Manual Test Procedures

Introduction

The phone allows keypad and computer controlled testing of various digital test parameters.

This chapter includes the keypad/computer functions and recommended equipment setup to use when testing a phone manually.

Call-Processing Tests

Most communications analyzers can simulate a cell site in order to perform automatic call-processing tests. Automatic call processing tests can be performed while the phone is in standby mode.

Refer to the communications analyzer's manual for details about performing call-processing tests. The following call-processing test sequence is recommended:

- 1. GSM Mobile Originated Call
- 2. WCDMA Mobile Originated Call
- 3. GSM handover
- 4. DCS handover
- 5. PCS handover

Non-Signalling Test Measurements

In an event that the phone exhibits RF failures that prevent call processing, the service technician may need to perform some non-signalling tests. These tests will provide information regarding which stage of the phone is failing prior to opening the phone for troubleshooting. The following tests will be described in this chapter.

- GSM/DCS/PCS TX Power Output
- GSM RSSI
- WCDMA TX Power Output

The digital phasing parameters are stored in a EPROM on the Transceiver Board. Each transceiver is shipped from the factory with these parameters already calibrated. However, if a board is repaired, these parameters should be measured and, if necessary, adjusted with the GP-Gate System. Checking and adjusting calibration parameters is also useful as a troubleshooting/ diagnostic tool to isolate defective assemblies.

GSM/DCS/PCS Call Processing

In order to successfully complete a GSM call processing procedure, a test USIM card needs to be available. Test USIM cards have default call parameters that allow users to perform call processing tests through GSM base station simulators. This allows service technicians to perform simulations without accessing the customer's cellular account.

Hardware Requirements

There are various hardware configurations to perform manual call processing procedures. Below, is a list of the various options. All options require the battery to be attached. A GP-gate system can also be used for manual testing. Refer to the GP-gate user's manual for details.

Power Options

- Fully Charged Battery (SNN5639B¹ or equivalent)
- Full-Rate Power Supply (PSM5049A¹)
- Battery Eliminator (5-00-3F-10000²) with 2-Wire Adapter (2-00-68-10000²) **Note:** Requires a single output power supply

Control Interface Options (PCS Only)

- USB Cable (SKN6311A¹)
- Serial Cable (SKN6315A¹) with CE converter (SYN0279B¹)
- **Note:** If handset test commands are being used, a control interface is not needed.

¹Contact your local Motorola dealer for ordering ²Contact AMS Software and Elektronik GmbH for ordering RF Interface (Everything listed is required)

- SMA/N-type Adapter (0-00-00-40042²)
- SMA Cable 0.5m (0-00-00-40047²)
- Repair Fixture (5-00-4T-10000²)
- USIM (0-00-00-40810²)

Software Requirements (PCS only)

If PCS call processing procedures are necessary, the user will need to send a test command to the phone prior to beginning the test. The command can be initiated through handset test commands or computer test commands. Software requirements for each method is listed below.

Handset Test Command

• No software needed

Computer Test Command

• Radio Comm (latest release)

Call Origination (GSM and DCS only)

Use the following procedures for call processing. The screen shots are from a Rohde and Schwarz CMU 200. The procedures can be adopted to any other test box that will be used to perform call processing.

- 1. Install the test USIM in phone.
- 2. Connect hardware as illustrated in figure 13.

Note: Control interface doesn't need to be connected at this time.

3. Setup up the test box for GSM or DCS Signalling

Figure 10. GSM Signalling Setup

- 4. Set Broadcast Channel (BCH) to 120 (GSM) or 700 (DCS)
- 5. Set Broadcast channel level to -85dBm
- 6. Set Traffic Channel (TCH) to 38 (GSM) or 512 (DCS)
- 7. Set Traffic channel level to -85dBm

Figure 11. GSM Connection Control

😑 GSM 900	Connectio	n Control					Signal On
Frequency Offset	4	+0 Hz	ТСН&ВССН	TCH	Single	e Slot 🖳	Slot Mode
Mode		BCCH	BCCH and TCH				
BCCH Level	- 85.	0 dBm		- 85.0	dBm -	20.0 dB unused	TCH Level
RF Channel	37			975	925.2 MHz		RF Channel
					Off		Hopping
				3			Timeslot
Connection		MS Signal	BS Signal	Network	AF/RF O→	Sync	1 2

- 8. Wait until the phone indicates a receive signal
- 9. Dial a number from the phone and press the send button.
- 10. The phone is now connected.

