flip Open (pen style UI)
• KQikPenStyleTouchPortrait (PFO), UIQ reference style
• KQikPenStyleTouchLandscape (LFO), UIQ supported style
• KQikPenStyleTouchLandscape180 (LFO180)

In M600, W950, and W958 the QUiConfigServer is configured to support the following UI config modes.

• Softkey style UI
• KQikSoftkeyStyleTouchPortrait, UIQ supported style

• Pen style UI
• KQikPenStyleTouchLandscape, UIQ supported style

The following UI config modes are available in the UIQ 3 SDK and supported by UIQ, but are not sup-
ported in Sony Ericsson Symbian OS 9 UIQ 3 phones:

• KQikSoftkeyStylePortrait, UIQ reference style
• KQikSoftkeyStyleTouchPortrait, UIQ supported style.

Default UIQ 3 flip behavior

When the UI configuration for the device changes the view layout and command list are updated accord-
ing to the QIK_VIEW_CONFIGURATIONS to match the new configuration. All data in the 
QIK_VIEW_CONFIGURATIONS is loaded when the view is created so the controls are always reused 
which assures no data loss between transitions. As long as the current view is not tasked away from, the 
window remains active.

Dialogs will remain open when flipping. They are closed automatically by the shutter when tasking away.
26 November 2006



Developers guidelines | UIQ™ 3 C++
When the device goes from flip open to flip closed the standby screen will be activated.

Handling UI config changes

The HandleUiConfigChangedL is an interface method used by the QUiConfigServer to notify its 
observers when the UI configuration has changed in the system. 

The CQikViewBase implements the HandleUiConfigChangedL interface that initiates the reconstruc-
tion of the view layout and command list etc according to the QIK_VIEW_CONFIGURATIONS. This is all 
done in the framework so the application can depend on always having the layout specified in the 
resource for the current UI config mode.

CEikDialog also implements the HandleUiConfigChangedL interface and handles resizing and posi-
tioning according to the UI config changes. CEikDialog does not have any built in support for changing 
layouts and commands in the same way as for views though. This means that by default dialogs does not 
care about which UI configuration they are running in. If a specific dialog shall not be available for a spe-
cific UI configuration then it has to be modified to handle this.

Note: CEikDialog has been deprecated in UIQ 3. CQikViewDialog or CQikSimpleDialog should be 
used instead.

Accessing current UI config mode

In the DLL initialization, the application framework automatically creates a client session, that can be 
called from anywhere inside the application. The client can be accessed directly by calling CQUiConfig-
Client::Static(). In order to access the client it is only necessary to include the QUiConfigCli-
ent.lib in the mmp file and include the QUiConfigClient.h in the source code. Each environment 
creates an instance of CQUiConfigClient so it is never needed to be instantiated where it is used. The 
Static() does have some overhead so it should only be called once in order to minimize the execution 
time. If it is used extensively a reference to the client object should be used.

The following are the most important APIs that allows the developer to find out which UI configuration the 
device is currently in, and to change this configuration:

-IMPORT_C TQikUiConfig CurrentConfig() const;

-IMPORT_C TInt SetCurrentConfigL(TInt aConfigMode);

It is possible to set any configuration but in some cases there will be a redirection in the server. For exam-
ple, If the device is in flip closed mode and an attempt is made to change to a flip open UI config mode, 
the server will redirect to the equivalent UI config mode for flip closed. In other words, a flip switch can 
never be achieved through the CQUiConfigClient API. 
27 November 2006



Developers guidelines | UIQ™ 3 C++
UI configurations in the emulator

The emulator does not implement the flip closed and flip open configurations as in the handset. Some of 
the configurations in the handset has no corresponding configurations in the emulator and some of the 
configurations in the emulator have no significance in the handset.

The following table lists the correspondence between the default configurations.

Emulator configuration with 
settings

P990 configuration M600, W950, and W958 
configuration

#define KQikSoftkeyStyle-
Portrait
EQikScreenModePortrait
EQikTouchScreenNo
EQikUiStyleSoftkey
EQikOrientationNormal

N/A N/A

#define KQikSoftkey-
StyleSmallPortrait
EQikScreenModeSmallPor-
trait
EQikTouchScreenNo
EQikUiStyleSoftkey
EQikOrientationNormal

#define KQikSoftkey-
StyleSmallPortrait
EQikScreenModeSmallPor-
trait
EQikTouchScreenNo
EQikUiStyleSoftkey
EQikOrientationNormal

N/A

N/A #define KQikSoftkey-
StyleSmallLandscape
EQikScreenModeSmallLand-
scape
EQikTouchScreenNo
EQikUiStyleSoftkey
EQikOrientationNormal

N/A

N/A #define 
KQikSoftkeyStyleSmallLand
scape180
EQikScreenModeSmallLand-
scape
EQikTouchScreenNo
EQikUiStyleSoftkey
EQikOrientationInverted

N/A

#define KQikSoftkeyStyle-
TouchPortrait
EQikScreenModePortrait
EQikTouchScreenYes
EQikUiStyleSoftkey
EQikOrientationNormal

