

CONFIDENTIAL

2G_MAUI_META_REV_A Oct 28, 2015 FABIO MULLER PRODUCT ENGINNERING

MAUI META Setup Inicial:

1 – Baixar o pacote de ferramentas do Koleos direto do "FTDS" na aba "Technical Documentation"

- 2 Descompactar o arquivo "Maui META 3G ver 8.1520.0.0.zip"
- 3 Dar um duplo click no arquivo "Meta2_3G_C2K.exe"

4 - Em "Action" clicar em "Open NVRAM database"

5 – Na janela que abrir, selecionar o arquivo de database do telefone.
Obs_1: O arquivo sempre começa com "BPLGUInfoCustomAppSrcP" e é diferente em cada versão de SW do telefone.

Obs_2: Se estiver usando USB para comunicar com o telefone, Sempre verificar se o Cabo USB é de 4 Vias, pois se for conectado um Cabo USB de 5 Vias no telefone Koleos, o mesmo irá queimar.

Act	tion Options Help	
	Open NVRAM database	JSB COM
	Open authentication file	arget
	Open certificate file	

MAUI META Setup Inicial:

1 – Clicar em "Options" e selecionar "Connect Smart phone into META mode"

2 – Escolher o tipo de conexão, se estiver usando UART selecionar a porta "COM equivalente", caso esteja usando USB selecionar "USB COM"

3 – Clicar em "Reconnect"

4 – Encaixar a placa no "*Fixture* de *Analyzer*", conectar o "Cabo USB de
4 Vias" ou "Cabo UART" e aguardar a comunicação do Telefone.
Obs_1: O "Maui META" sempre abre a última ferramena que foi usada.

Obs_2: Se estiver usando USB para comunicar com o telefone, *Sempre verificar se o Cabo USB é de 4 Vias, pois se for conectado um Cabo USB de 5 Vias no telefone Koleos, o mesmo irá queimar.*

:21	
le	TA log Flow control Support Disconnect
on	10M log C Hardware
USB	PBROM log
	> Tatal and 0 hater
	l otal read 0 bytes
disconnect	

:21		
	META log BROM log SP BROM log	Disconnect Reconnect
	WIFI BB WIFI RF BT BB FM	
	Total r	read 0 bytes

RF TOOL (2G):

1 –Selecionar "RF Tool"

Maui META - Bulid 8.1520.1.0	: 2015-05-21 - 12:37:21		
Action Options Help			
LTE RF Tool	USB COM 🚽	META log	Flow control Supp
MATY Tool	h target	BROM log	— ● Software ▲ At ● Hardware
NFL 1001 NVBAM Editor		SP BROM Id	
RF Tool	1		
TDMB Tool			
Update parameter WiFi Tool			
BB chip Ext.clock 20	G RF 3G RF Chip		
MTE	169RF MT6169RF		
Connect target successfully			

Total read 27616 bytes

Gain Sweep _ Setup (Simulação):

- 1 Selecionar a Aba "Gain Sweep"
- 2 Selecionar a Banda de Testes
- 3 Setar o Canal de Testes
- 4 Clicar no botão "Start"
- 5 Comparar os resultados com uma placa golden