Figure 12. GSM Call Connected

Call Origination (PCS Only)

Before beginning, one of the following test command procedures needs to be completed.

Handset Test Command

- Power up phone
- Enter the following key sequence
- Menu 0 H T C M D *

0+ 4 они 8 тых 2 лес 6 мию 3 ост *

- Enter the following test commands in the Opcode screen
- 54 ok SUSPEND
- 10*0*5 CPLOAD, GSM 1900
- Power cycle phone

RadioComm Test Command

- Connect as illustrated in figure 13
- Power up phone
- Start RadioComm application
- Correctly select Settings option for USB or serial

Figure 14. RadioComm COM Port

Click on AT+/mode, suspend, CP_Mode 1900, respectfully

Figure 15. Radio Comm Screen

😵 RadioComm (Service Edition) v5.0.0 3G						
Main Settings Phone Help						
SUSPEND	-CP_MODE -		LOAD_SYN-			
AT+MODE	900	WCDMA	Set 1			
SUSPEND	1800					
Normal	1900		Bx:			
Get Mode	900/1800	Get Mode	Tx:			

• Power cycle phone

Repeat steps 1 through 10 in the ,"Call Origination (GSM and DCS only)," section with the following modifications,

- Set PCS Signalling
- BCH = 661
- TCH = 512

Once PCS call processing is complete, return the phone to its original state by performing the following procedure,

Handset Test Command

- 54 ok SUSPEND
- 10*0*10 CPLOAD, Dual mode
- Power cycle phone

Computer Test Command (Radio Comm)

- Click on AT+/mode, Suspend, CP_Mode 900/ 1800, respectfully
- Power cycle phone

Call Test Parameters (GSM/DCS/PCS)

While the phone under test is in an active call, the parameters for each band should be verified as described.

	Low	High	
Parameter	Limit	Limit	Unit
Burst Avg Power Out ¹	31	33	dBm
Burst Output Shape	1	1	P/F
Time Advance Error	-1	1	bit/sym
RMS Phase Error	0	5	deg
Peak Phase Error	-20	20	deg
Frequency Error	-90	90	Hz
RX Level Error@-105 dBm ²	1	9	
RX Quality @-105 dBm ²	0	4	
BER @-105, 10k bits ³	0	2	%

Table 4. GSM Call Parameters

¹Power Level = 5

²Set BS TCH level to -105 dBm

³Set BER TCH level to -105 dBm with 10k bits or 128 Frames

Table 5. DCS Call Parameters

	Low	High	
Parameter	Limit	Limit	Unit
Burst Avg Power Out ¹	28	32	dBm
Burst Output Shape	1	1	P/F
Time Advance Error	-1	1	bit/sym
RMS Phase Error	0	5	deg
Peak Phase Error	-20	20	deg
Frequency Error	-180	180	Hz
RX Level Error@-103 dBm ²	3	11	
RX Quality @-103 dBm ²	0	4	
BER @-103, 10k bits ³	0	2	%

¹Power Level = 0

²Set BS TCH level to -103 dBm

³Set BER TCH level to -103 dBm with 10k bits or 128 Frames

Table 6. PCS Call Parameters

	Low	High	
Parameter	Limit	Limit	Unit
Burst Avg Power Out ¹	28	32	dBm
Burst Output Shape	1	1	P/F
Time Advance Error	-1	1	bit/sym
RMS Phase Error	0	5	deg
Peak Phase Error	-20	20	deg
Frequency Error	-190	190	Hz
RX Level Error@-104 dBm ²	2	10	
RX Quality @-104 dBm ²	0	4	
BER @-104, 10k bits ³	0	2	%

¹Power Level = 0

²Set BS TCH level to -104 dBm

³Set BER TCH level to -104 dBm with 10k bits or 128 Frames

Burst Output Shape should fall within the standard limits of the Power Ramp.

BER measurements is only required if RX Quality reads a value of 4 or greater.