N/A #define KQikSoftkeyStyle-
TouchPortrait
EQikScreenModePortrait
EQikTouchScreenYes
EQikUiStyleSoftkey
EQikOrientationNormal

#define KQikPenStyle-
TouchPortrait
EQikScreenModePortrait
EQikTouchScreenYes
EQikUiStyleMenubar
EQikOrientationNormal

#define KQikPenStyle-
TouchPortrait
EQikScreenModePortrait
EQikTouchScreenYes
EQikUiStyleMenubar
EQikOrientationNormal

N/A
28 November 2006



Developers guidelines | UIQ™ 3 C++
Note: All UI mode definitions in the UIQ 3 SDK can be found in the file Qikon.hrh

Bluetooth keyboard APIs

HIDHOST is part of a Bluetooth Human interface device profile (HID). It is a server module, which allows 
remote devices to establish HID sessions via Bluetooth. The server uses the Symbian OS socket server 
framework to access the Bluetooth stack.

ECOM is used in order to find and instantiate plug-ins when hid devices connect to the server. Third party 
developers use the ECOM interface provided by the HIDHOST to develop handlers for their own HID 
devices.

Interface Design

The services provided by the HIDHOST are:

• Framework for supporting HID devices

• ECOM API/interface for developing HID device handlers.

• Client API with event information about HID device connects/disconnects.

• Client API for communication with plug-in.

#define KQikPenStyle-
TouchLandscape
EQikScreenModeLandscape
EQikTouchScreenYes
EQikUiStyleMenubar
EQikOrientationNormal

#define KQikPenStyle-
TouchLandscape
EQikScreenModeLandscape
EQikTouchScreenYes
EQikUiStyleMenubar
EQikOrientationNormal

#define KQikPenStyle-
TouchLandscape
EQikScreenModeLandscape
EQikTouchScreenYes
EQikUiStyleMenubar
EQikOrientationNormal

N/A #define 
KQikPenStyleTouchLandscap
e180
EQikScreenModeLandscape
EQikTouchScreenYes
EQikUiStyleMenubar
EQikOrientationInverted

N/A

Emulator configuration with 
settings

P990 configuration M600, W950, and W958 
configuration
29 November 2006



Developers guidelines | UIQ™ 3 C++
Client API

Class RHidHostSession
RHidHostSession provides functionality for:

• Starting/stopping the HIDHOST service.

• Connecting to a HID device

• Event information about hid device connects and disconnects

• Information about current loaded plug-in.

• API for communication with the plug-in.

The methods for requesting notifications of events/data:

NotifyEvents(TRequestStatus& aRequestStatus, TDes8 & aEvent)
ReceivePluginData(TRequestStatus& aRequestStatus,TInt aOpcode, TDes8& aBuffer)

These methods are both “one-shot” and thus the client need to call them again after a request has com-
pleted in order to receive more events.

Information about HID device connections/disconnections are delivered in a struct named TBtHidEvent 
which contains the event code (Connect or Disconnect) and the Bluetooth device address of the connect-
ing/disconnecting device.

HIDHOST ECom Plug-in Interface

Third party developers can implement their own BT HID device handlers by implementing an ECOM plug-
in which inherits from the class CBtPluginBase.

Class CBtPluginBase
The base class for HID HOST ECOM plug-ins is CBtPluginBase. Third party plug-ins needs to inherit 
from this and implement the pure virtual methods declared here.

The pure virtual methods declared here provide interfaces for:

• Receiving data from a connected HID device.

• Receiving data from clients.

• Event notifications about HID device connects/disconnects.

Class MBtHidPluginProxy
The MBtHidPluginProxy API provides the following services to the plug-in:

• Sending data on the control and interrupt channels to the hid device.
30 November 2006



Developers guidelines | UIQ™ 3 C++
• Sending data to a connected client.

• Sending key and raw events to the window server.

• Support for specifying which kind of data the plug-in wants to subscribe to. The data can be raw or 
processed – in the case of processed data the plug-in will receive complete HID boot reports via 
ProcessBootReportL. If the plug-in wants to handle raw data the server will not do anything to the 
incoming data on the interrupt channel – the data will be sent directly to the plug-in via HandleIrptL.

Default_data in the ECOM resource file
In order to develop an ECOM plug-in there must be a special resource file for the project, below an exam-
ple is found.

In the default_data member in the IMPLEMENTATION_INFO struct, third party developers need to specify 
the device name of the device the plug-in is intended for.

Example:

RESOURCE REGISTRY_INFO theInfo
{

dll_uid = <plug-in uid>;
interfaces =
{

INTERFACE_INFO
{

interface_uid = HIDHOST_PLUGIN_INTERFACE_UID;
implementations =
{

IMPLEMENTATION_INFO
{

implementation_uid = <plug-in implementation uid>;
version_no = 1; 
display_name = "3rd party BT HID Plug-in";
default_data = "3rd party BT Keyboard";
opaque_data = "";

}
};

}
};

}
The default_data is used by the hid host server in order to find an implementation to handle a connecting 
HID device, see the UIQ 3 SDK documentation for more details.