AFC D/	AC Sweep	1 Cry	stal AFC	Control		Crys	stalv
PM	Gai	n Sweep	C	ontinous R	<) (Cont
BANE GSM900 RX Pat	D AR 20 V 20 th Loss Settin	3 FCN PM 1 gs	/Frame Save to	PM Count 20 o File	Min 20	Gain	lΒ
	DOD 04	TT J		37.113			
	LOU AIII	. ՍՏՅԱ		Y SLIU			
BAND A	ARFCN Pov	ver Power	: Gain	Deviation	I_DC	COD	Сs
BAND A	ARFCN Pov 20 -34.375	ver Power 5 -51.750	: Gain 17.375	Deviation 0.000	I_DC	C_D 20	C s
BAND A GSM900 GSM900	ARFCN Pov 20 -34.375 20 -34.375	ver Power 5 -51.750 5 -51.750	Gain 17.375 17.375	Deviation 0.000 0.000	I_DC 0 (0 (COD) 20) 20	C s
BAND A GSM900 GSM900 GSM900	ARFCN Pov 20 -34.375 20 -34.375 20 -34.375	ver Power 5 -51.750 5 -51.750 5 -51.750	Gain 17.375 17.375 17.375	Deviation 0.000 0.000 0.000	I_DC 0 0 0 0) 20) 20) 20) 20) 20	C s
BAND A GSM900 GSM900 GSM900 GSM900	ARFCN Pov 20 -34.375 20 -34.375 20 -34.375 20 -34.375	ver Power 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750	Gain 17.375 17.375 17.375 17.375	Deviation 0.000 0.000 0.000 0.000	I_DC 0 0 0 0 0 0	0_D 20 0_20 0_20 0_20 0_20	C s
BAND A GSM900 GSM900 GSM900 GSM900 GSM900 GSM900	ARFCN Pov 20 -34.375 20 -34.375 20 -34.375 20 -34.375 20 -34.375	ver Power 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750	Gain 17.375 17.375 17.375 17.375 17.375 17.375	Deviation 0.000 0.000 0.000 0.000 0.000	I_DC 0 (0 (0 (0 (0 (0_D 20 20 20 20 20 20 20 20	C s
5 BAND A GSM900 GSM900 GSM900 GSM900 GSM900 GSM900 GSM900	ARFCN Pov 20 -34.375 20 -34.375 20 -34.375 20 -34.375 20 -34.375 20 -34.375	ver Power 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750	Gain 17.375 17.375 17.375 17.375 17.375 17.375 17.375	Deviation 0.000 0.000 0.000 0.000 0.000 0.000	I_DC 0 (0 (0 (0 (0 (0 (0_D 20 20 20 20 20 20 20 20 20 20	C s
5 BAND A GSM900 GSM900 GSM900 GSM900 GSM900 GSM900 GSM900	ARFCN Pov 20 -34.375 20 -34.375 20 -34.375 20 -34.375 20 -34.375 20 -34.375 20 -34.375	ver Power 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750 5 -51.750	Gain 17.375 17.375 17.375 17.375 17.375 17.375 17.375 17.375	Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000	I_DC 0 (0 (0 (0 (0 (0 (0_0 20 0_20 0_20 0_20 0_20 0_20 0_20 0_	C s

Continous RX Setup (Debug):

- 1 Selecionar a Aba "Continous RX"
- 2 Selecionar a Banda de Testes
- 3 Setar o Canal de Testes
- 4 Clicar no botão "Start"

5 – Medir o sinal de RX na placa seguindo o caminho conforme é mostrado no Esquema Elétrico, comparar os valores medidos com uma placa *golden*.

RF Tool	- • ×
AFC DAC Sweep Crystal AFC Control Crystal AFC Sweep Multi-slot TX PM Gain Sweep Continous RX Continous TX TX Level and Profile	GPS co-clock
Input Input	
Continuous RX stop	

TX Level and Profile _ Setup (Simulação):

- 1 Selecionar a Aba "TX Level and Profile"
- 2 Setar a modulação
 - GMSK para GSM
 - EPSK para EDGE
- 3 Selecionar a Banda de Testes
- 4 Setar o Canal de Testes
- 5 Setar o *Training* Sequence
- 6 Selecionar o "Power Control Level"
- 7 Clicar no botão "Start"
- 8 Comparar os resultados com uma placa golden

AFC DAC Sweep Crystal AFC Control Cry	sta
AFC DAC Sweep Crystal AFC Control Cry	ista
PM Gain Sweep Continous RX G	Coi
Modulation BAND ARFCN TSC PCL AFI GMSK ▼ GSM900 ▼ 20 5 ▼ 5 4100	C)
Temperature Sensor	
Continuous RX stop	

Continous TX _ Setup (Debug):

- 1 Selecionar a Aba "Continous TX"
- 2 Setar a modulação
 - GMSK para GSM
 - EPSK para EDGE
- 3 Selecionar a Banda de Testes
- 4 Setar o Canal de Testes
- 5 Selecionar o "Power Control Level"
- 6 Clicar no botão "Start"

7 – Medir o sinal de TX na placa seguindo o caminho conforme é mostrado no Esquema Elétrico, comparar os valores medidos com uma placa *golden*.

CTHANK YOU

10