_	-	<u> </u>					<u> </u>						_
Ch. : Ch. :		SM1	800 O	vervie	N			Circuit Switch Single	ed Slot	(())) 	Ъ	Conne Contro	ct ol
dB	Max. Lev	el: Auto /	Lov Off	v Noise F	CL: 1 / 28. / O	0 dBm ff	Chan.	/ Meas Slo	:: 740 / Ot	/ ff Curren	3	P/t Nor GMSK	m,
-10												Applic.	. 1 c. 2 <mark>/</mark>
-20										+		Analyz Level	er
<u>-30</u>												MS Sig	Inal
-50				25.57 d	Ok Bm Avg.Bu	stPower	(Cur.)			_	ļ	BS Sig	nal
-60				-0.75 S GSM 100 Burs	0 TSC de	tected	r			+		Networ	rk
M		20	40	60	0ut of	Tolerani 10	00	120	14	0	M	Marker	lay <mark>/</mark>
Over	rview	Power	Modu	lation	pectrum			Receive	er lity	A	udio	Menus	

Figure 16. Burst Output Shape

It is recommended that handover procedures be performed as shown in the following table.

Table 7. GSM/DCS/PCS Handover

	Fro	m	Т	0
	Traffic Power		Traffic	Power
Band	Channel	Control	Channel	Control
GSM	975	5	124	19
DCS	512	0	885	15
PCS	512	0	810	15

WCDMA Call Processing

In order to successfully complete a GSM call processing procedure, a test USIM card needs to be available. Test USIM cards have default call parameters that allow users to perform call processing tests through GSM base station simulators. This allows service technicians perform simulations without accessing the customer's cellular account.

Hardware Requirements

Refer to , "Hardware requirements," under, "GSM/ DCS/PCS Call Processing." Also Refer to Figure 13.

Software Requirements

None.

Call Origination (WCDMA)

Use the following procedures for call processing. The screen shots are from a Rohde and Schwarz CMU 200 with WCDMA signalling options installed. The procedures can be adopted to any other test box that will be used to perform call processing.

- 1. Install the test USIM in phone.
- 2. Connect hardware as illustrated in figure 4.

Note: Control interface doesn't need to be connected at this time.

3. Setup up the test box for WCDMA FDD Signalling

Figure 17. WCDMA Signalling Setup

4. Set UE Signal, RF Channel Uplink to 9750

Figure 18. Channel Uplink(UE Signal)

WCDMA Call Processing

5. Set TPC Pattern Type to All 1

Figure 19. TPC Pattern Type(UE Signal)

WCDMA FDD Connection Control	Signal On	
Setup	TPC Settings/TPC Pattern T	ype
PICH	-5.0 dB	
PICH Channel Code	3	
AICH	-3.0 dB	
AICH Channel Code	6	
DPDCH	-7.0 dB	
DPCH Channel Code	6	
Power Offset (DPCCH/DPDH)	0.0 dB	
Secondary Scrambling Code	1	
▼ TPC Settings		
Default Settings		
TPC Algorithm	Algorithm 2	
TPC Step Size	1 dB	
TPC Pattern Type	All 1	
Pattern	000000000000000000000000000 bin	
Repeat Pattem	Off	
	1 - 1	
Connection UE Signal BS Si	gnal Network RF 🕀 Syr	ic. <u>1</u> 2

- 6. Wait until the phone indicates a signal
- 9. Dial a number from the phone and press the send button.
- 10. The phone is now connected.

Figure 20. WCDMA Call Connected

WCDMA Call Test Parameters

While the phone under test is in an active call, the parameters for each band should be verified as described.

Table 5	. WCDMA	Call F	Parameters
---------	---------	--------	------------

	Low	High	
Parameter	Limit	Limit	Unit
Avg. RMS Power Out ¹	20.5	21.5	dBm
Avg. Frequency Error ²	-195	195	Hz
Avg. RMS EVM ²	0	13.5	%
Avg. RMS ACLR - 2 ³	-100	-43	dB
Avg. RMS ACLR - 1 ³	-100	-33	dB
Avg. RMS ACLR + 1 ³	-100	-33	dB
Avg. RMS ACLR + 2 ³	-100	-43	dB

¹Refer to Figure 10

²Refer to Figure 11 ³Refer to Figure 12

Figure 21. WCDMA Modulation

Figure 22. ACLR Screen

Non-Signalling Test Procedures (GSM/DCS/PCS)

Non-Signalling Test Procedures (GSM/DCS/PCS)

To perform non-signalling test procedures, the user is required to be familiarized with sending test commands to the phone under test. The test commands can be sent using the Handset test command interface or through a computer. Please refer to section, "Handset Test commands," for details on how to send test commands through phone keypad entry.