Camera APIs

For information about the Symbian OS 9.1 camera APIs, please refer to the UIQ SDK documentation, the 
Symbian OS SDK v9.1/Symbian OS Reference/Multimedia ECam section.
31 November 2006



Developers guidelines | UIQ™ 3 C++
General

The following method returns the number of cameras in the device:

TInt CCamera::CamerasAvailable()

This method can be used for an application to avoid trying to use a non-existing camera. 

Also, the CCamera::NewL() method will leave with error code KErrNotSupported if there is no cam-
era in the device

Compliancy issues

MCameraObserver
From a power management point of view there is no difference between Reserve and Power on. The cam-
era is powered on when it is reserved. Accordingly the camera is powered off when it is released. How-
ever, to comply with the Symbian API, the methods PowerOn() and PowerOff() are implemented, but 
they have no effect. These methods should still be used by clients to provide compatibility with other 
implementations.

When using duplicate instances of CCamera, Capture must be called from the same CCamera instance 
that prepared for it. The last Prepare call is the one that is valid at any time.

A service, for example a video viewfinder, must be stopped by the same CCamera instance that started it.

When a client receives the event KUidECamEventCameraNoLongerReserved it should finish process-
ing of outstanding frames immediately. The client is given a short time to release any outstanding frames 
and if it has not released all frames when this time has passed, the camera implementation takes owner-
ship of the frames and they will be deallocated. “Release frames” is the only allowed operation in this state 
and the client will expect no further callbacks.

The rear camera sensor is mounted on the device to be used in landscape mode. This means that if a 
viewfinder is started in an application which runs in portrait mode the viewfinder is rotated 90 degrees.
32 November 2006



Developers guidelines | UIQ™ 3 C++
Other not supported methods

Camera settings

Clients should check bitfields of TCameraInfo and use enumeration methods to find out which services 
are supported and the exact formats, sizes and parameters that are supported for each service.

Zoom
Digital zoom is supported and the entries in TCameraInfo will indicate the ranges and values supported.

Flash
The available flash modes can be retrieved from TCameraInfo. The Flash is triggered by the hardware 
camera button.

Method Comment

CustomInterface

virtual void StartViewFinderDi-
rectL(RWsSession& aWs,CWsScreenDevice&             
aScreenDevice,RWindowBase& aWin-
dow,TRect& aScreenRect,TRect& 
aClipRect)=0;

To start a viewfinder:
Ccamera::StartViewFinderDi-
rectL(RWsSession& aWs,CWsScreenDe-
vice& aScreenDevice,RWindowBase& 
aWindow,TRect& aScreenRect)

virtual void StartViewFinderBit-
mapsL(TSize& aSize)=0;

virtual void StartViewFinderBit-
mapsL(TSize& aSize,TRect& 
aClipRect)=0;

virtual void StartViewFinderL(TFormat 
aImageFormat,TSize& aSize)=0;

virtual void StartViewFinderL(TFormat 
aImageFormat,TSize& aSize,TRect& 
aClipRect)=0;

virtual void PrepareImageCap-
tureL(TFormat aImageFormat,TInt 
aSizeIndex,const TRect& aClipRect)=0;

virtual void PrepareVideoCap-
tureL(TFormat aFormat,TInt aSizeIn-
dex,TInt aRateIndex,TInt 
aBuffersToUse,
TInt aFramesPerBuffer,const TRect& 
aClipRect)=0;
33 November 2006



Developers guidelines | UIQ™ 3 C++
Advanced camera settings – Autofocus

By including ecamadvsettings.h in the project, an application gets access to the CCamera::CCamer-
aAdvancedSettings interface.

The following settings are supported in Sony Ericsson UIQ 3 phones, and allows applications to make use 
of the autofocus functionality of the built-in camera:

IMPORT_C TInt SupportedFocusModes() const;
IMPORT_C TFocusMode FocusMode() const;
IMPORT_C void SetFocusMode(TFocusMode aFocusMode);

IMPORT_C TInt SupportedFocusRanges() const;
IMPORT_C TFocusRange FocusRange() const;
IMPORT_C void SetFocusRange(TFocusRange aFocusRange);

IMPORT_C TInt SupportedAutoFocusTypes() const;
IMPORT_C TAutoFocusType AutoFocusType() const;
IMPORT_C void SetAutoFocusType(TAutoFocusType aAutoFocusType);

IMPORT_C TBool AutoFocusLockOn() const;
IMPORT_C void SetAutoFocusLockOn(TBool aState); 

Note: The rest of the API is not supported.

Taking a picture

A camera has to be reserved and powered on to be able to prepare and take a picture.

Before capturing a picture, PrepareImageCaptureL() has to be called at least once to set the image 
format and size. The supported sizes for different formats can be retrieved from EnumerateCapture-
Sizes(). Image capture is then requested with the method CaptureImage() and the camera notifies 
the client that an image has been captured by call back MCameraObserver2::ImageBufferReady(). 

It is up to the client to stop the viewfinder and display the captured image on the screen.

Duplicate camera

To allow more than one client reserving the camera at the same time, it is possible to duplicate a created 
CCamera instance.