In order to successfully send test commands to the phone under test, the phone needs to be in suspend mode. Follow the listed procedure to place the phone in suspend mode.

Handset Test Commands

54 ok Suspend

Radio Comm Test Commands

Click AT+MODE then SUSPEND (Serial Only) Click PST Initialize and click SUS-PEND when initialization is complete (USB Only)

SUSPEND -	
AT+MODE	
SUSPEND	

Hardware Requirements

Refer to page 3-2 for a list of Hardware. Refer to Figure 13 for a configuration illustration.

Software Requirements

Handset Test Command

• No software needed

Computer Test Command

• Radio Comm (latest release)

Verify TX Power Output (GSM/DCS/PCS)

Verify the TX Power output by initiating the commands in this section. Verify that the results fall within the following limits.

Table 8. TX Power Limits

	Low	High	
Parameter	Limit	Limit	Unit
GSM TX Power Out	31	33	dBm
DCS TX Power Out	28	29.5	dBm
PCS TX Power Out	28	29.5	dBm

Handset Test Commands

54	Suspend
10*0*101	WCDMA/GSM/DCS mode
20*38*0 ²	Set Channel 38
45*5 ³	Set GSM Power Level 5
7*6*1	Enable Carrier

10*0*5 for PCS mode

²20*700*0 for DCS Channel 700; 20*661*0 for PCS Channel 661 ³45*0 for DCS/PCS Power level 0

Non-Signalling Test Procedures (GSM/DCS/PCS)

Radio Comm Test Commands

Click on 900/1800 (GSM/DCS) or 1900 (PCS)

-	CP_MODE -	
	900	
	1800	
	1900	
	900/1800	

Enter 38 (GSM), 700 (DCS), or 661 (PCS) and then click Set

-LOAD_S	SYN —
38	(Set)

Enter 5 (GSM) or 0 (DCS/PCS) and then click Set

	30.1	L
		Ē
click ON	C	10

3G	1	3G	i 2	3G	i 3	3G 4	3
	RRI	ER-					
	0	N	(DFF			
06 - Pseudo Random w/Midamble 4							

GSM RSSI

Verify GSM RSSI by initiating the commands in this section. Verify that the RSSI results are equal to the Broadcast Channel (BCH) level. The user will need to set the RF generator with the following parameters.

Broadcast Channel (BCH):	20
Broadcast Channel (BCH) Level:	-105 dBm

Handset Test Commands

No supported test commands

Radio Comm Test Commands

Click on 900/1800 (GSM/DCS) or 1900 (PCS)

- SCMP INIT

Stop

Channel: 20

Enter Channel 20 Click INIT

Click Execute Verify return data is approximately -105 dBm

Non-signalling Test Procedures (WCDMA)

Non-signalling Test Procedures (WCDMA)

To perform non-signalling test procedures, the user is required to be familiarized with sending test commands to the phone under test. The test commands can be sent using the Handset test command interface or through a computer. Please refer to section, "Handset Test commands," for details on how to send test commands through phone keypad entry. Also, refer to, "Computer Test Commands," for details on how to send test commands through the computer.

In order to successfully send test commands to the phone under test, the phone needs to be in suspend mode. Follow the listed procedure to place the phone in suspend mode.

Handset Test Commands

54 ok Suspend

Radio Comm Test Commands

Click AT+MODE then SUSPEND (Serial Only) Click PST Initialize and click SUS-PEND when initialization is complete (USB Only)

Γ	SUSPEND -	
	AT+MODE	
	SUSPEND	

Hardware Requirements

Refer to page 2 for a list of Hardware. Refer to Figure 4 for a configuration illustration.

Software Requirements

Handset Test Command

• No software needed

Computer Test Command

• Radio Comm (latest release)

Verify TX Power Output (WCDMA)

Verify the TX Power output by initiating the commands in this section. Verify that the results fall within the following limits.

Table 9. WCDMA TX Power Output

	Low	High	
Parameter	Limit	Limit	Unit
WCDMA Power Out	20.5	21.5	dBm

Handset Test Commands

54			Suspend
308	36		W_CARRIER
	Field 1	9750	Set Channel
	Field 2	0	Enable Carrier
	Field 3	023	Max Power Out
	Field 4	027	Max TX Power
	Field 5	206	Min TX power
	Field 6	002	PN9 Data pattern
	Field 7	1	Enable spreading
	Field 8	01	Long scrambling
	Field 9	000	SF256, Slot format 0
	Field 10	000	SF256, Slot format 0
	Field 11	000	Channelization Code
	Field 12	00000000	Scrambling Code

Note: Enter 1 in field 2 to disable carrier

Radio Comm Test Commands

Click on WCDMA

- CP_MODE -	
900	WCDMA
1800	
1900	
900/1800	Get Mode

For W_CARRIER assign these actions to each field

Freq ID (Dec)	9750
Action	Enable
Channelization	Enable
Data Pattern	PN 9
Scrambling	Long
DPCCH	SF256, SF0
DPDCH	SF256, SF0
Channelization Code	00
Transmit Power	15 ¹
Max Power	15 ¹
Min Power	80 ²
Scram Code	00

¹0x0015 -> 21 dec -> +21dBm ²0x0080 -> 128 dec -> (128-256 = -128 dBm)

-W CARRIER-				
Freq ID (Dec) 9	750 C	hannelization Code (Hex) 00		
Action	Channelization	Transmit Power (Hex)		
Enable Disable	 Disable Enable 	Max Power (Hex)		
Data Pattern	- Scrambling	Min Power (Hex)		
C All 0's	C Disable	Scram Code (Hex) 00		
C All 1's	Cong			
© PN 9 © PN 15	C Short	Set		
	Т ОРОСН			
SF256, SF0) 💽 SF256, SF0			
C SF256, SF1	🔘 🔿 SF128, S	F1		
🔿 SF256, SF5	🔿 SF4, SF6			

Audio/Vibrator Test Procedures

This section describes how to use test commands to verify audio and vibrate functions.

In order to successfully send test commands to the phone under test, the phone needs to be in suspend mode. Follow the listed procedure to place the phone in suspend mode.

Handset Test Commands

54 ok Suspend

Radio Comm Test Commands

Click AT+MODE then SUSPEND (Serial Only) Click PST Initialize and click SUS-PEND when initialization is complete (USB Only)

Vibrator Test

Handset Test Commands

3*0*1Enable Vibrator3*0*0Disable Vibrator

Radio Comm Test Commands

Enable or Disable Vibrator

AUD_CTRL Vib ON Vib OFF

Verification

Verfiy vibration function when enabled.

Handset Mic/Speaker test

Handset Test Commands

6*2*2	Enable internal mic and handset speaker
4*7*1*16	Enable VOCODER loopback at En-
	hanced Full Rate

Radio Comm Test Commands

Enable internal mic	AUD_PATH		
and headset speaker	Input: 2 - In	ternal Mic 📃 💌	
	Output: 2 - In	iternal Speaker 💌	
	CSe	2200	
		AUD_LPB	
		Codec	
		Disable	
Enable Vocoder loopb	ack at	PCAP	
Enhanced Full Rate		Disable	
		Vocoder	
		Disable	
		16 Enhanced	-

Verification

Speak into the handset mic and listen for undistorted speech in the handset speaker.

Mono Headset Mic/Speaker test

Handset Test Commands

6*4*6	Enable headset mic and headset
	speaker
4*7*1*16	Enable VOCODER loopback at En-
	hanced Full Rate

RadioComm Test Commands

Enable headset mic and headset speaker

AUD_PATH			
Input:	4 - Boom Mic 💌		
Output: 🛛	6 - Boom Spkr Right 💌		
	Set	4600	

Enable Vocoder loopback at **Enhanced Full Rate**

Verification

Speak into the headset mic and listen for undistorted speech in the headset speaker.

Software Version Check

Stereo Headset Mic/Speaker test

Handset Test Commands

6*4*8	Enable headset mic and headset
	speaker
4*7*1*16	Enable VOCODER loopback at En-
	hanced Full Rate

RadioComm Test Commands

Enable headset mic and headset speaker

16 - Enhanced

Ŧ

Enable Vocoder loopback at Enhanced Full Rate

pback at PCAP Disable Vocoder Disable

Verification

Speak into the headset mic and listen for undistorted speech in the headset speaker.

Melody Speaker test

Handset Test Commands

0*1*245	Play BACH_INVENTION_	1
0*0*245	Stop BACH_INVENTION_	1

NOTE: DO NOT issue a Suspend command (54 ok) for this test.

RadioComm Test Commands

Currently not supported

Verification

Listen for undistorted audio.