Solution
A duplicate can only be created from an existing camera object. CCamera::Handle() returns a  unique 
handle of this camera object. The client can then create a duplicate camera by calling NewDuplicateL() 
which takes a handle of a MCameraObserver2 reference. The returned CCamera pointer can be used to 
reserve the camera at the same time the original reserved it.
34 November 2006



Developers guidelines | UIQ™ 3 C++
Code example
ipCamera = CCamera::NewL(*this, 0, 0);     
CCamera::NewDuplicateL(*this,  ipCamera->Handle());

Multimedia issues

Supported MIME types

Audio oriented MIME types

File Extension MIME types Description

.3ga, .3gp audio/3gpp 3GPP Multimedia File

.aac audio/x-aac Advanced Audio Coding

.amr audio/amr Adaptive Multi-Rate Codec (AMR-NB)

.amr audio/x-amr Adaptive Multi-Rate Codec (AMR-NB)

.au audio/basic uLaw/AU Audio File 

.imy audio/imelody iMelody Ringtone Format

.mid, .midi audio/mid Musical Instrument Digital Interface 
MIDI-sequential Sound 

.mid, .midi audio/midi Musical Instrument Digital Interface 
MIDI-sequential Sound 

.mid, .midi audio/x-midi Musical Instrument Digital Interface 
MIDI-sequential Sound

.mid audio/sp-midi Scalable Polyphony MIDI

.mid audio/vnd.semc.melody Midi Melody (MusicDJ)

.mmf audio/smaf Yamaha SMAF Synthetic music Mobile Application 
Format

.mmf audio/x-mmf Yamaha SMAF Synthetic music Mobile Application 
Format

.mmf application/vnd.smaf SMAF Synthetic music Mobile Application Format

.mp3 audio/mp3 MPEG Audio Stream, Layer III

.mp3 audio/x-mp3 MPEG Audio Stream, Layer III

.mp3 audio/mpeg MPEG Audio Stream, Layer III
35 November 2006



Developers guidelines | UIQ™ 3 C++
Video oriented MIME types

Audio policies for priorities

Audio policies for priorities are handled slightly differently from the description in the Symbian/UIQ SDK 
documentation.

.mp3 audio/x-mpeg MPEG Audio Stream, Layer III

.mp3 audio/mpeg3 MPEG Audio Stream, Layer III

.mp3 audio/mpg MPEG Audio Stream, Layer III

.mp3 audio/x-mpg MPEG Audio Stream, Layer III

.mp3 audio/mpg3 MPEG Audio Stream, Layer III

.mp4, .m4a audio/mp4 MPEG-4 Video File

.mp4, .m4a audio/mp4-latm MPEG-4 Audio Layer

.mxmf audio/mobile-xmf Mobile XMF (eXtensible Music Format)

.rad audio/fmradio Sony Ericsson Mobile Communications FM radio 
alarm file

.ra, .ram audio/x-pn-realaudio RealMedia Streaming Media

.rmf audio/rmf Beatnik Rich Music Format

.rmf audio/x-rmf Beatnik Rich Music Format

.wav audio/wav Waveform Audio

.wav audio/x-wav Waveform Audio

.xmf audio/xmf eXtensible Music Format

File Extension MIME Types Description

.3gp video/3gpp audio/3gpp 3GPP 

.mp4 application/mpeg4, video/mpeg ISO MPEG-4

.pvx application/x-pv-p Packet Video streaming link

.ram video/x-pn-realaudio Real Networks Video file

.ram audio/x-pn-realaudio Real Networks Audio file

.rm application/x-pn-realmedia RealVideo

.sdp application/sdp SDP (RFC 2327)

File Extension MIME types Description
36 November 2006



Developers guidelines | UIQ™ 3 C++
In the Symbian Multimedia framework (MMF), a client playing audio can set an absolute priority and prior-
ity preference. For example, the class CMdaAudioPlayerUtility has a method SetPriority(TInt 
aPriority, TMdaPriorityPreference aPref) allowing priority of playback to be set. 

In Sony Ericsson UIQ 3 phone implementation the priority and priority preference are ignored. Instead, all 
audio clients will play with the same priority, and the last started playback will interrupt any ongoing play-
back. If a client is interrupted and wishes to resume playback, there is a resource notification API provided 
by, for example CMdaAudioPlayerUtility::RegisterAudioResourceNotification(). By using 
this mechanism, a client will be notified when the audio resource becomes available.

Note: OS level components may override this behaviour. For instance, while a game is playing audio, a 
ring signal may start and play simultaneously. However, the ring signal will be modified to a "call waiting" 
beep sequence mixed in with the ongoing game audio.

Usage tips for the multimedia APIs

There are three main groups of interfaces in the Symbian Multimedia framework (MMF) which require 
some additional explanation beyond that given in the Symbian/UIQ SDK:

• Audio (CMdaAudioXxxx)
• Video (CVideoXxxx)
• Still Image

The CMdaAudioXxxx APIs are intended to be used for file and MIME types that are predominantly audio 
oriented. They correspond to the table of audio oriented MIME types above. Note that container file for-
mats like mp4 are handled exclusively by the video interface since these files can potentially contain video 
image data which the audio APIs can not handle.
Note: The only format currently available for audio recording by third party applications is AMR-NB. Addi-
tional formats may be available in future versions.