Software Version Check

Use the following procedures to retrieve software information. Software information can also be retrieved from the phone's customer User Interface. Refer to the phone's user manual for details.

In order to successfully send test commands to the phone under test, the phone doesn't need to be in suspend mode. Follow the listed procedure to configure the phone to accept test commands

Handset Test Commands

None

Radio Comm Test Commands

Click AT+MODE (Serial Only) Click PST Initialize (USB Only)

Test Commands

57*017003Read Software Version57*017001Read Build Date

RadioComm Test Commands

Select Product Base Label and click "Get" to retrieve software version

VERSION		
Product Base Label	•	(Get)
TALON_U_59.0E.291		

Select Build Time and click "Get" to retrieve Build Date

VERSION		
Build Time	•	Get
2003-03-23 08:06:36		

Display Test Procedures

This section will describe the proper test procedures to determine the functionality of the color display. Any tests that involve displaying a predefined pattern can be returned to the Opcode screen by pressing the right softkey of the phone.

In order to successfully send test commands to the phone under test, the phone needs to be in suspend mode. Follow the listed procedure to place the phone in suspend mode.

Handset Test Commands

54 ok Suspend

Radio Comm Test Commands

Click AT+MODE then SUSPEND (Serial Only) Click PST Initialize and click SUS-PEND when initialization is complete (USB Only)

Display Backlight Test

Handset Test Commands

55*9*000	Backlight Off
55*9*001	Backlight On, full intensity

RadioComm Test Commands

Click "FL Off" to disable backlight Click "FL On-Full" to enable backlight

FL Off

Verification

Verify that the backlights respond for each issued command.

Display Test Procedures

Handset Test Commands

55*2*014 Eight Color Box Pattern

RadioComm Test Commands

Select Eight Color Box and click "Set"

Pre Defined
0E - Eight Color Box 🗾
Set

Verification

Verify that the color pattern on the phone's display matches the color box in figure 23. Also verify edges (uniform/smooth).

Figure 23. Eight Color Box Pattern

Display Linearity Test

Handset Test Commands

55*2*005 Grey Scale Block

RadioComm Test Commands

Salast Cross Saala and	Pre Defined	
Select Grey Scale and click "Set"	05 - Gray Scale	•
	Set	

Verification

Verify that the Grey scale block on the phone's display matches the Grey scale block in figure 14. This test can also be used to confirm that the color intensity is linear.

Figure 24. Grey Scale Block

Display Flicker Test

Handset Test Command

55*2*006 Horizontal Zebra Line

RadioComm Test Commands

Select Horizontal Zebra and click "Set"

-Pre Defined-		
06 - Horizont	al Zebra	•
	Set	

Verification

Verify that no noticable flicker exists.

Figure 25. Zebra Pattern

Display Pixel Defect (Bright)

Handset Test Commands

55*2*001 All pixels on (all white)

RadioComm Test Commands

Select All Pixels Off and click "Set"

r	Pre Defined	
1	00 - All Pixels Off	•
	Set	

Verification

Verify that no greater than two pixels are off.

Display Pixel Defect (Dark)

Handset Test Commands

55*2*000 All pixels off (all black)

RadioComm Test Commands

Select All Pixels On and click "Set"

Pre Defined
01 - All Pixels On 🔹
Set

Verification

Verify that no greater than two pixels are on.

LEDS and Keypad Backlight

Use the following procedures to verify status LED and keypad backlight.

In order to successfully send test commands to the phone under test, the phone doesn't need to be in suspend mode. Follow the listed procedure to configure the phone to accept test commands.

Handset Test Commands

None

Radio Comm Test Commands

Click AT+MODE then SUSPEND (Serial Only) Click PST Initialize and click SUS-PEND when initialization is complete (USB Only)

Keypad Backlight

Handset Test Commands

62*0*1¹ Enable Keypad Backlight 62*0*0¹ Disable Keypad Backlight ¹Leave field 3 blank and press OK

RadioComm Test Commands

Select Keypad to enable. Deselect Keypad to disable.

Verification

Verify that all keypad backlight LEDs activate.

Status LEDS

Handset Test Commands

62*3*3*012¹ Enable Red LED 62*4*3*012¹ Enable Green LED ¹000 to disable

RadioComm Test Commands

Select Red LED or Green LED to enable. Deselect Red LED or Green LED to disable.

Verification

Verify that the Red and Green status LEDS activate.