The CVideoXxxx APIs are intended to be used for file and MIME types that can be video-only, audio/
video or audio-only oriented. They correspond to the table of video oriented MIME types above. Note that 
there are significant differences of syntax between the audio utility class (CMdaAudioXxxx) and the video 
utility class (CVideoXxxx). Certain methods of programming against one of these interfaces may break 
compatibility with the other interface and vice-versa. The Symbian documentation should be read care-
fully to find the differences between the interfaces.

The MMF provides several APIs which support still image handling within what is collectively known as the 
image conversion library (ICL). The classes from earlier Symbian OS versions (CMdaXxxx), have been 
retained for backwards compatibility, but are marked as deprecated. ICL provides two main interfaces for 
decoding images; CImageDecoder and CImageDisplay.

The CImageDecoder class handles all Symbian supported formats, while CImageDisplay handles only 
the JPG and MNG subset. Both interfaces support JPG. However, the CImageDecoder interface pro-
vides no direct support for JPG EXIF extensions, which CImageDisplay does.

In the future, CImageDisplay is likely to include all the other Symbian supported formats, however it is 
unclear what release of the OS will contain this additional support.
37 November 2006



Developers guidelines | UIQ™ 3 C++
As there is no native Symbian support for the SVG format, this is provided in the form of plugin extensions 
to the base OS. Animated SVG content can access the appropriate plugin via the Content Handling 
Framework (CHF). A separate plugin is available to access the first frame of SVG content via the CImage-
Decoder interface.

Handling multiple formats will in many cases require developers to interface to multiple APIs.

Vibration API

Vibration parameters

The method for turning on the vibration uses two parameters to determine the sequence in which the 
vibration is to be performed. The first parameter, aIntervalOn, determines the interval in 0.1 seconds 
for keeping the vibration on. The second parameter, aIntervalOff, determines the interval in 0.1 sec-
onds for keeping the vibration off. The sequence is run until explicitly stopped.

Example:
The call 
CVibration::VibrationOn(10,10) 
runs the sequence "on for one second, off for one second" until explicitly stopped with the Vibra-
tionOff()call.

API blocking
Sometimes when the vibration is used internally, the public API is intentionally blocked from accessing the 
vibration. This means that for instance a vibration due to an incoming call can not be stopped via the pub-
lic API.

Vibration errors and callback functionality
The CVibration::NewL and CVibration::NewLC methods include the option to pass an MVibra-
tionObserver pointer. If this option is used, the observer object (typically the calling object) will receive 
a VibrationResponse callback on all calls made to that CVibration instance. If the vibration is cre-
ated without an observer, no callbacks are made.

It is recommended to make any vibration client an MVibrationObserver, since the method provides 
the error code of commands being passed to the vibration. The proper way for a client to become an 
MVibrationObserver is simply to inherit from that class and implement the VibrationResponse 
method.

Syntax examples
Link against: Vibration.lib 

#include <Vibration.h>

Member functions:
38 November 2006



Developers guidelines | UIQ™ 3 C++
Constructor: Use SonyEricsson::CVibration::NewL or SonyEricsson::CVibration::NewLC to 
construct an object.

Turn vibration on:

virtual void SonyEricsson::CVibration::VibrationOn (  TUint8  aIntervalOn,  
TUint8  aIntervalOff)

The parameters decides the requested behaviour. However, the vibration may adjust these internally in 
order to handle any physical vibration constraints.

Turn vibration off: 

virtual void SonyEricsson::CVibration::VibrationOff ( )

Sony Ericsson MMS API

The Sony Ericsson UIQ 3 phones incorporate their own version of MMS API, different from the MMS API 
that is found in the standard UIQ 3 SDK.

The Sony Ericsson MMS API is based on a similar MMS API published by Nokia Series 60 Developer Plat-
form 2.0 phones. This will allow easy porting of applications that use MMS between Series 60 and Sony 
Ericsson UIQ 3 phones. There are some differences, and these are detailed below.

For more information, see the Nokia Series 60 MMS API documentation.

UIQ 3 SDK emulator

When running the UIQ emulator, the UIQ MMS appears as MMS in the service list of the Messaging appli-
cation. The Sony Ericsson MMS appears as SEMC_MMS in the UIQ emulator's messaging application.

On the Sony Ericsson UIQ 3 phone targets, the MMS service appears in the Messaging application as 
MMS in English language phones, and appropriate letters for other regions. The UIQ 3 standard MMS 
service is not supported on Sony Ericsson UIQ 3 phones.
39 November 2006



Developers guidelines | UIQ™ 3 C++
Not supported methods

The following table lists all methods of the Nokia MMS API that are not supported in Sony Ericsson UIQ 3 
phones.

Method Comments

SetMessageClass()
SetDefaultMessageClass()
DefaultMessageClass()

An outgoing MMS message always has its message class set as 
'Personal' by Sony Ericsson UIQ 3 phones. Methods SetDe-
faultMessageClass and SetMessageClass() do nothing. 
Method DefaultMessageClass returns 0.

DefaultSpeaker() Sony Ericsson UIQ 3 phones always uses the same speaker for 
playing MMS audio. This method returns 0.

SetSecondAccessPoint()
SecondAccessPoint()

Only one MMS access point can be set on Sony Ericsson UIQ 3 
phones. Method SetSecondAccessPoint() does nothing. 
Method SecondAccessPoint() returns 0.

SetAttachmentCharsetL() All text attachments are sent using the UTF-16 encoding of the 
UCS-2 character set. This method leaves with KErrNotSup-
ported.

SetImageHeight()
SetImageWidth()
ImageHeight()
ImageWidth()

The dimensions of an attached image cannot be changed after an 
image file is attached to a MMS message. Methods SetImage-
Height() and SetImageWidth() do nothing. Methods Image-
Height() and ImageWidth() return 0.

SetServiceNameL()
ServiceNameL( )

The MMS Service does not have a name on Sony Ericsson UIQ 3 
phones. Method SetServiceNameL() does nothing. Method 
ServiceNameL() returns an empty descriptor.

SetSenderL() The MMS message sender is inserted automatically. This method 
leaves with KErrNotSupported if called.

SetExpiryDate() Absolute expiry dates are not supported. This method does noth-
ing if called. Use a relative expiry time interval instead.

SetDeliveryDate()
DeliveryDate()

Absolute delivery dates are not supported. Method SetDeliver-
yDate() does nothing if called. Method DeliveryDate() 
returns 0 if called.

SetDeliveryTimeInterval()
DeliveryTimeInterval()

Delivery time is not supported. Method SetDeliveryTi-
meInterval() does nothing. Method DeliveryTimeInter-
val() returns 0.

SetSendRetryCount()
SetSendRetryInterval()
SendRetryCount()
SendRetryInterval()

Retrying to send messages that have failed to send is not sup-
ported. Methods SetSendRetryCount() and SetSendRetry-
Interval() do nothing if called. Methods SendRetryCount() 
and SendRetryInterval() return 0 if called.

SetMessageFetchState()
MessageFetchState()

Message fetching cannot be controlled, and is always on. Method 
SetMessageFetchState() does nothing. Method Mes-
sageFetchState() returns 0.
40 November 2006



Developers guidelines | UIQ™ 3 C++
Changed method

Accessing the MMS Client MTM

Before using any functionality of the MMS client MTM, it is necessary to obtain a handle to it. 

Example:

iSession = CMsvSession::OpenSyncL(*this);
iMtmReg = CClientMtmRegistry::NewL(*iSession);
iMmsMtm = (CMmsClientMtm*) iMtmReg->NewMtmL( KUidMsgTypeMMS );

Reading and Changing MMS Settings

There are two setting types: 

• Settings that apply to the MMS service on the phone, for example MaximumReceiveSize()
• Settings that are applied to new MMS messages as default values, but can be changed for individual 

messages. for example DefaultSenderVisibility(). 

Both setting types are read and changed the same way. A handle to the MMS Client MTM is required, the 
context needs to be set, the settings need to be loaded, the appropriate MMS Client member function 
called, and the settings need to be saved.

Example:

aMmsMtm->SwitchCurrentEntryL(aMmsMtm->DefaultSettingsL());
aMmsMtm->LoadMessageL();
aMmsMtm->SetDefaultSenderVisibility(EMmsSenderVisibilitySjow);
aMmsMtm->SaveMessageL();

Method Comments

SetExpiryInterval The Nokia API uses a TTimeIntervalSeconds value to set the 
expiry interval. The Sony Ericsson MMS instead enumerates expiry 
intervals to a fixed set of enumerated values. These values are 1 
hour, 12 hours, 1 day, 1 week and maximum. When calling 
SetExpiryInterval(), the nearest fixed value to the requested 
expiry interval is chosen instead.
41 November 2006



Developers guidelines | UIQ™ 3 C++
Sending a MMS Message

Creating and sending a MMS message using the Sony Ericsson MMS API is performed in seven steps as 
follows:

1. Set context to the Draft folder
iMmsMtm->SwitchCurrentEntryL( KMsvDraftEntryId );

2. Create the message and retrieve its TMsvId
iMmsMtm->CreateMessageL( iMmsMtm->DefaultSettingsL() );
TMsvId entryId=iMmsMtm->Entry().EntryId();

3. Set message parameters
iMmsMtm->SetMessagePriority(EMmsPriorityHigh);
iMmsMtm->SetDeliveryReport(EMmsDeliveryReportNo);
iMmsMtm->SetReadReply(EMmsReadReplyNo);
iMmsMtm->AddAddresseeL( *aRecipient);

4. Add attachments and set their content-ids
TMsvId attachmentID = KMsvNullIndexEntryId;
TFileName attachmentFile1(_L("c:\\system\\apps\\MmsApiTest\\a1.txt"));
iMmsMtm->CreateAttachment2L( attachmentID, attachmentFile1 );
iMmsMtm->SetAttachmentTypeL(attachmentID, textPlain);
iMmsMtm->SetAttachmentCidL(attachmentID, _L8("A1"));

5. Set the message root (indicate which attachment is the SMIL)
iMmsMtm->SetMessageRootL(attachmentID);

6. Save the message, make it visible and move it to the outbox
TMsvEntry ent = iMmsMtm->Entry().Entry();
ent.SetInPreparation(EFalse);
ent.SetVisible(ETrue);            
iMmsMtm->Entry().ChangeL(ent);    

iMmsMtm->SaveMessageL();
iMmsMtm->Entry().MoveL(entryId,KMsvGlobalOutBoxIndexEntryId);
iMmsMtm->SwitchCurrentEntryL( entryId );

7. Send the message in the background
CMsvOperationWait* wait = CMsvOperationWait::NewLC(); 
wait->iStatus = KRequestPending;
42 November 2006



Developers guidelines | UIQ™ 3 C++
CMsvOperation* op = NULL;
op = iMmsMtm->SendL( wait->iStatus );
wait->Start();
CleanupStack::PushL( op );
CActiveScheduler::Start();

TInt result=op->iStatus.Int();
CleanupStack::PopAndDestroy(2); 

Error Handling

The Series 60 MMS API defines error codes. These codes are not used by the Sony Ericsson MMS API.

Some standard error detection can be discovered by looking at the result of the background send opera-
tion, as shown in the sample code above. However, this error code will not show if the MMS message has 
failed to send. To detect this it is necessary for the application programmer to monitor the MMS outbox 
for unsent messages. A MMS message that fails to send will remain in the MMS outbox.

Test Harness

A test harness has been supplied with this SDK extention. It is called UIQ_MmsApiTest. It is built the nor-
mal way, either using the CodeWarrior IDE, or from the command line using:

Emulator

bldmake bldfiles
abld build winscw udeb

Target

bldmake bldfiles
abld build GCCE urel
makesis MmsApiTest.pkg
$ signsis -s MmsApiTest.sis MmsApiTest_sign.sis cert.cer key.key password

The test harness shows how to initialize the MMS MTM, change settings, create and send a MMS mes-
sage, and manipulate MMS notifications.

When Send is chosen in the test harness on the emulator, a new MMS message appears in the 
SEMC_MMS outbox. When the SEMC_MMS outbox has a message in it, it is not possible to switch to this 
outbox currently, as a panic occurs.

Choosing menu item 'Run Test' in the test harness will change your MMS settings when on target, and the 
MMS service may not work until you revert your settings to the correct values.
43 November 2006



Developers guidelines | UIQ™ 3 C++
OpenGL-ES implementation

The Sony Ericsson Symbian OS 9.1/UIQ 3 platform has full support for the common and common_lite pro-
files OpenGL-ES 1.1. This also means that EGL 1.1 is supported. Official 1.1 header and library files can 
be found in the SDK.

OpenGL-ES is accelerated through dedicated 3D, MBX Lite, and floating-point hardware, VFP9. The 
geometry stage is not implemented in hardware but has been optimized using the floating point hardware.

All OpenGL-ES windows are double buffered and always support flipping even when not in full screen, 
which means that rendering to the frame buffer is never performed.

UIQ and OpenGL-ES

There are several ways of creating an OpenGL-ES application:

• Using QikViewBase:
Create OpenGL-ES context and drawable in ViewConstructL or ViewActivatedL and call Drawa-
bleWindow() to get the RWindow associated with the control. The RWindow is submitted to 
eglCreateWindowSurface as the window argument.

For full screen:
TQikViewMode vm;
vm.SetFullscreen();

• Using CCoeControl
Create OpenGL-ES context and drawable in ConstructL and call Window() to get the RWindow 
associated with the control. The RWindow is submitted to eglCreateWindowSurface as the window 
argument.

For full screen:
SetExtentToWholeScreen();

Good practice is to stop the render loop and release all OpenGL-ES resources, especially texture memory 
and render surfaces, when the application is sent to the background. The behaviour can then be auto-
mated by creating all OpenGL-ES objects in ViewActivatedL and destroying them in ViewDeacti-
vated.

The screen saver can be inactivated by posting TRawEvent like below: 

TRawEvent  RawEvent;
RawEvent.Set(TRawEvent::EActive);
UserSvr::AddEvent(RawEvent);

To do this, the application must have the capability WriteDeviceData. The screen saver should not be 
inactivated for too long since it will disable power saving.

When running in a different orientation than the standard portrait, for example in landscape mode, the 
OpenGL-ES coordinate system will also be transformed accordingly. In landscape mode a full screen win-
dow will be 320 by 240 instead of 240 by 320.
44 November 2006



Developers guidelines | UIQ™ 3 C++
OpenGL-ES development tips

Compiler flags for VFP support
When using softvfp+vfp floats are passed in ARM registers instead of VFP registers. Specifying only 
vfp, gives full VFP support, but make sure that the linkage specification is correct when exchanging floats 
with binaries that are not built for VFP. Exported functions with float arguments should be followed by 
__SOFTVFP linkage macro

Frame buffers
Both 32 and 16 bits per pixel frame buffers are supported and there is no major difference in performance, 
but memory usage will be twofold when using 32-bit. All 3D operations are performed using 32 bits inter-
nally.

Choosing EGLConfig
If 565 is specified for RGB in the attribute list submitted to eglChooseConfig, the first EGLConfig 
returned in the list will be an RGBA 8888-config. In order to get a RGB 565-config, you need to retrieve all 
available configs supporting the attributes and cycle through them until a RGB-565 is found.

Other tips
• eglCreatePixmapSurface only supports hardware bitmaps.

• It is always a lot faster to load power of two sized data using glTexImage2D or glTexSubImage2D 
than loading non power of two sized data using glTexSubImage2D.

• Currently it is not very useful to stream image data greater than 256x256 because of texture load time.

• eglSwapInterval is limited to 0 and 1. The default value is 1.

• Memory available for textures, window surfaces and pbuffers is ~5 MB (only applicable for M600 and 
P990 series). This value is not affected by the application heap.
45 November 2006



Developers guidelines | UIQ™ 3 C++

46 November 2006

Links and references

Links

Reference documents

Development books

Symbian C++ developer http://www.symbian.com/developer/index.html
(Be aware that this is not Sony Ericsson specific information)

Sony Ericsson Developer World http://www.sonyericsson.com/developer

Author Title ISBN Publication date

Dreamtech Programming for embedded systems: Cracking the 
code

764549545 July 2002

Harrison Symbian OS C++ for Mobile Phones 0470856114 04/17/03

Jipping Symbian OS Communications Programming 0470844302 06/18/02

Mallick Mobile And Wireless Design Essentials 0471214191 04/25/03

Symbian Newcomer to Symbian OS Guide

http://www.symbian.com/developer/index.html
http://www.sonyericsson.com/developer


Developers guidelines | UIQ™ 3 C++

47 November 2006

Index

A
APIs ..................................................................... 11
application

building ......................................................... 16
deploying ...................................................... 17
installing ....................................................... 16

B
battery status ...................................................... 24
Bluetooth keyboard ............................................ 12

C
compatibility ....................................................... 11

D
developer certificate ........................................... 20

F
features ................................................................. 9
flight mode .......................................................... 24
flip close .............................................................. 26
font ........................................................................ 9

H
HAL API .............................................................. 23

J
Java support ....................................................... 10

M
memory ................................................................. 9
Memory Stick ........................................................ 9
music player ........................................................ 10

O
ODD .................................................................... 19
on-target-debugging ........................................... 19

P
P990 features ........................................................ 9
porting applications ............................................ 11
power consumption ............................................ 22

S
screen size ............................................................ 9
SDK

extension package ....................................... 16
UIQ 3 ............................................................ 16

security ............................................................... 20
storage .................................................................. 9

streaming ............................................................ 10
Symbian signed .................................................. 20

U
user interface ...................................................... 26

V
vibration .............................................................. 13
video player ........................................................ 10
video recorder .................................................... 10


	Preface
	Purpose of this document
	Sony Ericsson Developer World
	UIQ Developer Program
	Document conventions
	Products
	Abbreviations
	Typographical conventions

	Trademarks and acknowledgements
	Document history

	Contents
	Technical overview
	Phone features
	Programming environment
	Backwards compatibility
	Porting applications

	API overview
	Symbian OS subsystems and APIs
	UIQ 3 specific API
	Other supported APIs


	Application development
	General development tips
	The UIQ 3 SDK
	Sony Ericsson SDK extension packages
	Building and installing applications
	Generation of project files
	Building for the device from the command line
	Deploying applications
	.sis packages
	Installation and data storage
	On-target debugging (ODD)
	Signing digital applications


	Programming issues
	General issues
	Power consumption considerations
	Memory usage considerations

	Base HAL API issues
	Retrieving battery status
	Retrieving flight mode

	Telephony API issues
	ETEL Core API

	HTTP framework extension
	UI configuration modes
	Supported UI configurations
	Default UIQ 3 flip behavior
	Handling UI config changes
	Accessing current UI config mode
	UI configurations in the emulator

	Bluetooth keyboard APIs
	Interface Design
	Client API
	HIDHOST ECom Plug-in Interface

	Camera APIs
	General
	Compliancy issues
	Camera settings
	Advanced camera settings - Autofocus
	Taking a picture
	Duplicate camera

	Multimedia issues
	Supported MIME types
	Audio policies for priorities
	Usage tips for the multimedia APIs

	Vibration API
	Vibration parameters

	Sony Ericsson MMS API
	UIQ 3 SDK emulator
	Not supported methods
	Changed method
	Accessing the MMS Client MTM
	Reading and Changing MMS Settings
	Sending a MMS Message
	Error Handling
	Test Harness

	OpenGL-ES implementation
	UIQ and OpenGL-ES
	OpenGL-ES development tips


	Links and references
	Reference documents

	Index
	A
	B
	C
	D
	F
	H
	J
	M
	O
	P
	S
	U
	V


